Unit 11

Flip-Flops

Outline

- Introduction
- Set-Reset latch
- Gated D latch
- Edge-triggered D Flip-Flop
- Set-Reset Flip-Flop
- J-K Flip-Flop
- T Flip-Flop
- Flip-Flop with additional inputs
- Summary

Introduction (1/3)

Combinational: Output is a function of present inputs only
Sequential : Output is a function of both present and previous inputs

Circuit "remembers" previous history using
\rightarrow Flip-Flop (F/F): with clock input (on clock edge)
\rightarrow Latch : with no clock input (or on clock level)

F/F: a memory device with 1 output, or 2 complementary outputs

Introduction (3/3)

Timing in feedback network

One inversion (oscillatory)

(a) Inverter with feedback

(b) Oscillation at inverter output

Two inversions (stable)

(a)

(b)

Set-Reset Latch (SR Latch) (1/9)

$$
\mathrm{S}=\mathrm{R}=0, \mathrm{Q}^{+}=\mathrm{Q}
$$

$\mathrm{P}=\mathrm{Q}^{\prime}$

Set-Reset Latch (SR Latch) (2/9)

$$
\mathrm{S}=1, \mathrm{R}=0, \mathrm{Q}=1, \mathrm{Q}^{+}=1
$$

$$
\begin{gathered}
\mathrm{P}=\mathrm{Q}^{\prime} \\
\mathrm{S}=1, \mathrm{R}=0, \mathrm{Q}=0, \mathrm{Q}^{+}=1
\end{gathered}
$$

Set: $\mathrm{S}=1, \mathrm{R}=0, \rightarrow \mathrm{Q}^{+}=1$

Set-Reset Latch (SR Latch) (3/9)

Reset: $\mathrm{S}=0, \mathrm{R}=1, \rightarrow \mathrm{Q}^{+}=0$

Set-Reset Latch (SR Latch) (4/9)

Original circuit

Restructured circuit

Symbol

Set-Reset Latch (SR Latch) (5/9)

Set-Reset Latch (SR Latch) (6/9)

Set-Reset Latch (SR Latch) (7/9)

$Q(\mathrm{t}+\varepsilon)=\mathrm{S}(\mathrm{t})+\mathrm{R}^{\prime}(\mathrm{t}) \mathrm{Q}(\mathrm{t})$ or
$\underbrace{\mathrm{Q}^{+}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}}_{\text {characteristic equation }}$

(t) S		
	$0 \quad 1$	
	0	1
00		
01	1)
11	0	X
10	0	

$$
\begin{array}{|cc|cc|}
\hline S & R & Q_{n+1} & \\
\hline 0 & 0 & Q_{n} & \mathrm{Q}_{\mathrm{n}}: \text { present state } \\
0 & 1 & 0 & \mathrm{Q}_{\mathrm{n} 1}: \text { next state } \\
1 & 0 & 1 & \\
1 & 1 & - & \\
\hline
\end{array}
$$

Set-Reset Latch (SR Latch) (8/9)

(a)

NAND gates

(b)

$\overline{S(t)}$	$\overline{R(t)}$	$Q(t)$	$Q(t+\varepsilon)$	$\left(=\mathrm{Q}^{+}(\mathrm{t})\right)$
1	1	0	0	
1	1	1	1	
1	0	0	0	
1	0	1	0	
0	1	0	1	
0	1	1	1	
0	0	0	-	
0	0	1	$-\}$ inputs not allowed	

$$
\begin{array}{|cc|cc|}
\hline \bar{S} & \bar{R} & Q_{n+1} & \\
\hline 1 & 1 & Q_{n} & \mathrm{Q}_{\mathrm{n}}: \text { present state } \\
1 & 0 & 0 & \mathrm{Q}_{\mathrm{n}+1}: \text { next state } \\
0 & 1 & 1 & \\
0 & 0 & - & \\
\hline
\end{array}
$$

Set-Reset Latch (SR Latch) (9/9)

Usage of SR latch

1. As a component in more complex latches and F / Fs
2. For debouncing switches

Gated D Latch

Transparent latch since $G=1, Q=D$

(a)

(b)

Edge-Triggered D Flip-Flop (1/5)

Similar to D latch, but changes only to clock edge

(a) Rising-edge trigger

(b) Falling-edge trigger

D	Q_{n}	Q_{n+1}		D
$\mathrm{Q}_{\mathrm{n}}^{+}$				
0	0	0		0
0	1	0		0
1	0	1		1
1	1	1		$\mathrm{Q}^{+}=\mathrm{D}$

Edge-Triggered D Flip-Flop (2/5)

Timing diagram of falling edge triggered $D F / F$

Edge-Triggered D Flip-Flop (3/5)

Timing diagram of rising edge triggered D F/F

(a) Construction from two gated D latches

(b) Time analysis

Edge-Triggered D Flip-Flop (4/5)

- Determine the minimum clock period
- Minimum clock period $=($ total delay of gates $)+($ total delay of $\mathrm{F} / \mathrm{F})$
- Example: suppose that
- Propagation delay of the inverter $=2 n s$,
- Propagation delay of the $\mathrm{D} F / \mathrm{F}=5 \mathrm{~ns}$,
- Setup time of the $\mathrm{D} F / \mathrm{F}=3 \mathrm{~ns}$,
- Determine the minimum clock period of the circuit

