

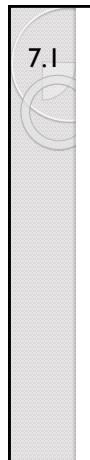
EECS 204002
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松 教授
NTHU

CH. 7 SORTING

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan 1

7.1 Motivation

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan 2



Motivation: Example

- Given a collection of records (*list*), where each record contains one or more fields (*keys*), **how do we search a record with specific key?**
- Example

List	Phone book
Record	Person
Key	Name, Phone, Address, etc.
Searching	Find Jack.

3

Motivation: Sequential Search

- Search the **WHOLE** list in left-to-right or right-to-left order until we find the first occurrence of the record with the target key.

```
template <class E, class K>
int SeqSearch (E *a, const int n, const K& k)
{ // Search a[1:n] from left to right. Return least i such
// that the key of a[i] equals k. If there is no such I,
// return 0.
    int i;
    for (i = 1 ; i <= n && a[i] != k ; i++ );
    if (i > n) return 0;
    return i;
}
```

Time complexity = $O(n)$

Motivation: Improvement

- How do we improve the performance of searching a record?
- Sort the list in a specific order before you do the search!
- For examples, given an ordered numeric list, using Binary search could obtain an improved performance of $O(\log n)$

5

Recursive Binary Search

```
int BinarySearch(int *A, const int x, const int
                 left, const int right )
{ // Search the A[left],...,A[right] for x
    if (left <= right) { // more integers to check
        int middle = (left+right)/2;
        if (x < A[middle])
            return BinarySearch(A, x, left, middle-1);
        else if (x > A[middle])
            return BinarySearch(A, x, middle+1, right);
        return middle;
    } // end of if
    return -1; // not found
}
```

6

Binary Search Example

- Search for $x = 9$ in array $A[0] \dots [7]$:

A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]
1	3	5	8	9	17	32	50

1st Call: `BinarySearch(A, 9, 0, 7)`
 2nd Call: `BinarySearch(A, 9, 4, 7)`
 3rd Call: `BinarySearch(A, 9, 4, 4)`
 return index 4.

Why Need Sorting?

Two Categories

Stable Sort

- A sort algorithm is called “**Stable**” iff $r_i = r_j$ and r_i precedes r_j in the input list, then r_i precedes r_j in the sorted list

Unsorted	Stable sort
21, 4, 5, 78, 5, 12	4, 5, 5 12, 21, 78

Unstable sort	
21, 4, 5, 78, 5, 12	4, 5, 5 12, 21, 78

10

7.2

Insertion Sort

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan 11

7.2

Insertion Sort

- Given a sequence $a[1], a[2], \dots, a[n]$
- Divide the sequence into 2 parts:
 - Left part: sequence sorted so far
 - Right part: unsorted part
- Take one element from the right part and **insert** it into the correct position in the left part

12

A Running Example

```

44 55 12 42 94 18 6 67
44 55 12 42 94 18 6 67
44 55 12 42 94 18 6 67
12 44 55 42 94 18 6 67
12 42 44 55 94 18 6 67
...

```

13

Insertion Sort (codes)

```

template <class T>
void Insert(cones T& e, T *a, int i){
    a[0] = e;
    while (e < a[i]) {
        a[i+1] = a[i];
        i--;
    }
    a[i + 1] = e;
}
template <class T>
void InsertionSort(T *a, const int n){
    for (int j = 2; j <= n ; j++){
        T temp = a[j];
        Insert(temp, a, j - 1);
    }
}

```

14

Complexity

- Worst case running time
 - Outer loop: $O(n)$
 - Inner loop: $O(j)$
$$\sum_{j=1}^n j = O(n^2)$$
- Average case running time: $O(n^2)$
- Stable sort

15

7.3

Quick Sort

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan 16

Quick Sort

- Pick a record $a[r]$ at random.
- Divide $a[1] \dots a[n]$ into two sublists using $a[r]$.

$a[i] \leq a[r]$ $a[r]$ $a[j] > a[r]$

- Sublists are not sorted.
- Sort the two sublists recursively.
- How to pick up a splitting record ?
 - Just pick up the first record!

17

Example

26	5	37	1	61	11	59	15	48	19
26	5	37	1	61	11	59	15	48	19
	i	↑		swap					j
26	5	19	1	61	11	59	15	48	37
	i	↑	swap		↑	j			
26	5	19	1	15	11	59	61	48	37
	i	↑	swap		j	i			
11	5	19	1	15	26	59	61	48	37
Sublist 1					Sublist 2				

◦ Recursively sort sublist1 and sublist2

18

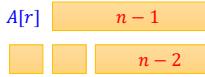
Quick Sort (code)

```
template <class T>
void QuickSort(T *a, const int left, const int right)
{
    if (left < right) {
        int i = left, j = right + 1, pivot = a[left];
        do {
            do i++; while (a[i] < pivot);
            do j--; while (a[j] > pivot);
            if (i < j) swap(a[i], a[j]);
        } while (i < j);
        swap(a[left], a[j]);
        QuickSort(a, left, j - 1);
        QuickSort(a, j + 1, right);
    }
}
```

19

Time complexity

- If the splitting record is in the middle
- Depth of recursion: $O(\log n)$
- Finding the position of splitting record: $O(n)$
- Total running time: $O(n \log n)$
- Worst case running time: $O(n^2)$



Ex: 1,2,3,4,5,6,7 a sorted list

20

Variation: Median-of-Three

- Find a better splitting record:
 - Try to find the median one
 - Median {first, middle, last}
- Not a stable sort.

