
Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 1

CH. 7 
SORTING

EECS 204002 
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松教授
NTHU

1©  Ren-Song Tsay, NTHU, Taiwan2018/12/4

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 2

7.1

Motivation

Motivation: Example

 Given a collection of records (list), where 

each record contains one or more fields 

(keys), how do we search a record with 

specific key?

 Example

3

7.1

List Phone book

Record Person

Key Name, Phone, Address, etc.

Searching Find Jack.



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 2

Motivation: Sequential Search

 Search the WHOLE list in left-to-right or 

right-to-left order until we find the first 

occurrence of the record with the target 

key. 

4

template <class E, class K>

int SeqSearch (E *a, const int n, const K& k)

{ // Search a[1:n] from left to right. Return least i such    

// that the key of a[i] equals k. If there is no such I,   

// return 0.

int i;

for (i = 1 ; i <= n && a[i] != k ; i++ );

if (i > n) return 0;

return i;

} Time complexity = 𝑂(𝑛)

Motivation: Improvement

 How do we improve the performance of 

searching a record?

 Sort the list in a specific order before you 

do the search!

 For examples, given an ordered numeric 

list, using Binary search could obtain an 

improved performance of 𝑂(log 𝑛)

5

Recursive Binary Search

6

int BinarySearch(int *A, const int x, const int

left, const int right )

{ // Search the A[left],..,A[right] for x

if (left <= right) { // more integers to check

int middle = (left+right)/2;

if (x < A[middle]) 

return BinarySearch(A, x, left, middle-1);

else if (x > A[middle]) 

return BinarySearch(A, x, middle+1, right);

return middle; 

} // end of if

return -1; // not found

} 



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 3

 Search for 𝑥 = 9 in array A[0]…[7] :

1st call: BinarySearch(A, 9, 0, 7)

2nd call: BinarySearch(A, 9, 4, 7)

3rd call: BinarySearch(A, 9, 4, 4)

return index 4.

Binary Search Example

7

1st 2nd3rd

A 1 3 5 8 9 17 5032

A[0]  A[1]   A[2]   A[3]  A[4]  A[5]   A[6]  A[7]

Why Need Sorting?

8

To improve the 

search performance!

Two Categories

 Internal sort:

◦ The entire sort could be done in main memory

◦ Suitable for list of small size (e.g. 1MB)

◦ Insertion sort, merge sort, heap sort, radix sort

 External sort:

◦ Data I/O are necessary during the sorting.

◦ Suitable for list of large size (e.g. 1T)

◦ Merge sort

9



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 4

Stable Sort

 A sort algorithm is called “Stable” iff 𝑟𝑖 =
𝑟𝑗 and 𝑟𝑖 precedes 𝑟𝑗 in the input list, then 

𝑟𝑖 precedes 𝑟𝑗 in the sorted list

10

21, 4, 5, 78, 5, 12 4, 5, 5 12, 21, 78

Unsorted Stable sort

21, 4, 5, 78, 5, 12 4, 5, 5 12, 21, 78

Unstable sort

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 11

7.2

Insertion 
Sort

Insertion Sort

 Given a sequence 𝒂[𝟏], 𝒂[𝟐],…𝒂[𝒏]

 Divide the sequence into 2 parts:

◦ Left part: sequence sorted so far

◦ Right part: unsorted part

 Take one element from the right part and 

insert it into the correct position in the 

left part

12

7.2



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 5

A Running Example

44    55    12    42    94    18    6    67

44 55    12    42    94    18    6    67

44    55 12    42    94    18    6    67

12    44    55 42    94    18    6    67

12    42    44    55 94    18    6    67

…
13

Insertion Sort (codes)

14

template <class T>

void Insert(cones T& e, T *a, int i){

a[0] = e;

while (e < a[i]) {

a[i+1] = a[i];

i--; }

a[i + 1] = e;

}

template <class T>

void InsertionSort(T *a, const int n){

for (int j = 2; j <= n ; j++){

T temp = a[j];

Insert(temp, a, j – 1);}

}

Complexity

 Worst case running time

◦ Outer loop: 𝑂(𝑛)

◦ Inner loop: 𝑂(𝑗)

 Average case running time: 𝑂(𝑛2)

 Stable sort

15

)( 2

1
nOj

n

j
 



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 6

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 16

7.3

Quick Sort

Quick Sort

 Pick a record 𝒂[𝒓] at random. 

