Prof. Ren-Song Tsay December 4, 2018

EECS 204002

Data Structures & 1 4518

Prof. REN-SONG TSAY 31{_#3 ##%
NTHU

CH.7
SORTING

7.1

.

ion

(o)
—

Motivai

(o

7.1 Motivation: Example

* Given a collection of records (list), where
each record contains one or more fields
(keys), how do we search a record with

specific key?
e Example
Record Person
Key Name, Phone, Address, etc.
Searching Find Jack.

Chapter 7: Sorting

Prof. Ren-Song Tsay December 4, 2018

Motivation: Sequential Search

e Search the WHOLE list in left-to-right or
right-to-left order until we find the first
occurrence of the record with the target
key.

template <class E, class K>

int SegSearch (E *a, const int n, const K& k)

{ // Search a[l:n] from left to right. Return least i such
// that the key of a[i] equals k. If there is no such I,
// return 0.

int i;
for (i =1 ; i <=n && a[i] '=k ; i++);

if (i > n) return 0;

return i;

} Time complexity = 0(n)

Motivation: Improvement

* How do we improve the performance of
searching a record?

¢ Sort the list in a specific order before you
do the search!

* For examples, given an ordered numeric
list, using Binary search could obtain an
improved performance of O (log n)

Recursive Binary Search

int BinarySearch(int *A, const int x, const int
left, const int right)
{ // Search the A[left],..,A[right] for x
if (left <= right) { // more integers to check
int middle = (left+right)/2;
if (x < A[middle])
return BinarySearch(A, x, left, middle-1);
else if (x > A[middle])
return BinarySearch(A, x, middle+l, right) ;|
return middle;
} // end of if
return -1; // not found

}

Chapter 7: Sorting 2

Prof. Ren-Song Tsay December 4, 2018

Binary Search Example

e Search for x = 9 in array A[0]...[7] :

ATO] AT1] Al2] Al3] Al4] ATS] Al6] Al7]
A 1‘3 ‘5‘8‘9‘17‘32‘50

u
|st 3rd nd

Ist call: BinarySearch(a, 9, 0, 7)

2nd call: BinarySearch(a, 9, 4, 7)
3rd call: BinarySearch(a, 9, 4, 4)

return index 4.

Why Need Sorting?

To improve the
search performance!

Two Categories

e Internal sort:

The entire sort could be done in main memory
> Suitable for list of small size (e.g. 1MB)
> Insertion sort, merge sort, heap sort, radix sort

e External sort:
> Data I/O are necessary during the sorting.
> Suitable for list of large size (e.g. 1T)
° Merge sort

Chapter 7: Sorting 3

Prof. Ren-Song Tsay December 4, 2018

Stable Sort

¢ A sort algorithm is called “Stable” iff r; =
17 and 1; precedes 7; in the input list, then
7; precedes 7; in the sorted list

Unsorted Stable sort

21,4,5,78,5,12 =) 4,55 12,21,78

Unstable sort

21,4,5,78,5,12 =) 4,55 12,21,78

Insertion

(00
(@
=
le

72 Insertion Sort

« Given a sequence a[1],a[2], ...a[n]

¢ Divide the sequence into 2 parts:

o Left part: sequence sorted so far

> Right part: unsorted part

¢ Take one element from the right part and
insert it into the correct position in the
left part

Chapter 7: Sorting 4

Prof. Ren-Song Tsay

A Running Example

December 4, 2018

44 55 12 42 94 18 6 67

%@nn% I8 6 67

44 55 (:) 4 94 I8 6 67
12 44 5594 I8 6 67

7
12 42 44 55I8667

Insertion Sort (codes)

template <class T>

void Insert(cones T& e, T *a, int i) {
a[0] = e;
while (e < a[i]) {

al[i+l] = a[i];
i-—; }
afi + 1] = e;

}
template <class T>
void InsertionSort (T *a, const int n){
for (int j = 2; j <= n ; j++){
T temp = a[jl;
Insert(temp, a, j - 1);}

Complexity

* Worst case running time
> Outer loop: 0(n)
° Inner loop: 0(j)

> i=0(n?)

* Average case running time: O (n?)

e Stable sort

Chapter 7: Sorting

Prof. Ren-Song Tsay December 4, 2018

Ren-Song Tsay, NTHU, Taiwan

7.3 Quick Sort

¢ Pick a record a[r] at random.

