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5.6

Heaps

 Given a regular expression, put operands

at leaf nodes and operators at 

nonterminal nodes

Expression Tree

Inorder

Preorder

Postorder

E1 + E2

+ E1 E2

E1 E2 +

a + b

+ a b

a b +

y * (z – (x + 8))

* y – z + x 8

y z x 8 + - *

Infix notation

Prefix notation

Postfix notation

+

a b

+

𝐸1 𝐸2

*

-y

x 8

z +

Priority Queue

 In a priority queue, the element to be

processed/deleted is the one with the

highest (or lowest) priority

 Operations

◦ Get the max/min element

◦ Insert an element to the priority queue

◦ Delete element with max/min priority
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ADT: Priority Queue

template < class T >

class MaxPQ

{ 

public:

MaxPQ();

~MaxPQ();

// Check if PQ is empty

bool IsEmpty() const;

// Return reference to the max element

T& Top() const;

// Add an element to the PQ

void Push(const T&);

// Delete element with max priority

void Pop();

private:

// Data representation here

// …

};

PQ Representations

 Unsorted linear list

◦ Array, chain, ..., etc.

 Sorted linear list

◦ Sorted array, sorted chain, …, etc.

 Heap

Top() Push() Pop()

Unsorted linear list

Sorted linear list

Heap

𝑂(1)𝑂(𝑛) 𝑂(𝑛)
𝑂(1)𝑂(1) 𝑂(𝑛)

𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛)

Max Heap Definition

 A max (min) tree is a tree in which the key
value in each node is no smaller (larger)
than the key values in its children (if any).
◦ A max(min) heap is a complete binary tree that

is also a max(min) tree.
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Non-heap
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5.6.2
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Max Heap: Representation

 Since the heap is a complete binary tree, we 

may adopt “Array Representation” as 

mentioned before!

 Let node 𝑖 be in position 𝑖 (array[0] is empty)

◦ 𝑷𝒂𝒓𝒆𝒏𝒕 𝒊 = 𝒊/𝟐 , if 𝑖 ≠ 1. If 𝑖 = 1, 𝑖 is the root 

and has no parent.

◦ 𝒍𝒆𝒇𝒕𝑪𝒉𝒊𝒍𝒅 𝒊 = 𝟐𝒊, if 2𝑖 ≤ 𝑛. If 2𝑖 > 𝑛, the 𝑖 has no 

left child.

◦ 𝒓𝒊𝒈𝒉𝒕𝑪𝒉𝒊𝒍𝒅 𝒊 = 𝟐𝒊 + 𝟏, if 2𝑖 + 1 ≤ 𝑛, if 2𝑖 + 1 >
𝑛, the 𝑖 has no right child.

𝒊/𝟐 𝒊 𝟐𝒊 𝟐𝒊 + 𝟏

ADT: Priority Queue

template < class T >

class MaxPQ

{ 

public:

MaxPQ();

~MaxPQ();

// Check if PQ is empty

bool IsEmpty() const;

// Return reference to the max element

T& Top() const;

// Add an element to the PQ

void Push(const T&);

// Delete element with max priority

void Pop();

private:

T* heap       // Element array

int heapSize; // # of elements

int capacity; // size of the array “heap”

};
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Max Heap: Insert

 Insert a node with key value = 5

 Make sure it is a complete binary tree

 Check if the new node is greater than

its parent

 If so, swap two nodes
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Max Heap: After Insertion

 Insert a node with key value = 5

 Make sure it is a complete binary tree

 Check if the new node is greater than

its parent

 If so, swap two nodes
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Max Heap: Insert Code

template < class T >

void MaxPQ<T>::Push(const T& e)

{ // Insert e into max heap

// Make sure the array has enough space here…

// …

int currentNode = ++heapSize;

while(currentNode != 1 && heap[currentNode/2] < e)

{ // Swap with parent node

heap[currentNode]=heap[currentNode/2];

currentNode /= 2; // currentNode now points to parent

}

heap[currentNode]=e;

}

Time Complexity

Travel at most the height of a tree, therefore is 𝑶(𝐥𝐨𝐠 𝒏)
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Max Heap: Delete

1. Always delete the root

2. Move the last element to the root
(maintain a complete binary tree)
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Max Heap: Delete

1. Always delete the root

2. Move the last element to the root
( maintain a complete binary tree )

3. Swap with the largest child (if any)
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Max Heap: Delete

1. Always delete the root

2. Move the last element to the root

( maintain a complete binary tree )

3. Swap with the largest child (if any)

4. Continue step 3 until the max heap is

maintained (trickle down)
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Max Heap: Delete

1. Always delete the root

2. Move the last element to the root

( maintain a complete binary tree )

3. Swap with the largest child (if any)

4. Continue step 3 until the max heap is

maintained (trickle down)
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Max Heap: Delete Codes
template < class T >

void MaxPQ<T>::Pop()

{ //Delete max element

if(IsEmpty()) throw “Heap is empty”;

heap[1].~T(); // delete max element (always the root!)

// Remove the last element from heap

T lastE = heap[heapSize--];

// trickle down

int currentNode = 1; // root

int child = 2; // A child of currentNode

while(child <= heapSize) {

// Set child to larger child of currentNode

if (child < heapSize && heap[child] < heap[child + 1]) child++;

// Can we put lastE in currentNode?

if (lastE >= heap[child]) break; // Yes!

// No!

heap[currentNode] = heap[child]; // Move child up

currentNode = child; child *=2;  // Move down a level

}

heap[currentNode] = lastE;

} Time Complexity = Height of tree =  𝑶(𝐥𝐨𝐠 𝒏)


