
Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/10 © Ren-Song Tsay, NTHU, Taiwan 6

2.3

Polynomial

Polynomial

 𝑝 𝑥 = 𝑎0𝑥
𝑒0 + 𝑎1𝑥

𝑒1 +⋯+ 𝑎𝑛𝑥
𝑒𝑛 = ∑𝑎𝑖𝑥

𝑒𝑖

 Each 𝑎𝑖𝑥
𝑒𝑖 is called a term with coefficient 𝑎𝑖

◦ The degree of p(x) is the largest exponent from

among the non-zero terms.

◦ Ex. 𝑝(𝑥) = 𝑥5 + 4𝑥3+ 2𝑥2 + 1
Has 4 terms with coefficients 1, 4 ,2 and 1.

The degree of p(x) is 5

 Array representation

◦ Store (𝑎𝑖 , 𝑒𝑖) as (array[n-i], i) pair and n is the degree

7

2.3

1 0 4 2 10

A[0] A[1] A[2] A[3] A[4] A[5]

x5 4x3 2x2 x0

Polynomial Operation

 If 𝑎(𝑥) = ∑𝑎𝑖𝑥
𝑖 and 𝑏(𝑥) = ∑𝑏𝑖𝑥

𝑖

 Polynomial addition

◦ 𝑎 𝑥 + 𝑏 𝑥 = ∑ (𝑎𝑖 + 𝑏𝑖)𝑥
𝑖

Ex. 𝑎(𝑥) = 𝑥5 + 4𝑥3 + 2𝑥2 + 1 (degree = 5)

𝑏(𝑥) = 3𝑥6 + 4𝑥3 + 𝑥 (degree = 6)

𝑎(𝑥) + 𝑏(𝑥) = 3𝑥6 + 𝑥5 + 8𝑥3 + 2𝑥2 + 𝑥 +
1 (degree = 6)

 Polynomial multiplication

◦ 𝑎(𝑥) ∙ 𝑏(𝑥) = ∑ (𝑎𝑖𝑥
𝑖 ∙ ∑ (𝑏𝑗𝑥

𝑗))

8

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 2

Polynomial : ADT

9

class Polynomial {

public:

// Construct p(x) = 0

Polynomial(void);

// Destructor

~Polynomial(void);

// Return the sum of *this and poly

Polynomial Add(Polynomial poly);

// Return multiplication of *this and poly

Polynomial Mult(Polynomial poly);

// Return the evaluation result

float Eval(float x);

private:

// Array representation

…

};

We will ignore destructor in the codes

hereafter. It is programmer’s responsibility

to treat her memory well

Polynomial: 1st Representation

 Coefficients are stored in order of
decreasing exponents

 Advantages:
◦ Simple algorithm of operations

 Disadvantages:
◦ Waste memory in a sparse polynomial

10

// in class Polynomial

public: // for convenience…

// degree ≤ MaxDegree

int degree;

// coefficient array

float coef[MaxDegree+1];

Usage:

Polynomial a;

a.degree = n;

a.coef[i] = an-i

Polynomial: 2nd Representation

 Store only nonzero terms.

 Each nonzero term holds an exponent and
its corresponding coefficient.

 If polynomial is sparse, 2nd representation is
better. If polynomial is full, 2nd one has
double size of 1st.

11

class Term {

friend Polynomial;

float coef;

int exp;

};

// in class Polynomial

private:

// array of nonzero terms

Term* termArray;

int capacity; // size of termArray

int terms; // number of nonzero terms

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 3

Polynomial Addition: Code

12

2.3.2

Polynomial Polynomial::Add(Polynomial b)

{ // Return sum of polynomial *this and b

Polynomial c;

int aPos = 0, bPos = 0;

while((aPos < terms) && (bPos < b.terms))

if(termArray[aPos].exp == b.termArray[bPos].exp){

float t = termArray[aPos].coef + b.termArray[bPos].coef;

If(t) c.NewTerm(t, termArray[aPos].exp);

aPos++; bPos++;

}

else if(termArray[aPos].exp < b.termArray[bPos].exp){

c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);

bPos++;

}

else{

c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);

aPos++;

}

// add in remaining terms of *this

for(; aPos < terms; aPos++)

c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);

// add in remaining terms of b

for(; bPos < b.terms; bPos++)

c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);

return c;

}

Example

13

𝑎 𝑥 = 𝑥5 + 9𝑥4 + 7𝑥3 + 2𝑥

𝑏 𝑥 = 𝑥6 + 3𝑥5 + 6𝑥 + 3

𝑐 𝑥 = 𝑥6 + (1 + 3)𝑥5 + 9𝑥4 + 7𝑥3 + (2 + 6)𝑥 + 3

= 𝑥6 + 4𝑥5 + 9𝑥4 + 7𝑥3 + 8𝑥 + 3

Time Complexity of Analysis

 Inside the while loop: every statement takes O(1)
time

 How many times the “while loop” is executed in
the worst case ?
◦ Let a(x) have m terms, and b(x) have n terms.

◦ In each iteration, we access next element in a(x) or
b(x), or both.

◦ Worst case: m + n.
e.g. It happens when

A(x) = 7x5 + x3 + x; B(x) = x6 + 2x4 + 6x2 +3
Access remaining terms in A(x): O(m)
Access remaining terms in B(x): O(n)

 Hence, total run time = O(m + n)

14