21

7.4

How Fast Can We Sort

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan 22

7.4

Best Sorting Computing Time

- $\Omega(n \log n)$:
 - If only the comparisons and interchanges are allowed during the sorting
- Decision tree:
 - A tree that describe sorting process.
 - Each vertex represents a comparison.
 - Each branch indicates the result.

23

Decision Tree for Insertion Sort

24

Time Complexity

- Given a list of n records.
- There are $n!$ combinations and thus having $n!$ leaf nodes in a decision tree.
- For a decision tree (binary tree) with $n!$ leaves, the height (depth) of the tree is $n \log n$.
 - $n! \geq (n/2)^{n/2}$
 - $\Rightarrow \log(n!) \geq (n/2) \log(n/2) = \Omega(n \log n)$
- Therefore the average root-to-leaf path is $\Omega(n \log n)$.

25

7.5

Merge Sort

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan

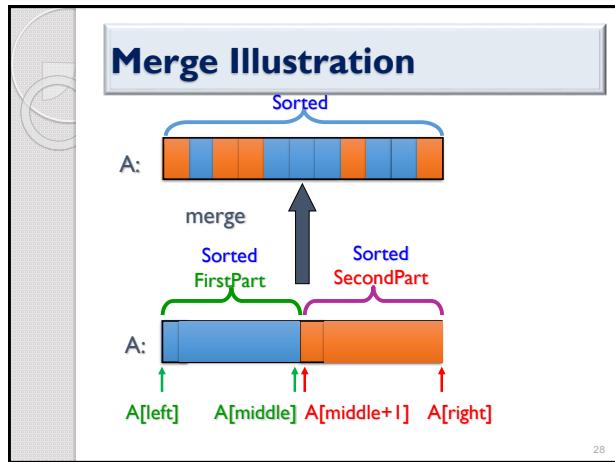
26

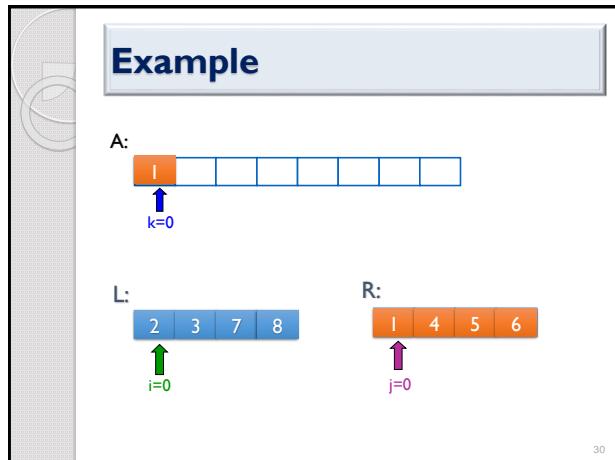
7.5

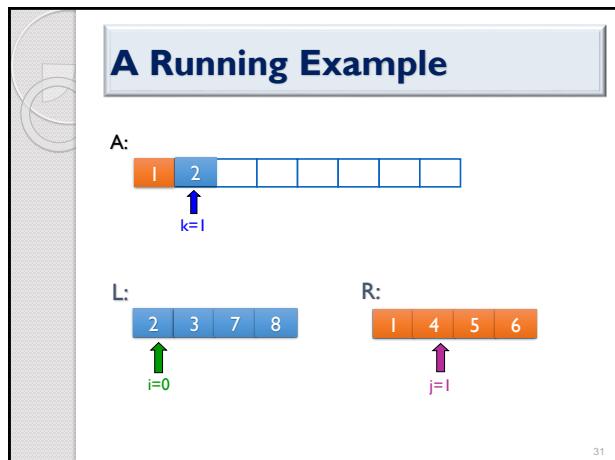
Merge Sort

- Given two sorted lists, merge them into one sorted list.
- Use an algorithm similar to polynomial addition.
- Assume the size of two lists are m and l , the time complexity of merging two lists is $O(m + l)$.