 Divide 𝑎[1]……𝑎[𝑛] into two sublists using 
𝑎[𝑟].

 Sublists are not sorted.

 Sort the two sublists recursively.

 How to pick up a splitting record ?

◦ Just pick up the first record!

17

7.3

𝑎[𝑟]𝑎[𝑖] ≤ 𝑎[𝑟] 𝑎 𝑗 > 𝑎[𝑟]

26 5 19 1 15 11 59 61 48 37

𝑖 › 𝑗→ stop j i

26 5 37 1 61 11 59 15 48 19

i swap j

11 5 19 1 15 26 59 61 48 37

Sublist 1 Sublist 2

26 5 19 1 61 11 59 15 48 37

i swap j

◦ Recursively sort sublist1 and sublist2

Example

18

26 5 37 1 61 11 59 15 48 19



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 7

Quick Sort (code)

19

template <class T>

void QuickSort(T *a, const int left, const int right)

{ if (left < right) {

int i = left, j = right + 1, pivot = a[left];

do {

do i++; while (a[i] < pivot);

do j--; while (a[j] > pivot);

if (i < j) swap (a[i], a[j]);

} while (i < j);

swap (a[left], a[j]);

QuickSort(a, left, j - 1);

QuickSort(a, j + 1, right);

}

}

Time complexity

 If the splitting record is in the middle

 Depth of recursion: 𝑂(log 𝑛)

 Finding the position of splitting record: 

𝑂(𝑛)

 Total running time: 𝑂(𝑛 log 𝑛)

 Worst case running time: 𝑂(𝑛2)

20

𝐴[𝑟] 𝑛 − 1

𝑛 − 2

Ex: 1,2,3,4,5,6,7  a sorted list 

Variation: Median-of-Three

 Find a better splitting record:

◦ Try to find the median one

◦ Median {first, middle, last}

 Not a stable sort.

21



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 8

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 22

7.4

How Fast 
Can We Sort

Best Sorting Computing Time

 𝛀 𝒏 𝐥𝐨𝐠 𝒏 :

◦ If only the comparisons and interchanges are 

allowed during the sorting

 Decision tree:

◦ A tree that describe sorting process.

◦ Each vertex represents a comparison.

◦ Each branch indicates the result.

23

7.4

Decision Tree for Insertion Sort

24

K1≤K2

K2≤K3 K1≤K3

stop K1≤K3

stop stop

stop K2≤K3

stop stop

Yes No

[1,2,3]

Yes No

Yes No

Yes No

Yes No
I

II III

IV

V VI

[3,2,1]

[2,3,1]

[2,1,3]

[1,2,3]

[2,3,1][3,1,2]

[2,1,3][1,3,2][1,2,3]

[1,3,2]



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 9

Time Complexity

 Given a list of 𝒏 records.

 There are 𝒏! combinations and thus 

having 𝒏! leaf nodes in a decision tree.

 For a decision tree (binary tree) with 𝒏!
leaves, the height (depth) of the tree is 

𝒏 log 𝒏.

◦ 𝒏! ≥ 𝒏/𝟐 𝒏/𝟐

◦ log 𝑛! ≥ 𝑛/2 log 𝑛/2 = Ω(𝑛 log 𝑛)

 Therefore the average root-to-leaf path is 

𝛀(𝒏 log 𝒏).
25

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 26

7.5

Merge Sort

Merge Sort

 Given two sorted lists, merge them into 

one sorted list.

