
Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/10 © Ren-Song Tsay, NTHU, Taiwan 6

2.3

Polynomial

Polynomial

 𝑝 𝑥 = 𝑎0𝑥
𝑒0 + 𝑎1𝑥

𝑒1 +⋯+ 𝑎𝑛𝑥
𝑒𝑛 = ∑𝑎𝑖𝑥

𝑒𝑖

 Each 𝑎𝑖𝑥
𝑒𝑖 is called a term with coefficient 𝑎𝑖

◦ The degree of p(x) is the largest exponent from

among the non-zero terms.

◦ Ex. 𝑝(𝑥) = 𝑥5 + 4𝑥3+ 2𝑥2 + 1
Has 4 terms with coefficients 1, 4 ,2 and 1.

The degree of p(x) is 5

 Array representation

◦ Store (𝑎𝑖 , 𝑒𝑖) as (array[n-i], i) pair and n is the degree

7

2.3

1 0 4 2 10

A[0] A[1] A[2] A[3] A[4] A[5]

x5 4x3 2x2 x0

Polynomial Operation

 If 𝑎(𝑥) = ∑𝑎𝑖𝑥
𝑖 and 𝑏(𝑥) = ∑𝑏𝑖𝑥

𝑖

 Polynomial addition

◦ 𝑎 𝑥 + 𝑏 𝑥 = ∑ (𝑎𝑖 + 𝑏𝑖)𝑥
𝑖

Ex. 𝑎(𝑥) = 𝑥5 + 4𝑥3 + 2𝑥2 + 1 (degree = 5)

𝑏(𝑥) = 3𝑥6 + 4𝑥3 + 𝑥 (degree = 6)

𝑎(𝑥) + 𝑏(𝑥) = 3𝑥6 + 𝑥5 + 8𝑥3 + 2𝑥2 + 𝑥 +
1 (degree = 6)

 Polynomial multiplication

◦ 𝑎(𝑥) ∙ 𝑏(𝑥) = ∑ (𝑎𝑖𝑥
𝑖 ∙ ∑ (𝑏𝑗𝑥

𝑗))

8

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 2

Polynomial : ADT

9

class Polynomial {

public:

// Construct p(x) = 0

Polynomial(void);

// Destructor

~Polynomial(void);

// Return the sum of *this and poly

Polynomial Add(Polynomial poly);

// Return multiplication of *this and poly

Polynomial Mult(Polynomial poly);

// Return the evaluation result

float Eval(float x);

private:

// Array representation

…

};

We will ignore destructor in the codes

hereafter. It is programmer’s responsibility

to treat her memory well 

Polynomial: 1st Representation

 Coefficients are stored in order of
decreasing exponents

 Advantages:
◦ Simple algorithm of operations

 Disadvantages:
◦ Waste memory in a sparse polynomial

10

// in class Polynomial

public: // for convenience…

// degree ≤ MaxDegree

int degree;

// coefficient array

float coef[MaxDegree+1];

Usage:

Polynomial a;

a.degree = n;

a.coef[i] = an-i

Polynomial: 2nd Representation

 Store only nonzero terms.

 Each nonzero term holds an exponent and
its corresponding coefficient.

 If polynomial is sparse, 2nd representation is
better. If polynomial is full, 2nd one has
double size of 1st.

11

class Term {

friend Polynomial;

float coef;

int exp;

};

// in class Polynomial

private:

// array of nonzero terms

Term* termArray;

int capacity; // size of termArray

int terms; // number of nonzero terms

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 3

Polynomial Addition: Code

12

2.3.2

Polynomial Polynomial::Add(Polynomial b)

{ // Return sum of polynomial *this and b

Polynomial c;

int aPos = 0, bPos = 0;

while((aPos < terms) && (bPos < b.terms))

if(termArray[aPos].exp == b.termArray[bPos].exp){

float t = termArray[aPos].coef + b.termArray[bPos].coef;

If(t) c.NewTerm(t, termArray[aPos].exp);

aPos++; bPos++;

}

else if(termArray[aPos].exp < b.termArray[bPos].exp){

c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);

bPos++;

}

else{

c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);

aPos++;

}

// add in remaining terms of *this

for(; aPos < terms; aPos++)

c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);

// add in remaining terms of b

for(; bPos < b.terms; bPos++)

c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);

return c;

}

Example

13

𝑎 𝑥 = 𝑥5 + 9𝑥4 + 7𝑥3 + 2𝑥

𝑏 𝑥 = 𝑥6 + 3𝑥5 + 6𝑥 + 3

𝑐 𝑥 = 𝑥6 + (1 + 3)𝑥5 + 9𝑥4 + 7𝑥3 + (2 + 6)𝑥 + 3

= 𝑥6 + 4𝑥5 + 9𝑥4 + 7𝑥3 + 8𝑥 + 3

Time Complexity of Analysis

 Inside the while loop: every statement takes O(1)
time

 How many times the “while loop” is executed in
the worst case ?
◦ Let a(x) have m terms, and b(x) have n terms.

◦ In each iteration, we access next element in a(x) or
b(x), or both.

◦ Worst case: m + n.
e.g. It happens when

A(x) = 7x5 + x3 + x; B(x) = x6 + 2x4 + 6x2 +3
Access remaining terms in A(x): O(m)
Access remaining terms in B(x): O(n)

 Hence, total run time = O(m + n)

14