¢ Divide a[1] a[n] into two sublists using
alr].

ali] < alr] alrl alj] > a[r]

e Sublists are not sorted.

« Sort the two sublists recursively.

* How to pick up a splitting record ?
> Just pick up the first record!

Example

[26 | 5 [37 L 1l er | i 59 s | 48] 19]
ﬂﬂlll!llllﬂlﬂﬂlﬂ
i

swap A

[26 | 5 |5 | 1 e i1 [59 15 | 48| 37|
; .
f swap T i

[261 s |19 |1 [s | 11|59 [61| 48 | 37]

i»j— stop j i
[| s |9 | 1|5 126 59 [61 | a8 | 37]
Sublist | Sublist 2

° Recursively sort sublist| and sublist2

Chapter 7: Sorting 6

Prof. Ren-Song Tsay December 4, 2018

Quick Sort (code)

template <class T>

void QuickSort (T *a, const int left, const int right)

{ if (left < right) {
int i = left, j = right + 1, pivot = a[left];
do {

do i++; while (a[i] < pivot);
do j--; while (a[j] > pivot);

if (i < j) swap (a[i], a[jl);
} while (i < j);

swap (a[left], a[jl);
QuickSort(a, left, j - 1);
QuickSort(a, j + 1, right);

Time complexity

¢ If the splitting record is in the middle

¢ Depth of recursion: O (logn)

« Finding the position of splitting record:
om)

¢ Total running time: O(n log n)

* Worst case running time: 0 (n?)
Alr] n—1

n—2

Ex: 1,2,3,4,5,6,7 a sorted list

Variation: Median-of-Three

¢ Find a better splitting record:

> Try to find the median one
> Median {first, middle, last}

* Not a stable sort.

Chapter 7: Sorting 7

Prof. Ren-Song Tsay

December 4, 2018

74

Best Sorting Computing Time

* Q(nlogn):
o If only the comparisons and interchanges are
allowed during the sorting
¢ Decision tree:
° A tree that describe sorting process.
> Each vertex represents a comparison.
Each branch indicates the result.

Decision Tree for Insertion Sort

Chapter 7:

Sorting

Prof. Ren-Song Tsay December 4, 2018

Time Complexity

* Given a list of n records.

e There are n! combinations and thus
having n! leaf nodes in a decision tree.
* For a decision tree (binary tree) with n!

leaves, the height (depth) of the tree is
n logn.

n! > (n/2)"?
> @log(n!) = (n/2)log(n/2) = Q(nlogn)

¢ Therefore the average root-to-leaf path is
Q(nlogn).

75 Merge Sort

» Given two sorted lists, merge them into
one sorted list.

* Use an algorithm similar to polynomial
addition.

o Assume the size of two lists are m and [,

the time complexity of merging two lists
is O(m + 1).

Chapter 7: Sorting

Prof. Ren-Song Tsay December 4, 2018

Merge lllustration |
S%d

/s N\
ao LIl Il Wl |

merge

Sorted Sorted
Firsfart SecondPart
A
' N \

A
1 tt t

Allef] A[middle] A[middle+1] Alright]

Example

A:

A Running Example

Chapter 7: Sorting 10

Prof. Ren-Song Tsay

A Running Example

December 4, 2018

A Running Example

A:

k=3

A Running Example

A:

Chapter 7: Sorting

11

Prof. Ren-Song Tsay December 4, 2018

A Running Example

A:
2 3 4 5 « IHIA
1
k=5
L: R:
|4 5 6

A Running Example

A:
2 3 4 5 ¢ 7110
1
k=6
L: R:
| 4 5 6
i=2 =4

A Running Example

Chapter 7: Sorting 12

Prof. Ren-Song Tsay December 4, 2018

A Running Example

A:
I 2 3 4 5 6 7 8
1
k=8
L. R:
2 3 7 8 I 4 5 6
i=4 =4

Merge Sort (codes)

template <class T>
void Merge (T *initList, T *mergedList, const int ¢, const int m,
const int n)
{ for (int il = ¢, iResult = ¢, i2 =m + 1; il <= m && i2 <= n;
iResult++)
if (initList[il] <= initList [i2]){
mergedList[iResult] = initList[il];
il++;

}else{
mergedList[iResult] = initList[i2];
i2++;}
// copy the remaining records, if any, of the lst list
copy (initList + il, initList + m + 1, mergedList + iResult);
// copy the remaining records, if any, of 2nd list
copy (initList + i2, initList + n + 1, mergedList + iResult);

il i2
sos 1+ [N NI 2 2 N P N
.o [0 20 O O 2

iResult

752 Iterative Merge Sort

¢ Interpret the list as comprised of n
sorted sublists.