 Use an algorithm similar to polynomial 

addition.

 Assume the size of two lists are 𝑚 and 𝑙, 
the time complexity of merging two lists 

is 𝑂(𝑚 + 𝑙).

27

7.5



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 10

Merge Illustration

28

A[middle]A[left]

Sorted

FirstPart

Sorted 

SecondPart

A[right]

merge

A:

A:

Sorted

A[middle+1]

Example

30

3 5 15 28 30 6 10 14

A:

k=0

1

L:

3 15 28 30

i=0

2 3 7 8 6 10 14 22

R:

j=0

1 4 5 6

A Running Example

31

1 5 15 28 30 6 10 14

A:

k=1

2

L:

3 5 15 282 3 7 8

i=0

6 10 14 22

R:

1 4 5 6

j=1



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 11

A Running Example

32

1 2 28 30 6 10 14

A:

k=2

L:

i=1

2 3 7 8

3

6 10 14 22

R:

1 4 5 6

j=1

A Running Example

33

1 2 3 6 10 14

A:

k=3

L:

i=2

2 3 7 8 6 10 14 22

R:

j=1

1 4 5 6

4

A Running Example

34

1 2 3 4 6 10 14

A:

k=4

6 10 14 22

R:

j=2

1 4 5 6

L:

2 3 7 8

i=2

5



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 12

A Running Example

35

1 2 3 4 5 6 10 14

A:

k=5

6

L:

i=2

2 3 7 8 6 10 14 22

R:

j=3

1 4 5 6

A Running Example

36

1 2 3 4 5 6 14

A:

k=6

7

L:

2 3 7 8

i=2

6 10 14 22

R:

1 4 5 6

j=4

A Running Example

37

1 2 3 4 5 6 7

A:

8

k=7

L:

3 5 15 282 3 7 8

i=3

6 10 14 22

R:

1 4 5 6

j=4



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 13

A Running Example

38

1 2 3 4 5 6 7 8

A:

k=8

L:

3 5 15 282 3 7 8

i=4

6 10 14 22

R:

1 4 5 6

j=4

Merge Sort (codes)

39

template <class T>

void Merge(T *initList, T *mergedList, const int l, const int m, 

const int n)   

{ for (int i1 = l, iResult = l, i2 = m + 1; i1 <= m && i2 <= n;
iResult++)

if (initList[i1] <= initList [i2]){

mergedList[iResult] = initList[i1];

i1++;

}else{

mergedList[iResult] = initList[i2];

i2++;}

// copy the remaining records, if any, of the 1st list

copy (initList + i1, initList + m + 1, mergedList + iResult);

// copy the remaining records, if any, of 2nd list

copy (initList + i2, initList + n + 1, mergedList + iResult);

}

l m m+1 n

l n

initList

mergedList

i1 i2

iResult

Iterative Merge Sort

 Interpret the list as comprised of n 

sorted sublists.

 1𝑠𝑡 merge pass: 𝒏 sublists are merged by 

pairs to obtain 𝒏/𝟐 sublists.

 2𝑛𝑑 merge pass: 𝒏/𝟐 sublists are merged 

by pairs to obtain 𝒏/𝟒 sublists.

 …

 The process repeats until only one sublist

exists.

40

7.5.2



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 14

Example

41

26 5 77 1 61 11 59 15 48 19

5 26 1 77 11 61 15 59 19 48

1 5 26 77 11 15 59 61

1 5 11 15 26 59 61 77

1 5 11 15 19 26 48 59 61 77

Iterative Merge Sort (code)

42

template <class T>

void MergePass(T *initList, T *resultList, const int n, const

int s)

{ // Adjacent pairs of sublists of size s are merged from 

// initList to resultList. n is the size of initList.

for (int i = 1; // i is the 1st position in the 1st sublist

i <= n-2*s+1; // enough records for two sublists?

i+ = 2*s)

Merge(initList, resultList, i, i + s -1, i + 2 * s -1);