27







A Running Example

A:

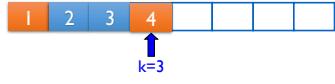
L:

R:

32

A Running Example

A:



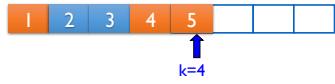
L:

R:

33

A Running Example

A:



L:

R:

34

A Running Example

A:

L:

R:

35

A Running Example

A:

L:

R:

36

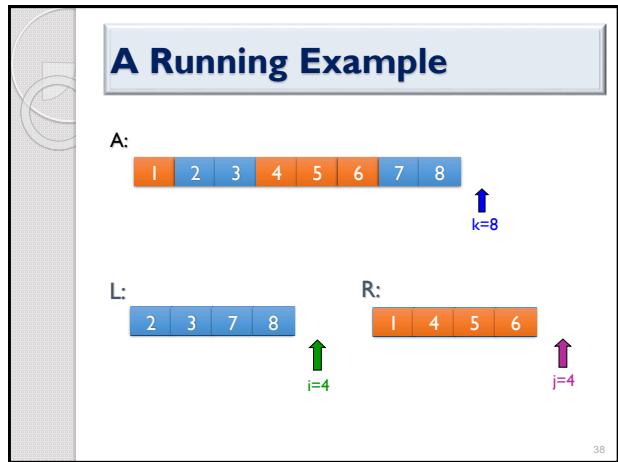
A Running Example

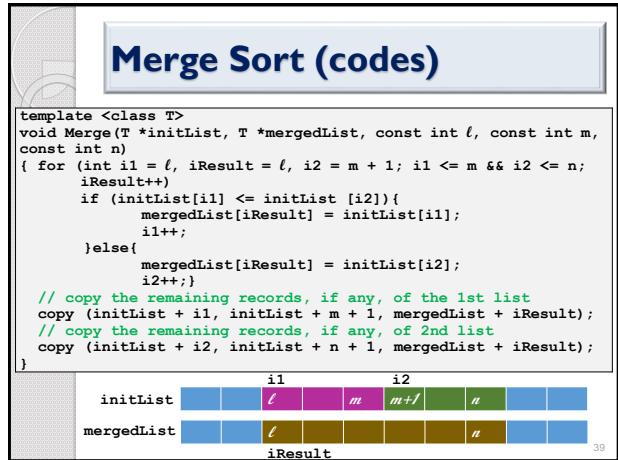
A:

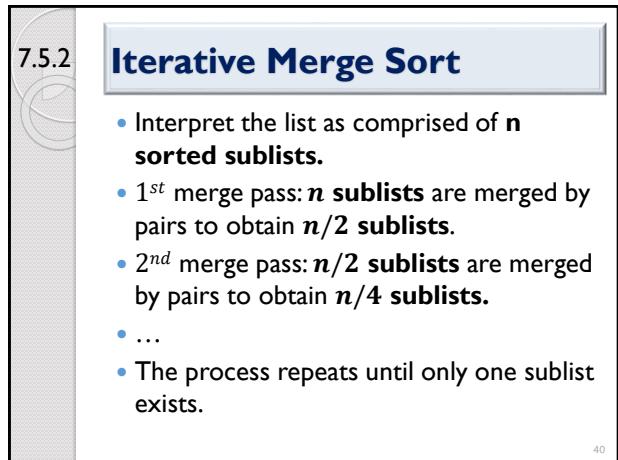
L:

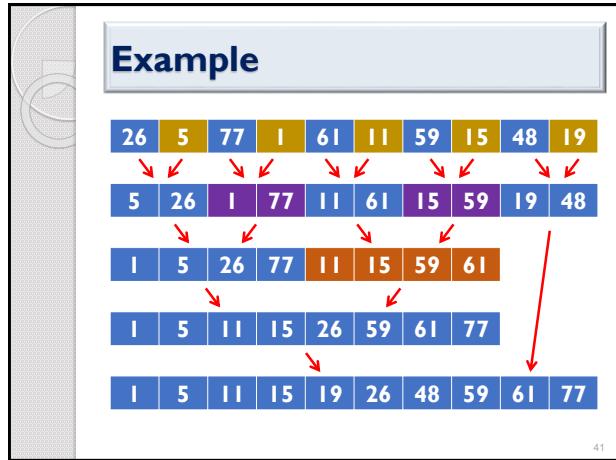
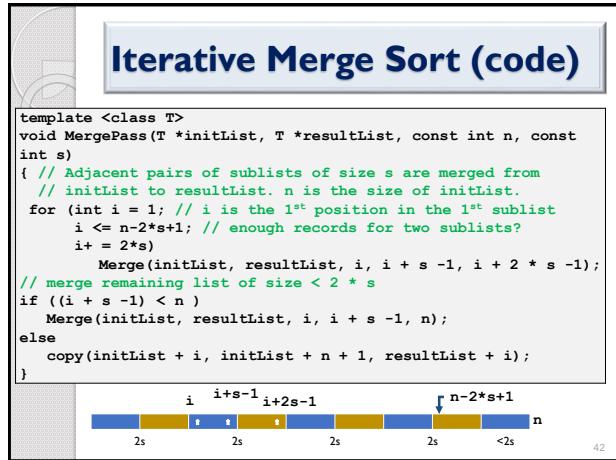
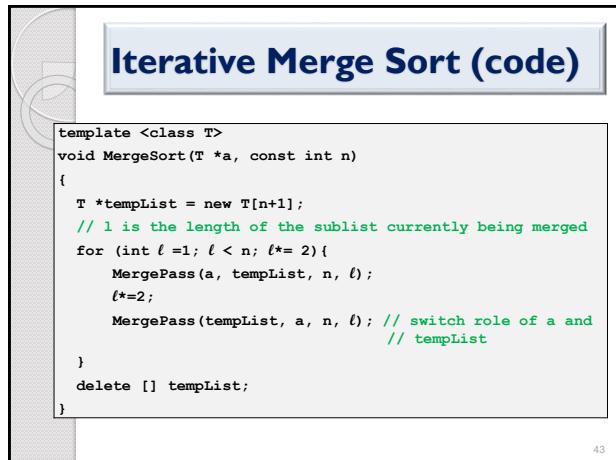
R:

37









Properties

- Time complexity
 - Number of merge pass: $O(\log n)$
 - Time complexity of merge pass: $O(n)$
 - Time complexity = $O(n \log n)$
- Require additional storage to store merged result during the process.
- Stable sort

44

7.5.3

Recursive Merge Sort

- Divide the list to be sorted into two roughly equal parts called **left and right sublists**.
- Recursively sort the two sublists.
- Merge the sorted sublists

45

Recursive Merge Sort Example

Recursive Merge Sort (code)

- Using a structure “link” to represent the index order of sorted list.

```

template <class T>
int rMergeSort(T* a, int* link, const int left, const int right)
// sorting a[left:right]. link[i] is initialize to 0.
// rMerge returns the index of 1st element in the sorted list.
{
    if (left >= right) return left;
    int mid = (left + right) / 2;
    return ListMerge(a, link,
        rMergeSort(a, link, left, mid),           // sort left sublist.
        rMergeSort(a, link, mid + 1, right)); // sort right sublist.
}

```

47

```

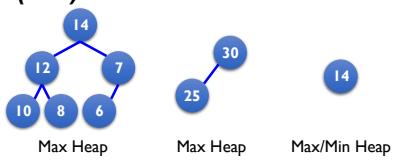
template <class T>
int ListMerge(T* a, int* link, const int start1, const int
start2)
{/// merge two sorted lists, starting from start1 and start2.
// link[0] is a temporary head, stores the head of merged list.
// iResults records the last element of currently merged list.
int iResult = 0;
for (int i1 = start1, i2 = start2; i1 && i2; ) {
    if (a[i1] <= a[i2]) {
        link[iResult] = i1; iResult = i1; i1 = link[i1];
    } else {
        link[iResult] = i2; iResult = i2; i2 = link[i2];
    }
// attach the remaining list to the resultant list.
if (i1 == 0) link[iResult] = i2;
else link[iResult] = i1;
return link[0];
}

```

7.6

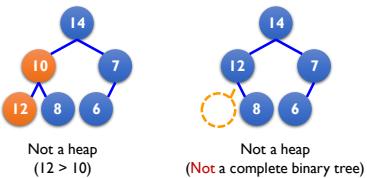
Max Heap (Priority Queue)

Definition: A **max (min) tree** is a tree in which the key value in each node is **no smaller (larger)** than the key values in its children (if any). A **max(min) heap** is a **complete binary tree** that is also a **max(min) tree**.



50

Examples: not max heap



51

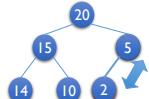
Max Heap: Representation

- Since the heap is a complete binary tree, we could adopt "**Array Representation**" as we mentioned before!
- Let node i be in position i (array[0] is empty)
 - $\text{Parent}(i) = \lfloor i/2 \rfloor$ if $i \neq 1$. If $i = 1$, i is the root and has no parent.
 - $\text{leftChild}(i) = 2i$ if $2i \leq n$. If $2i > n$, then i has no left child.
 - $\text{rightChild}(i) = 2i + 1$ if $2i + 1 \leq n$, if $2i + 1 > n$, then i has no right child.

52

Max Heap: Insert

- Make sure it is a complete binary tree
- Insert a new node
- Check if the new node is greater than its parent
- If so, swap two nodes



53

Max Heap: Delete

1. Always delete the root
2. Move the last element to the root (maintain a complete binary tree)
3. Swap with larger and largest child (if any)
4. Continue step 3 until the max heap is maintained (trickle down)



54

7.6

Heap Sort

- Utilize the max-heap structure
- The insertion and deletion could be done in $O(\log n)$
- Build a max-heap using n records, insert each record one by one ($O(n\log n)$)
- Iteratively remove the largest record (the root) from the max-heap ($O(n\log n)$)
- Not a stable sort