¢ 15t merge pass: 11 sublists are merged by
pairs to obtain 11/2 sublists.

2" merge pass: n/2 sublists are merged
by pairs to obtain n/4 sublists.

* The process repeats until only one sublist
exists.

Chapter 7: Sorting 13

Prof. Ren-Song Tsay December 4, 2018

Example
265 177 1 161 [11[59] 15148 19
NYONY O NK NK N K
(5 126 1 77 11 61]15]59 19 48]
N N
1[5 26 77 1101559 61
\ v
15 (11 15]26059]61]77]
\
1[5 11115 19/26]48]59 61 77]

Iterative Merge Sort (code)

template <class T>
void MergePass (T *initList, T *resultList, const int n, const
int s)
{ // Adjacent pairs of sublists of size s are merged from
// initList to resultList. n is the size of initList.
for (int i = 1; // i is the 1%t position in the 1%t sublist
i <= n-2*s+l; // enough records for two sublists?
i+ = 2*s)
Merge (initList, resultlist, i, i + s -1, i + 2 * s -1);
// merge remaining list of size < 2 * s
if ((i + s -1) <n)
Merge (initList, resultList, i, i + s -1, n);
else
copy (initList + i, initList + n + 1, resultlist + i);

}

g itslg o) n-2%s+1
!l .« . [[[[B
2s 2s 2s 2s <2s

Iterative Merge Sort (code) |

template <class T>
void MergeSort (T *a, const int n)

{

T *tempList = new T[n+l1];
// 1 is the length of the sublist currently being merged
for (int € =1; € < n; &*= 2){

MergePass (a, tempList, n, ¢);

*x=2;

MergePass (templist, a, n, {); // switch role of a and
// tempList

}
delete [] tempList;

Chapter 7: Sorting 14

Prof. Ren-Song Tsay December 4, 2018

Properties

» Time complexity

> Number of merge pass: O(log n)

° Time complexity of merge pass: O(n)
> Time complexity = O(n log n)

» Require additional storage to store
merged result during the process.

o Stable sort

753 Recursive Merge Sort

¢ Divide the list to be sorted into two
roughly equal parts called left and right
sublists.

 Recursively sort the two sublists.
¢ Merge the sorted sublists

'Recursive Merge Sort Example |
26 5 [77] 1 [e1 1159 15 48 19]
(2615 (7701 [61 1 11]59 1548] 19
mnllmmmmmm

19 48
IIIIB

IIHIII 6177

Chapter 7: Sorting 15

Prof. Ren-Song Tsay

Recursive Merge Sort (code)|

* Using a structure “link” to represent the
index order of sorted list.

template <class T>
int rMergeSort(T* a, int* link, const int left, const int right)
{// sorting a[left:right]. link[i] is initialize to 0.
// rMerge returns the index of 1%t element in the sorted list.
if (left >= right) return left;
int mid = (left + right) /2;
return ListMerge(a, link,
rMergeSort(a, link, left, mid), // sort left sublist.
rMergeSort(a, link, mid + 1, right));// sort right sublist.

December 4, 2018

tamplate <class T>
int ListMerge(T* a, int* link, const int startl, const int
start2)
{// merge two sorted lists, starting from startl and start2.
// 1link[0] is a temporary head, stores the head of merged list.
// iRsults records the last element of currently merged list.
int iResult = 0;
for (int il = startl, i2 =start2; il && i2;){
if (a[il] <= a[i2]) {
link[iResult] = il; iResult = il; il

link[il];}
else {

link[iResult] = i2; iResult = i2; i2 = link[i2];}
}
// attach the remaining list to the resultant list.
if (i1l = = 0) link[iResult] = i2;

else link[iResult] = i

1;
return link[0]; index nnnn“nnnm
Il 2¢ | 5 |77 | | 61| 159] s 4819]

link = 4 9 6 0 2 B 8 5 10 7 |

Chapter 7: Sorting

16

Prof. Ren-Song Tsay December 4, 2018

Max Heap (Priority Queue)

Definition:A max (min) tree is a tree in
which the key value in each node is no
smaller (larger) than the key values in its
children (if any). A max(min) heap is a
complete binary tree that is also a
max(min) tree.