// merge remaining list of size < 2 * s

if ((i + s -1) < n ) 

Merge(initList, resultList, i, i + s -1, n);

else 

copy(initList + i, initList + n + 1, resultList + i);

}

  

2s 2s 2s 2s <2s

n-2*s+1

n

i
i+s-1

i+2s-1

Iterative Merge Sort (code)

43

template <class T>

void MergeSort(T *a, const int n)

{ 

T *tempList = new T[n+1];

// l is the length of the sublist currently being merged

for (int l =1; l < n; l*= 2){

MergePass(a, tempList, n, l);

l*=2;

MergePass(tempList, a, n, l); // switch role of a and 
// tempList

}

delete [] tempList;

}



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 15

Properties

 Time complexity

◦ Number of merge pass: 𝑂(log 𝑛)

◦ Time complexity of merge pass: 𝑂(𝑛)

◦ Time complexity = 𝑂(𝑛 log 𝑛)

 Require additional storage to store 

merged result during the process. 

 Stable sort

44

Recursive Merge Sort

 Divide the list to be sorted into two 

roughly equal parts called left and right 

sublists.

 Recursively sort the two sublists.

 Merge the sorted sublists

45

7.5.3

5 26 77 1 61 11 59 15 19 48

26 5 77 1 61 11 59 15 48 19

Recursive Merge Sort Example

46

26 5 77 1 61 11 59 15 48 19

26 5 77 1 61 11 59 15 48 19

5 26 77 1 61 11 15 59 19 48

1 5 26 61 77 11 15 19 48 59

1 5 11 15 19 26 48 59 61 77

26 5 77 1 61 11 59 15 48 19



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 16

Recursive Merge Sort (code)

 Using a structure “link” to represent the 

index order of sorted list. 

47

template <class T>

int rMergeSort(T* a, int* link, const int left, const int right)

{// sorting a[left:right]. link[i] is initialize to 0.

// rMerge returns the index of 1st element in the sorted list.

if (left >= right) return left;

int mid = (left + right) /2;

return ListMerge(a, link,

rMergeSort(a, link, left, mid), // sort left sublist.

rMergeSort(a, link, mid + 1, right));// sort right sublist.

}

48

tamplate <class T>

int ListMerge(T* a, int* link, const int start1, const int

start2) 

{// merge two sorted lists, starting from start1 and start2.

// link[0] is a temporary head, stores the head of merged list.

// iRsults records the last element of currently merged list.

int iResult = 0; 

for (int i1 = start1, i2 =start2; i1 && i2; ){

if (a[i1] <= a[i2]) {

link[iResult] = i1; iResult = i1; i1 = link[i1];}

else {

link[iResult] = i2; iResult = i2; i2 = link[i2];}

}

// attach the remaining list to the resultant list.

if (i1 = = 0) link[iResult] = i2;

else link[iResult] = i1;

return link[0];

}

index 1 2 3 4 5 6 7 8 9 10

data 26 5 77 1 61 11 59 15 48 19

link 4 9 6 0 2 3 8 5 10 7 1

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 49

7.6

Heap Sort



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 17

Max Heap (Priority Queue)

Definition: A max (min) tree is a tree in 
which the key value in each node is no
smaller (larger) than the key values in its 
children (if any).  A max(min) heap is a 
complete binary tree that is also a 
max(min) tree.

50

10

12

14

7

8 6

Max Heap

25

30

Max Heap

14

Max/Min Heap

Examples: not max heap

51

12

10 12

1414

7

8 6

7

8 6

Not a heap

(12 > 10)

Not a heap

(Not a complete binary tree)

Max Heap: Representation

 Since the heap is a complete binary tree, we 

could adopt “Array Representation” as 

we mentioned before!

 Let node 𝑖 be in position 𝑖 (array[0] is empty)

◦ 𝑷𝒂𝒓𝒆𝒏𝒕(𝒊) = 𝒊/𝟐 if 𝑖 ≠ 1. If 𝑖 = 1, 𝑖 is the root 

and has no parent.