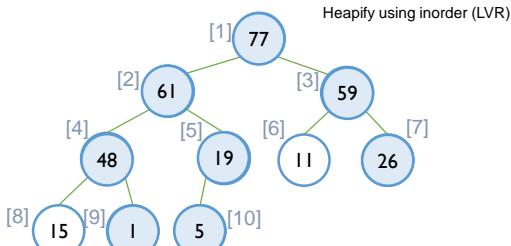
Heap Sort (code)

```
template <class T>
void HeapSort(T *a, const int n)
{
    Heapify(a, n);
    for (i = n-1; i >= 1; i--) // Sorting
    {
        swap(a[1], a[i+1]); // swap the root with last node
        Heapify(a, i); // rebuild the heap (a[1:i])
    }
}
```

56

Heap Sort Example

26 5 77 1 61 11 59 15 19 48 19

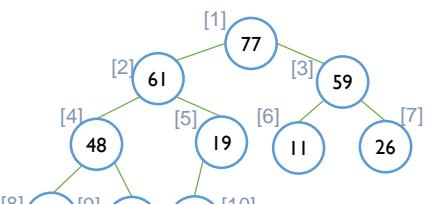


Yi-Shin Chen -- Data Structures

57

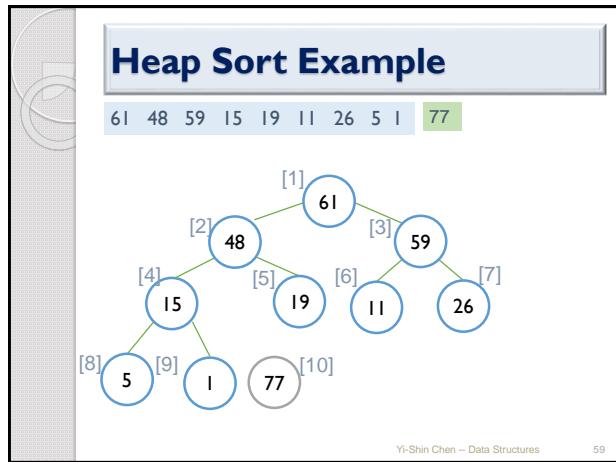
Heap Sort Example

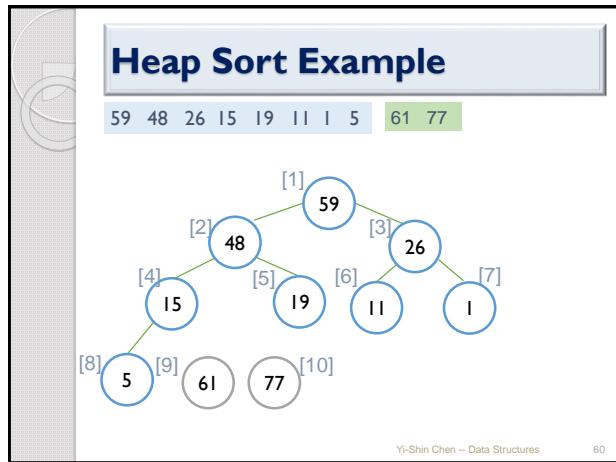
77 61 59 43 19 11 26 15 1 5

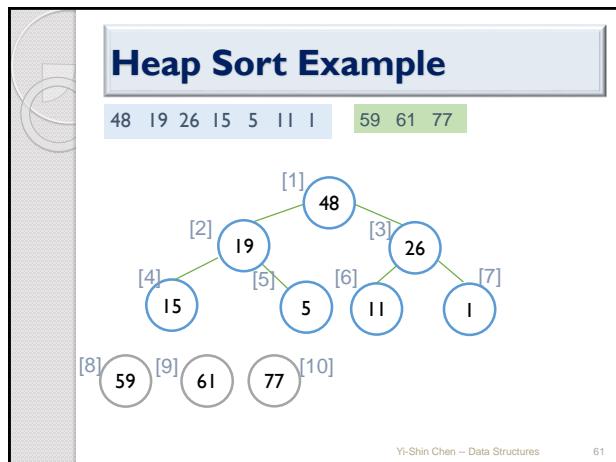


Yi-Shin Chen -- Data Structures

58







Heap Sort Example

26 19 11 15 5 1 48 59 61 77

Yi-Shin Chen -- Data Structures 62

Heap Sort Example

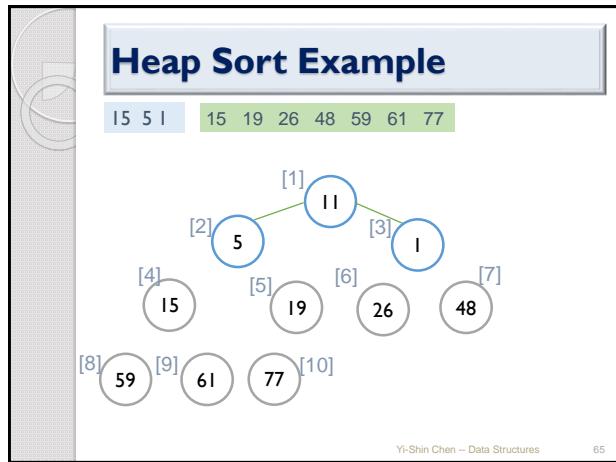
19 15 11 1 5 26 48 59 61 77

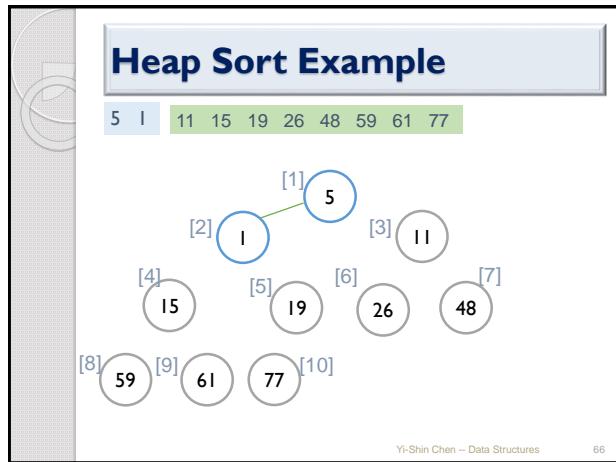
Yi-Shin Chen -- Data Structures 63

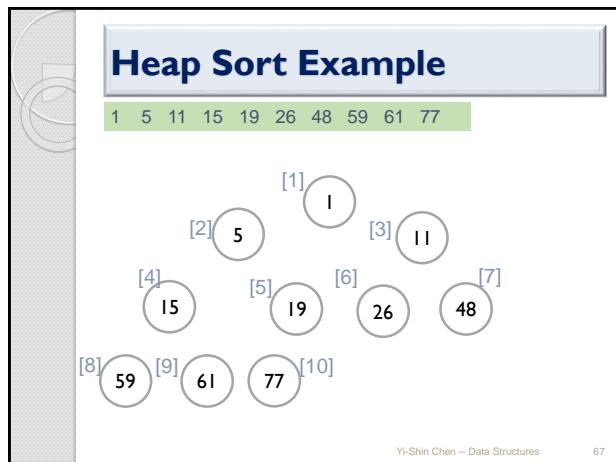
Heap Sort Example

15 5 11 1 19 26 48 59 61 77

Yi-Shin Chen -- Data Structures 64







7.7

Sorting on Several Keys

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan

68

Sorting with Several Keys

A list of records is said to be sorted with respect to the keys K^1, K^2, \dots, K^r iff for every pair of records i and j , $i < j$ and

$$(K_i^1, K_i^2, \dots, K_i^r) \leq (K_j^1, K_j^2, \dots, K_j^r)$$

$$(x_1, \dots, x_r) \leq (y_1, \dots, y_r)$$

iff either $x_k = y_k$, $1 \leq k \leq n$, and