14
e 2 o
0} 8 6

Max Heap Max Heap Max/Min Heap

Examples: not max heap

5 %2

Not a heap Not a heap
(12> 10) (Not a complete binary tree)

Max Heap: Representation

« Since the heap is a complete binary tree, we
could adopt “Array Representation” as
we mentioned before!

¢ Let node i be in position i (array[0] is empty)
> Parent(i) = |i/2]ifi # 1.1f i = 1, is the root
and has no parent.
o leftChild(i) = 2iif 2i < n.If 2i > n,then i
has no left child.
o rightChild(i) = 2i + 1if2i + 1 < n,if 2i +
1 > n, then i has no right child.

Chapter 7: Sorting 17

Prof. Ren-Song Tsay

Max Heap: Insert

December 4, 2018

¢ Make sure it is a complete binary tree
¢ Insert a new node

e Check if the new node is greater than its
parent

« If so, swap two nodes

0
e oﬁ
© 06°

Max Heap: Delete

I. Always delete the root

2.Move the last element to the root (maintain a
complete binary tree)

3.Swap with larger and largest child (if any)

4. Continue step 3 until the max heap is
maintained (trickle down)

2 8

@@
] ®

®@ ©®

7.6

Heap Sort

o Utilize the max-heap structure

¢ The insertion and deletion could be done
in O(logn)

¢ Build a max-heap using n records, insert
each record one by one (O(nlogn))

¢ |teratively remove the largest record (the
root) from the max-heap (O(nlogn))

* Not a stable sort

Chapter 7: Sorting

18

Prof. Ren-Song Tsay

Heap Sort (code)

December 4, 2018

template <class T>
void HeapSort(T *a, const int n)
{
Heapify(a, n);
for (i = n-1; i >= 1; i--) // Sorting

{

swap (a[l], a[i+l]); // swap the root with last node
Heapify(a, i); // rebuild the heap (a[l:i])

Heap Sort Example

26 5 77 1 61 Il 59 15 48 19

Heapify using inorder (LVR)

Heap Sort Example

77 61 59 43 19 Il 26 15 | 5

Chapter 7: Sorting

19

Prof. Ren-Song Tsay

Heap Sort Example

December 4, 2018

6l 48 59 I5 19 Il 26 51 77

Heap Sort Example

59 48 26 15 19 Il I 5 61 77

Heap Sort Example

48 19 26 I5 5 11 | 59 61 77

(2]

(8] [9]

Chapter 7: Sorting

20

Prof. Ren-Song Tsay

Heap Sort Example

December 4, 2018

26 19 11 15 5 | 48 59 61 77
[2] (3]

4 Bl o~
(s) “

[8] [9] [10]

Heap Sort Example

1915 11 1 5 26 48 59 61 77

[2] (3]

Heap Sort Example

155111 19 26 48 59 61 77

(1]

Chapter 7: Sorting

21

Prof. Ren-Song Tsay December 4, 2018

Heap Sort Example

1551 15 19 26 48 59 61 77

(1]

Heap Sort Example

5 1 11 15 19 26 48 59 61 77

20,
[2] Qy &1

4 51—~ 6] 7
15 19 26 48

Heap Sort Example

1 5 11 15 19 26 48 59 61 77

Chapter 7: Sorting 22

Prof. Ren-Song Tsay

December 4, 2018

7.7

Sorting with Several Keys

A list of records is said to be sorted with
respect to the keys K1, K?, ..., K iff for

every pair of records i and j,i < j and
(K K2 KD < (KL KR . KD

(xl' ""xr) < (yll '"'yr)
iff either x;, = y, 1 < k < n,and

Xnt1 < Vn4q forsomen <r,
orxy =Y, 1<k<r

Sorting a Deck of Cards

e Each card has two keys
o K1 (Suits): # < ¢ <9< @
o K? (Face values): 2<3<4..<J<Q<K<A
o The sorted listis:2 &, ..., A®, ...286 . A®
* Most-significant-digit (MSD) sort
> Sort using K to obtain 4 “piles” of records.
> Sort each piles into sub-piles.

> Merge piles by placing the piles on top of each
other.