◦ 𝒍𝒆𝒇𝒕𝑪𝒉𝒊𝒍𝒅(𝒊) = 𝟐𝒊 if 2𝑖 ≤ 𝑛. If 2𝑖 > 𝑛, then 𝑖
has no left child.

◦ 𝒓𝒊𝒈𝒉𝒕𝑪𝒉𝒊𝒍𝒅(𝒊) = 𝟐𝒊 + 𝟏 if 2𝑖 + 1 ≤ 𝑛, if 2𝑖 +
1 > 𝑛, then 𝑖 has no right child.

52



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 18

52

25

Max Heap: Insert

 Make sure it is a complete binary tree

 Insert a new node

 Check if the new node is greater than its 

parent

 If so, swap two nodes

53

20

15

14 10

Max Heap: Delete

1. Always delete the root

2. Move the last element to the root ( maintain a 
complete binary tree )

3. Swap with larger and largest child (if any)

4. Continue step 3 until the max heap is 
maintained (trickle down)

54

20

16

12 8

15

Heap Sort

 Utilize the max-heap structure

 The insertion and deletion could be done 

in O(logn)

 Build a max-heap using n records, insert 

each record one by one ( O(nlogn) )

 Iteratively remove the largest record (the 

root) from the max-heap  ( O(nlogn) )

 Not a stable sort

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 55

7.6



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 19

Heap Sort (code)

56

template <class T>

void HeapSort(T *a, const int n)

{

Heapify(a, n);

for (i = n-1; i >= 1; i--)  // Sorting

{

swap(a[1], a[i+1]); // swap the root with last node

Heapify(a, i);          // rebuild the heap (a[1:i]) 

}

}

Heap Sort Example

26   5 77   1   61   11   59   15   48   19

Yi-Shin Chen -- Data Structures 57

26

77

61 591

5

11

4815 19

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]
1

48

61

519

5

26

77

59

26

Heapify using inorder (LVR)

Heap Sort Example

77   61   59   43   19   11   26   15   1    5

Yi-Shin Chen -- Data Structures 58

11

15

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]
1

48

61

19

5

77

59

26



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 20

Heap Sort Example

61   48   59   15   19   11   26   5  1

Yi-Shin Chen -- Data Structures 59

1115

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]
1

48

61

19

5 77

59

26

77 

Heap Sort Example

59   48   26  15   19   11  1   5

Yi-Shin Chen -- Data Structures 60

1115

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1

48

61

19

5 77

59

26

61  77 

Heap Sort Example

48   19  26  15   5   11  1

Yi-Shin Chen -- Data Structures 61

1115

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1

48

61

19

5

7759

26

59   61  77 



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 21

Heap Sort Example

26  19  11  15   5   1

Yi-Shin Chen -- Data Structures 62

11

15

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 48

61

19

5

7759

26

48   59   61  77 

Heap Sort Example

19  15  11  1   5

Yi-Shin Chen -- Data Structures 63

1115

[1]

[2] [3]

[4]
[5]

[6] [7]

[8] [9] [10]

1 48

61

19

5

7759

26

26 48   59   61  77 

Heap Sort Example

15  5 11  1

Yi-Shin Chen -- Data Structures 64

11

15
[1]

[2] [3]

[4]
[5]

[6] [7]

[8] [9] [10]

1 48

61

19

5

7759

26

19   26  48   59   61  77 



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 22

Heap Sort Example

Yi-Shin Chen -- Data Structures 65

11

15

[1]

[2] [3]

[4]
[5]

[6] [7]

[8] [9] [10]

1

48

61

19

5

7759

26

15   19   26  48   59   61  77 15  5 1

Heap Sort Example

5   1

Yi-Shin Chen -- Data Structures 66

11

15

[1]

[2] [3]

[4]
[5]

[6] [7]