 $x_{n+1} < y_{n+1}$ for some $n < r$,
 or $x_k = y_k$, $1 \leq k \leq r$

69

Sorting a Deck of Cards

- Each card has two keys
 - K^1 (Suits): ♣ < ♦ < ♥ < ♠
 - K^2 (Face values): 2 < 3 < 4 ... < J < Q < K < A
 - The sorted list is: 2 ♣, ..., A ♣, ..., 2 ♠, ..., A ♠
- Most-significant-digit (MSD) sort
 - Sort using K^1 to obtain 4 “piles” of records.
 - Sort each piles into sub-piles.
 - Merge piles by placing the piles on top of each other.

70

Sorting a Deck of Cards (cont'd)

- Least-significant-digit (**LSD**) sort
 - Sort using K^2 to obtain 13 “piles” of records.
 - Place 3’s on top of 2’s,...,Aces on top of kings.
 - 2 < 3 < 4 ... J < Q < K < A
 - Using a **stable** sort with respect to K^1 and obtain 4 “piles”.
 - Merge piles by placing the piles on top of each other.

71

Bin Sort (Bucket Sort)

- Assume the records in a list to be sorted come from a set of size m , say $\{1,2, \dots, m\}$.
- Create m buckets.
- Scan the sequence $a[1] \dots a[n]$, and put $a[i]$ element into the $a[i]^{th}$ bucket.
- Concatenate all buckets to get the sorted list.
- Suitable for a set with small m .

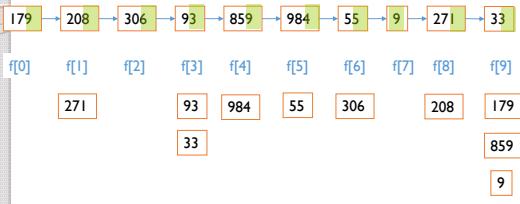
72

Radix Sort

- Decompose the key (number) into subkeys using some **radix r**
 - For $r = 10, K = 123$, then $K^1 = 1, K^2 = 2$, and $K^3 = 3$.
- Create r buckets ($0 \sim r-1$).
- Apply bin sort with MSD or LSD order.
- Suitable to sort numbers with large value range.