Chapter 7: Sorting

23

Prof. Ren-Song Tsay December 4, 2018

Sorting a Deck of Cards (cont’d*

¢ Least-significant-digit (LSD) sort
> Sort using K? to obtain 13 “piles” of records.
Place 3’s on top of 2,...,Aces on top of kings.
2<3<4..]<Q<K<A
> Using a stable sort with respect to K! and
obtain 4 “piles”.

> Merge piles by placing the piles on top of each
other.

Bin Sort (Bucket Sort)

* Assume the records in a list to be sorted
come from a set of size m, say {1,2, ..., m}.

» Create m buckets.

« Scan the sequence a[1] ... a[n], and put
a[i] element into the a[i]t" bucket.

¢ Concatenate all buckets to get the sorted
list.

e Suitable for a set with small m .

Radix Sort

¢ Decompose the key (number) into
subkeys using some radix r

o Forr =10,K = 123,then K1 = 1,K%? = 2,
and K3 = 3.

¢ Create r buckets (0 ~r-1).
* Apply bin sort with MSD or LSD order.

« Suitable to sort numbers with large value
range.

Chapter 7: Sorting 24

Prof. Ren-Song Tsay

Radix Sort Example (Pass 1)

December 4, 2018

f[0] fli f2] 31 f4] f5] fle] 71 fl8] f19]
859
[*]

Radix Sort Example (Pass 2)

IR IR CINE N IR N IND)

f[0] f[l f[2] 31 f4] f[5] fle] 71 f[8] 9]
5
B

Radix Sort Example (Pass 3)

e n [3] {5 e i e
f0] fll] f2] 31 f4] f5] flel 71 fl8] f9]
0
271

Time Complexity: O(d*(n+r))

Chapter 7: Sorting

25

Prof. Ren-Song Tsay December 4, 2018

LSB Radix Sort (code) 1/2

template <class T>

int RadixSort(T *a, int *link, const int d, const int r, const int n)
{// using a radix sort with d digits‘radix r to sort a[l:n]

// digit(a[i], j, r) return the j-th key in radix r of a[i]

// each digit is within the range [0, r). Using the bin sort to

// sort elements of the same digit.

int e[r], £[r]; // head and tail of the bin

int first = 1; // start from the 1%t element

for(int i =1; i < n; i++) link[i]=i+1; // link the elements
link[n] = 0;

// do radix sorting

LSB Radix Sort (code) 2/2

/7 do radix sorting
for (i = d-1; i >=0; i--) { // sort in LSB order
£ill(£, £+r, 0); // initialize the bins
for (int current = first; current; current = link[current])
{ // put the element with key k to bin[k]
int k = digit(a[current], i, r);
if (f[k]== 0) £[k] = current;
else link[e[k]] = current;
e[k] =current;
}
for (j = 0; '£[j]1; j++); // £ind the 1°t non-empty bin
first = £ [j];
int last = e[]j];
for (int k = j + 1; k < r; k++){ // link the rest of bins
if (£[k]) {
link[last] = £[k];
last = e[k];}

}

link[last] = 0;
}
return first;

}

7.9

Summary of
Internal
Sorting

Chapter 7: Sorting 26

Prof. Ren-Song Tsay December 4, 2018

7.9 Time Complexity Comparison

| Method | Worst | __Average |

Insertion Sort ~ n? n?
Heap Sort nlogn nlogn
Merge Sort nlogn nlogn
Quick Sort n? nlogn

Actual Runtime Comparison

| nl Insert | Heap | g
01 0000 0.000 0.000 0.000

| 0]
0 0.004 0.009 0.008 0.006
5 Insertion Sort [100 XN 0019 0017 0013
| 200 YEE] 0.042 0.037 0.029
[0 0067 0066 0059 0045
4 LI 0117 009 0079 006l
[0 0179 oll6 0100 0079
| 1000 YY) 0245 0213 0.169
3| ELI 2439 0519 0459 0358
LN 5390 0.809 0721 0.560
| 4000 CXE) 1.105 0972 0761
B 15935 1410 1271 0.970

5 Merge Sort
©-

Quick Sort

0 500 1000 2000 3000 4000 5000

Design Guidelines

¢ Insertion sort is good for small n and
when the list is partially sorted.

* Merge sort is slightly faster than heap
sort but it require additional storage.

* Quick sort outperforms in average.

» Combining insertion sort with quick sort
to obtain better performance.