[8] [9] [10]

1

48

61

19

5

7759

26

11   15   19   26  48   59   61  77 

Heap Sort Example

Yi-Shin Chen -- Data Structures 67

11

15

[1]

[2] [3]

[4]
[5]

[6] [7]

[8] [9] [10]

1

48

61

19

5

7759

26

1    5   11   15   19   26  48   59   61  77 



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 23

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 68

7.7

Sorting on 
Several Keys

Sorting with Several Keys

A list of records is said to be sorted with 

respect to the keys 𝐾1, 𝐾2, … , 𝐾𝑟 iff for 

every pair of records 𝑖 and 𝑗, 𝑖 < 𝑗 and

(𝐾𝑖
1, 𝐾𝑖

2, … , 𝐾𝑖
𝑟) ≤ (𝐾𝑗

1, 𝐾𝑗
2, … , 𝐾𝑗

𝑟)

69

7.7

𝑥1, … , 𝑥𝑟 ≤ (𝑦1, … , 𝑦𝑟)
iff either 𝑥𝑘 = 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝑛, and 

𝑥𝑛+1 < 𝑦𝑛+1 for some 𝑛 < 𝑟, 

or 𝑥𝑘 = 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝑟

Sorting a Deck of Cards

 Each card has two keys

◦ 𝐾1 (Suits): ♣ < ♦ < ♥ < ♠

◦ 𝐾2 (Face values):  2 < 3 < 4 …<J < Q < K < A

◦ The sorted list is: 2 ♣, …, A♣, …, 2 ♠, …, A ♠

 Most-significant-digit (MSD) sort

◦ Sort using 𝐾1 to obtain 4 “piles” of records.

◦ Sort each piles into sub-piles.

◦ Merge piles by placing the piles on top of each 

other.

70



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 24

Sorting a Deck of Cards (cont’d)

 Least-significant-digit (LSD) sort

◦ Sort using 𝐾2 to obtain 13 “piles” of records.

◦ Place 3’s on top of 2’s,…, Aces on top of kings.

 2 < 3 < 4 … J < Q < K < A

◦ Using a stable sort with respect to 𝐾1 and 

obtain 4 “piles”.

◦ Merge piles by placing the piles on top of each 

other.

71

Bin Sort (Bucket Sort)

 Assume the records in a list to be sorted 

come from a set of size 𝒎, say {1,2, … ,𝑚}.

 Create 𝒎 buckets.

 Scan the sequence 𝑎[1] … 𝑎[𝑛], and put 

𝑎[𝑖] element into the 𝒂[𝒊]𝒕𝒉 bucket.

 Concatenate all buckets to get the sorted 

list.

 Suitable for a set with small 𝒎 .

72

Radix Sort

 Decompose the key (number) into 

subkeys using some radix 𝒓

◦ For 𝑟 = 10,𝐾 = 123, then 𝐾1 = 1,𝐾2 = 2, 

and 𝐾3 = 3.

 Create 𝒓 buckets (0 ~ 𝒓−𝟏 ).

 Apply bin sort with MSD or LSD order.

 Suitable to sort numbers with large value 

range.

73



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 25

Radix Sort Example (Pass 1)

74

179 208 306 93 859 984 55 9 271 33

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9]

17920830693

859

984 55

9

271

33

Radix Sort Example (Pass 2)

75

17920830693 859984 55 9271 33

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9]

271 9333 98455306

208 179859

9

Radix Sort Example (Pass 3)

76

179208306 93859 984559 27133

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9]

3062089

33

55

859

271

179

93

984

Time Complexity: O(d*(n+r))



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 26

LSB Radix Sort (code) 1/2

77

template <class T>

int RadixSort(T *a, int *link, const int d, const int r, const int n)

{// using a radix sort with d digits、radix r to sort a[1:n]

// digit(a[i], j, r) return the j-th key in radix r of a[i]

// each digit is within the range [0, r). Using the bin sort to 

// sort elements of the same digit.