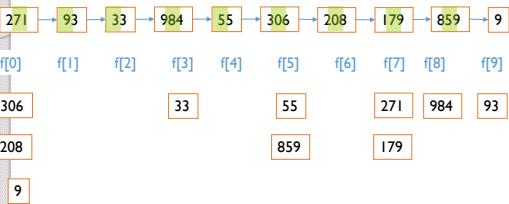
73

Radix Sort Example (Pass 1)



74

Radix Sort Example (Pass 2)



75

Radix Sort Example (Pass 3)

76

Time Complexity: $O(d \cdot (n+r))$

LSB Radix Sort (code) 1/2

```

template <class T>
int RadixSort(T *a, int *link, const int d, const int r, const int n)
{
    // using a radix sort with d digits, radix r to sort a[1:n]
    // digit(a[i], j, r) return the j-th key in radix r of a[i]
    // each digit is within the range [0, r). Using the bin sort to
    // sort elements of the same digit.

    int e[r], f[r]; // head and tail of the bin
    int first = 1; // start from the 1st element
    for(int i = 1; i < n; i++) link[i] = i+1; // link the elements
    link[n] = 0;
    // do radix sorting...
}

```

77

LSB Radix Sort (code) 2/2

```

// do radix sorting.
for (i = d-1; i >= 0; i--) { // sort in LSB order
    fill(f, f+r, 0); // initialize the bins
    for (int current = first; current < current = link[current]);
    { // put the element with key k to bin[k]
        int k = digit(a[current], i, r);
        if (f[k]== 0) f[k] = current;
        else link[e[k]] = current;
        e[k] = current;
    }
    for (j = 0; !f[j]; j++); // find the 1st non-empty bin
    first = f[j];
    int last = e[j];
    for (int k = j + 1; k < r; k++){ // link the rest of bins
        if (f[k]) {
            link[last] = f[k];
            last = e[k];
        }
    }
    link[last] = 0;
}
return first;
}

```

78

7.9

Summary of Internal Sorting

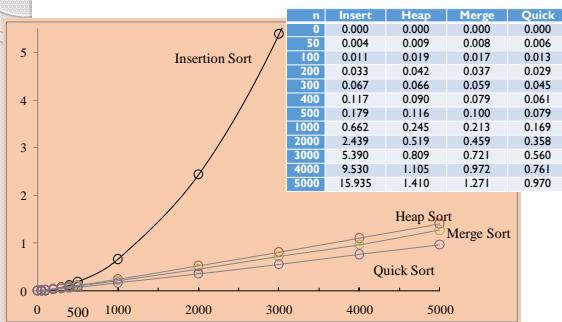
7.9

Time Complexity Comparison

Method	Worst	Average
Insertion Sort	n^2	n^2
Heap Sort	$n \log n$	$n \log n$
Merge Sort	$n \log n$	$n \log n$
Quick Sort	n^2	$n \log n$

80

Actual Runtime Comparison



81

Design Guidelines

- Insertion sort is good for **small** n and when the list is **partially sorted**.
- Merge sort is slightly faster than heap sort but it require additional **storage**.
- Quick sort outperforms in **average**.
- **Combining** insertion sort with quick sort to obtain better performance.

82

C++'s Sort Methods

- Designed to optimize the average performance.
- `std::sort()`
 - Modified Quick sort.
 - Heap Sort
 - when the number of subdivision exceed $c \log n$
 - Insertion Sort
 - when the segment size becomes small
- `std::stable_sort()`
 - Merge Sort.
 - Insertion Sort
 - when the segment size becomes small
- `std::partial_sort()`
 - Heap Sort.

83

7.10

External Sorting

2018/12/4 © Ren-Song Tsay, NTHU, Taiwan

84

7.10

External Sort

- When the lists are too large to be loaded into internal memory completely
 - The list could reside on a disk
- The external sorting operations
 - Read partial records
 - Perform the sorting
 - Write the result back to disk
- “Block”
 - The unit of data that is read/written at one time

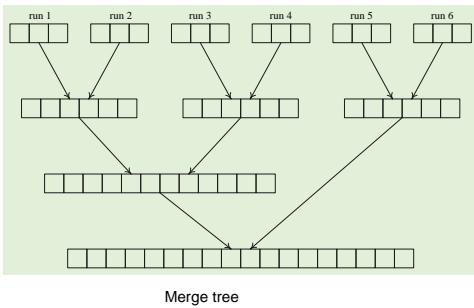
85

External Sort Algorithm

- Insertion sort, Quick sort, Heap sort.....NO
- **Merge sort**.....YES
 - Segments (blocks, runs) of input lists sorted using an internal sort
 - Sublists could be sorted independently and merged later
 - The runs generated in phase one are merged together following the **merge-tree** pattern
 - During the merging, only the leading records of the two runs needed to be loaded in memory

86

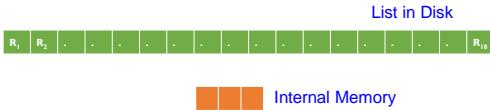
Runs & Merge Tree



87

Example: Problem

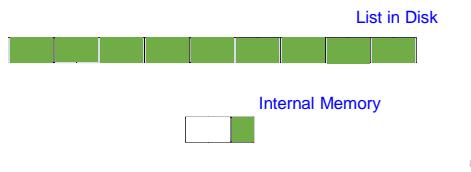
- Internal memory: 750 records.
- List to be sorted: 4500 records.
- Block size: 250 records.