Chapter 7: Sorting 27

Prof. Ren-Song Tsay

C++’s Sort Methods

December 4, 2018

¢ Designed to optimize the average performance.
« std::sort()
Modified Quick sort.
Heap Sort
when the number of subdivision exceed clogn
Insertion Sort
when the segment size becomes small
« std:stable_sort()
> Merge Sort.
Insertion Sort
when the segment size becomes small
« std::partial_sort()
Heap Sort.

7.10

External Sort

* When the lists are too large to be loaded
into internal memory completely
° The list could reside on a disk
* The external sorting operations
> Read partial records
° Perform the sorting
> Write the result back to disk
e “Block”

> The unit of data that is read/written at one
time

Chapter 7: Sorting

28

Prof. Ren-Song Tsay December 4, 2018

External Sort Algorithm

¢ Insertion sort, Quick sort, Heap sort....NO

e Mergesort..........cooeiiiiiiiiiiiiin. YES
> Segments (blocks, runs) of input lists sorted using an
internal sort

> Sublists could be sorted independently and merged
later

The runs generated in phase one are merged
together following the merge-tree pattern

> During the merging, only the leading records of the
two runs needed to be loaded in memory

Runs & Merge Tree ‘

Merge tree

Example: Problem

¢ Internal memory: 750 records.

e List to be sorted: 4500 records.

» Block size: 250 records.

List in Disk

w e L] R
[internal Memory

Chapter 7: Sorting 29

Prof. Ren-Song Tsay December 4, 2018

Example: Merge Pass |

* To merge R; and R;,¢:
> The blocks of R; and R;4 are read into input buffers
> The merged data is written to output buffer
> Output buffer full = write onto disk
> Input buffer empty = read from the new block

List in Disk

Internal Memory

[

[|

Example: Merge Pass 2

* To merge R; and R;:
> The blocks of R; and R; are read into input buffers
> The merged data is written to output buffer
> Output buffer full = write onto disk
> Input buffer empty = read from the new block

List in Disk

Internal Memory

7.105 Optimal Merging of Runs

» Runs with different sizes.

¢ Different merge sequence may result in
different runtime.

_Internal nodes _
(Merging)

4
“‘\ External nodes
(Run and its size)

Chapter 7: Sorting 30

Prof. Ren-Song Tsay

Runtime Evaluation

Merge tree A Merge tree B

Cost Cost
=QR+4)+2+4+5+2 =2%2+4+4%x2+5%2
+4+5+15)

—24344+345+2 +15+1 T 15%2=52

=43

December 4, 2018

Weighted External Path Length

¢ The total number of merge steps is equal

to:
n

Z Sidi
i=1
* Where s; is the size of Run i and d; is
the distance from the node to root.
* How to build a merge tree such that
the total cost is minimized?

Sort by Block Size

e Sort runs using its size.
(s 5|
» Take the two runs with least sizes and
combine them into a tree.

* Repeat the process until we obtain one
tree.

A

Chapter 7:

Sorting

31

Prof. Ren-Song Tsay December 4, 2018

Similar to Message Encoding

« Given a set of messages {M,,M,, ..., M;}

* How do we encode each M, using a
binary code such that the total number of
message bits is minimum?

|| Encode || Encode 2| Encode 3 |
M, 0

0001 0001
M, | 0010 [
M, 10 0100 ol
M, I 1000 001

17'385 Huffman Code

¢ Using a binary tree, called decode tree
to encode messages.

- Huffman Code

Decode tree 0

M, 000
M, 001
M, ol
M, [

Decoding Cost

» Cost of decoding a code word is proportional to
the number of bits of the word.
Decoding a code word contain 2 * M;and 1 * M,
requires process 2 * 3 + 1 = 7 bits.
* Assume the message M; with encoded bit length
d;, occurring frequency is s;, then the total cost of
the code word is:

n

D s
i=1
» How do we construct a decode tree such
that the decoding cost is minimized?

Chapter 7: Sorting 32

Prof. Ren-Song Tsay December 4, 2018

Optimal Merge Tree

¢ Follow Huffman Code Method
e Sort the message according to s;
M, My M, M
2 4 5 8
* Take two messages with the least s; and

combine them into a tree (a new message)
» Repeat the process until we obtain one
tree.

s

Self-Study Topics

« 7.8 List and Table Sorts

Chapter 7: Sorting 33