int e[r], f[r]; // head and tail of the bin

int first = 1; // start from the 1st element

for(int i =1; i < n; i++) link[i]=i+1; // link the elements

link[n] = 0;

// do radix sorting…

// do radix sorting…

for (i = d-1; i >=0; i--) { // sort in LSB order

fill(f, f+r, 0); // initialize the bins

for (int current = first; current; current = link[current])     

{ // put the element with key k to bin[k]

int k = digit(a[current], i, r);

if (f[k]== 0) f[k] = current;

else link[e[k]] = current;

e[k] =current;

}

for (j = 0; !f[j]; j++); // find the 1st non-empty bin

first = f [j];

int last = e[j];

for (int k = j + 1; k < r; k++){ // link the rest of bins

if (f[k]) {

link[last] = f[k];

last = e[k];}

}

link[last] = 0;

}

return first;

}

LSB Radix Sort (code) 2/2

78

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 79

7.9

Summary of 
Internal 
Sorting



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 27

Time Complexity Comparison

Method Worst Average

Insertion Sort 𝑛2 𝑛2

Heap Sort 𝑛log𝑛 𝑛log𝑛

Merge Sort 𝑛log𝑛 𝑛log𝑛

Quick Sort 𝑛2 𝑛log𝑛

80

7.9

Actual Runtime Comparison

81

0

1

2

3

4

5

0 1000 2000 3000 4000 5000

Insertion Sort

Heap Sort

Merge Sort

Quick Sort

500

n Insert Heap Merge Quick

0 0.000 0.000 0.000 0.000

50 0.004 0.009 0.008 0.006

100 0.011 0.019 0.017 0.013

200 0.033 0.042 0.037 0.029

300 0.067 0.066 0.059 0.045

400 0.117 0.090 0.079 0.061

500 0.179 0.116 0.100 0.079

1000 0.662 0.245 0.213 0.169

2000 2.439 0.519 0.459 0.358

3000 5.390 0.809 0.721 0.560

4000 9.530 1.105 0.972 0.761

5000 15.935 1.410 1.271 0.970

Design Guidelines

 Insertion sort is good for small n and 

when the list is partially sorted.

 Merge sort is slightly faster than heap 

sort but it require additional storage.

 Quick sort outperforms in average.

 Combining insertion sort with quick sort 

to obtain better performance.

82



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 28

C++’s Sort Methods

 Designed to optimize the average performance.

 std::sort()
◦ Modified Quick sort.

◦ Heap Sort
 when the number of subdivision exceed 𝑐log𝑛

◦ Insertion Sort
 when the segment size becomes small

 std::stable_sort()
◦ Merge Sort.

◦ Insertion Sort
 when the segment size becomes small

 std::partial_sort()
◦ Heap Sort.

83

2018/12/4 ©  Ren-Song Tsay, NTHU, Taiwan 84

7.10

External 
Sorting

External Sort

 When the lists are too large to be loaded 
into internal memory completely

◦ The list could reside on a disk

 The external sorting operations 

◦ Read partial records

◦ Perform the sorting

◦ Write the result back to disk

 “Block”

◦ The unit of data that is read/written at one 
time

85

7.10



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 29

External Sort Algorithm

 Insertion sort, Quick sort, Heap sort…..NO
 Merge sort…………………………….YES

◦ Segments (blocks, runs) of input lists sorted using an 

internal sort

◦ Sublists could be sorted independently and merged 

later

◦ The runs generated in phase one are merged 

together following the merge-tree pattern

◦ During the merging, only the leading records of the 

two runs needed to be loaded in memory

86

Runs & Merge Tree

87

run 1 run 2 run 3 run 4 run 5 run 6

Merge tree

Example: Problem

 Internal memory: 750 records.

 List to be sorted: 4500 records.

 Block size: 250 records.