Edge-Triggered D Flip-Flop (5/5)

(a) Simple flip-flop circuit

(c) Setup time satisfied

(b) Setup time not satisfied

(d) Minimum clock period

S-R Flip-Flop (1/2)

Similar to SR latch, but has an extra clock input and changes only at clock edge

Operation summary:
$\mathrm{S}=\mathrm{R}=0$ no state change
$\mathrm{S}=1, \mathrm{R}=0$ set Q to 1 (after active Ck edge)
$\mathrm{S}=0, \mathrm{R}=1$ reset Q to 0 (after active Ck edge)
$\mathrm{S}=\mathrm{R}=1$ not allowed
$\left.\begin{array}{|ccc|c|}\hline S & \mathrm{R} & \mathrm{Q} & \mathrm{Q}^{+} \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & - \\ 1 & 1 & 1 & -\end{array}\right]$ inputs NOT allowed

RQ		S
00	0	1
	0	1
	1	1
11	0	X
10	0	X

$$
Q^{+}=S+R^{\prime} Q
$$

S-R Flip-Flop (2/2)

- Implementation of S-R Flip-Flop
- Constructed from two S-R latches and gates

(b) Timing analysis

At $t_{5}, S=R=0$, the state of Q should not change

We can solve this problem if we only allow the S and R inputs to change while the clock is high

J-K Flip-Flop (1/3)

- Implementation of J-K Flip-Flop

J-K Flip-Flop (2/3)

J-K Flip-Flop (3/3)

T Flip-Flop (1/3)

- Implementation of T (Toggle) Flip-Flop

(a) Conversion of J-K to T

$$
\begin{aligned}
\mathrm{Q}^{+} & =\mathrm{JQ}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}=\mathrm{TQ}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q} \\
& =\mathrm{Q} \oplus \mathrm{~T}
\end{aligned}
$$

(b) Conversion of D to T

$$
\begin{aligned}
\mathrm{Q}^{+} & =\mathrm{Q} \oplus \mathrm{~T} \\
& =\mathrm{TQ}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}
\end{aligned}
$$

T Flip-Flop (2/3)

T Flip-Flop (3/3)

- Timing diagram for T Flip-Flop

Falling-Edge Trigger

Flip-Flops with Additional Inputs (1/4)

- Flip-Flop with Clear and Preset Inputs

A logic 0 is required to Clear/Preset

$C k$	D	PreN	ClrN	Q^{+}
\times	\times	0	0	(not allowed)
\times	\times	0	1	1
\times	\times	1	0	0
\uparrow	0	1	1	0
\uparrow	1	1	1	1
$0,1, \downarrow$	\times	1	1	Q (no change)

Flip-Flops with Additional Inputs (2/4)

- Timing diagram for rising-edge trigger D Flip-Flop with Clear and Preset

Flip-Flops with Additional Inputs (3/4)

- Gating the Clock
- Holding existing data even though the data input to the Flip-Flop is changing
- Two potential problems:
- Gate delays may cause the clock to arrive at some Flip-Flops at different times than at other Flip-Flops, resulting in loss of synchronization
- If En changes at the wrong time, the Flip-Flop may trigger due to the change in En instead of due to the change in the clock, resulting in loss of synchronization

(a) Gating the clock

Flip-Flops with Additional Inputs (4/4)

- D Flip-Flop with Clock Enable (D-CE Flip-Flop)

(b) D-CE symbol

(c) Implementation
$-\mathrm{CE}=0$, clock is disabled, $\mathrm{Q}^{+}=\mathrm{Q}$
$-\mathrm{CE}=1$, the F / F acts like a normal $\mathrm{D} / \mathrm{F}, \mathrm{Q}^{+}=\mathrm{D}$
$-\mathrm{Q}^{+}=\mathrm{Q} \cdot \mathrm{CE}^{\prime}+\mathrm{D} \cdot \mathrm{CE}$

Summary (1/3)

- The characteristic (next-state) equations for latches and F/Fs

$$
\begin{array}{ll}
Q^{+}=S+R^{\prime} Q(S R=0) & \text { (S-R Latch or Flip-Flop) } \\
Q^{+}=G D+G^{\prime} Q & \text { (Gated D Latch) } \\
Q^{+}=D & \text { (D Flip-Flop) } \\
Q^{+}=D \cdot C E+Q \cdot C E^{\prime} & \text { (D-CE Flip-Flop) } \\
Q^{+}=J Q^{\prime}+K^{\prime} Q & \text { (J-K Flip-Flop) } \\
Q^{+}=T \oplus Q=T Q^{\prime}+T^{\prime} Q & \text { (T Flip-Flop) }
\end{array}
$$

Summary (2/3)

- Q represents an initial or present state of the Flip-Flop, and Q^{+}represents the final or next state
- The interpretation of Q^{+}
- For latch

Q+ represents the state of the latch a short time after one of the inputs changes

- For Flip-Flop

Q+ represents the state of the Flip-Flop a short time after the active clock edge

Summary (3/3)

- Flip-Flops constructed from S-R Flip-Flop