88

Example: Merge Pass 1

- To merge R_i and R_{i+1} :
 - The blocks of R_i and R_{i+1} are read into input buffers
 - The merged data is written to output buffer
 - Output buffer full \Rightarrow write onto disk
 - Input buffer empty \Rightarrow read from the new block



89

Example: Merge Pass 2

- To merge R_i and R_j :
 - The blocks of R_i and R_j are read into input buffers
 - The merged data is written to output buffer
 - Output buffer full \Rightarrow write onto disk
 - Input buffer empty \Rightarrow read from the new block

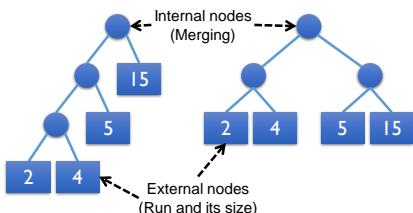


90

7.10.5

Optimal Merging of Runs

- Runs with different sizes.
- Different merge sequence may result in different runtime.



93

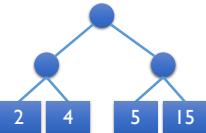
Runtime Evaluation

Merge tree A

$$\begin{aligned}
 \text{Cost} &= (2 + 4) + (2 + 4 + 5) + (2 \\
 &+ 4 + 5 + 15) \\
 &= 2 * 3 + 4 * 3 + 5 * 2 + 15 * 1 \\
 &= 43
 \end{aligned}$$

Merge tree B

$$\begin{aligned}
 \text{Cost} &= 2 * 2 + 4 * 2 + 5 * 2 \\
 &+ 15 * 2 = 52
 \end{aligned}$$



94

Weighted External Path Length

- The total number of merge steps is equal to:

$$\sum_{i=1}^n s_i d_i$$

- Where s_i is the size of Run i and d_i is the distance from the node to root.
- How to build a merge tree such that the total cost is minimized?**

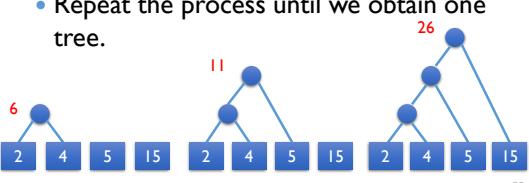
95

Sort by Block Size

- Sort runs using its size.

2 4 5 15

- Take the two runs with **least sizes** and combine them into a tree.
- Repeat the process until we obtain one tree.



96

Similar to Message Encoding

- Given a set of messages $\{M_1, M_2, \dots, M_i\}$
- How do we encode each M_i using a binary code such that the total number of message bits is minimum?

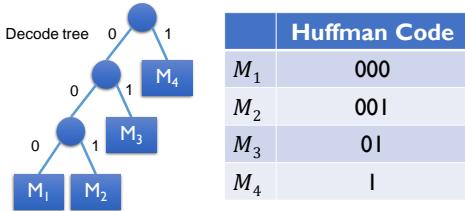
	Encode 1	Encode 2	Encode 3
M_1	0	0001	0001
M_2	1	0010	1
M_3	10	0100	01
M_4	11	1000	001

97

7.10.5
F7.28

Huffman Code

- Using a binary tree, called **decode tree** to encode messages.



99

Decoding Cost

- Cost of decoding a code word is proportional to the number of bits of the word.
 - Decoding a code word contain $2 * M_1$ and $1 * M_4$ requires process $2 * 3 + 1 = 7$ bits.
- Assume the message M_i with encoded bit length d_i , occurring **frequency** is s_i , then the total cost of the code word is:

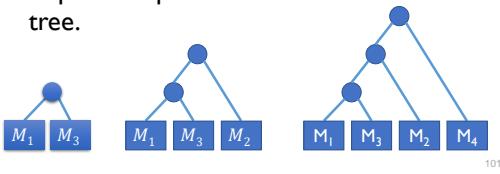
$$\sum_{i=1}^n s_i d_i$$

- How do we construct a decode tree such that the decoding cost is minimized?

100

Optimal Merge Tree

- Follow Huffman Code Method
- Sort the message according to s_i
$$\begin{array}{cccc} M_1 & M_2 & M_3 & M_4 \\ 2 & 5 & 4 & 15 \end{array}$$
- Take two messages with the **least** s_i and combine them into a tree (a new message)
- Repeat the process until we obtain one tree.



101

Self-Study Topics

- 7.8 List and Table Sorts

103