88

R1 R2 . . . . . . . . . . . . . . . R18

List in Disk

Internal Memory



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 30

Example: Merge Pass 1

 To merge 𝑅𝑖 and 𝑅𝑖+1:
◦ The blocks of 𝑅𝑖 and 𝑅𝑖+1 are read into input buffers

◦ The merged data is written to output buffer

◦ Output buffer full ⇒ write onto disk

◦ Input buffer empty ⇒ read from the new block

89

List in Disk

Internal Memory

Example: Merge Pass 2

 To merge 𝑅𝑖 and 𝑅𝑗 :
◦ The blocks of 𝑅𝑖 and 𝑅𝑗 are read into input buffers

◦ The merged data is written to output buffer

◦ Output buffer full ⇒ write onto disk

◦ Input buffer empty ⇒ read from the new block

90

List in Disk

Internal Memory

Optimal Merging of Runs

 Runs with different sizes.

 Different merge sequence may result in 

different runtime.

93

7.10.5

15

5

42

154 52

External nodes

(Run and its size)

Internal nodes

(Merging)



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 31

Runtime Evaluation

Merge tree A
𝐶𝑜𝑠𝑡
= (2 + 4) + (2 + 4 + 5) + (2
+ 4 + 5 + 15)
= 2 ∗ 3 + 4 ∗ 3 + 5 ∗ 2 + 15 ∗ 1
= 43

Merge tree B
𝐶𝑜𝑠𝑡
= 2 ∗ 2 + 4 ∗ 2 + 5 ∗ 2
+ 15 ∗ 2 = 52

94

15

5

42

154 52

Weighted External Path Length

 The total number of merge steps is equal 

to:

෍

𝑖=1

𝑛

𝑠𝑖𝑑𝑖

 Where 𝑠𝑖 is the size of Run 𝑖 and 𝑑𝑖 is 

the distance from the node to root.

 How to build a merge tree such that 

the total cost is minimized?

95

Sort by Block Size

 Sort runs using its size.

 Take the two runs with least sizes and 

combine them into a tree.

 Repeat the process until we obtain one 

tree.

96

42 155

15542

6

542 15

11

15542

26



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 32

Similar to Message Encoding

 Given a set of messages {𝑀1 , 𝑀2 , … ,𝑀𝑖}

 How do we encode each 𝑀𝑖 using a 

binary code such that the total number of 

message bits is minimum?

97

Encode 1 Encode 2 Encode 3

𝑀1 0 0001 0001

𝑀2 1 0010 1

𝑀3 10 0100 01

𝑀4 11 1000 001

Huffman Code

 Using a binary tree, called decode tree 

to encode messages.

99

7.10.5

F7.28

M4

M3

M2M1

0 1

0

0

1

1

Decode tree Huffman Code

𝑀1 000

𝑀2 001

𝑀3 01

𝑀4 1

Decoding Cost

 Cost of decoding a code word is proportional to 
the number of bits of the word.

◦ Decoding a code word contain 2 ∗ 𝑀1 and 1 ∗ 𝑀4

requires process 2 ∗ 3 + 1 = 7 bits.

 Assume the message 𝑀𝑖 with encoded bit length 
𝑑𝑖, occurring frequency is 𝑠𝑖, then the total cost of 
the code word is: 

෍

𝑖=1

𝑛

𝑠𝑖𝑑𝑖

 How do we construct a decode tree such 
that the decoding cost is minimized?

100



Prof. Ren-Song Tsay December 4, 2018

Chapter 7: Sorting 33

Optimal Merge Tree

 Follow Huffman Code Method
 Sort the message according to 𝑠𝑖

 Take two messages with the least 𝒔𝒊 and 
combine them into a tree (a new message)

 Repeat the process until we obtain one 
tree.

101

𝑀1 𝑀3 𝑀2 𝑀4
2 4 5 15

𝑀3𝑀1 𝑀3𝑀1 𝑀2 M3M1 M2 M4

Self-Study Topics

 7.8 List and Table Sorts

103


