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The notes cover the introduction to partial differentiation (Boas 4.1-4.4).

e Definition of partial differentiation

Consider a function z = f(x,y) and it corresponds to a surface in the three
dimensional space. At a particular point (xg,3o), can one find the “slope” as
for the one-variable function? This question is indeed quite interesting and
motivates us to introduce the partial derivatives,
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It is important to emphasize that, when taking partial derivative with respect
to z, the other variable y is held constant. This is the central key to the notion
of partial differentiation. For example, consider the following function and
its equivalent expressions in Cartesian and polar coordinates,

z =1 —y* =1*(cos®§ — sin?0) = 227 — r? = 1> — 29°.

By holding different variables constant, the partial derivatives with respect
to r are also different,

(gi)e = 2r(cos’ — sin?0),
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Thus, the partial differentiation only makes sense when one specifies which
variable is held constant.
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e Taylor expansion with multiple variables

Following the same spirit, one can construct the Taylor expansion for the
function f(x,y) around the point (a,b). Write the function as a power series
of (x —a) and (y — b),

f(z,y) = ap+ |aw(r —a)+ ap(y —b)
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Introduce the short-hand notation f, = 0f/0x and f, = 0f/0y. It is
straightforward to show that ag0 = f(a,b), a0 = fz(a,b) and ag = f,(a,b).
The coefficients of the higher-order terms can be found in the similar way.
Collecting all pieces together, the Taylor expansion can be cast into the sug-
gesting form,
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where h = x—a and k = y—>b. It is quite interesting that the Taylor expansion
for f(x,y) can be view as acting an exponential operator on f(a,b).

e Total differentials

An important concept in multiple-variable differentiation is total differential.
Consider the change of f(x,y) when both variable change,

Af = flz+Az,y+ Ay) — f(z,y)
= [fz+Az,y) — f(z,y)] + [f(x + Az,y + Ay) — f(z + Az, y)].

Taking both Az and Ay to be infinitesimal, the above equation becomes

_of of
df = %dx + 8—ydy. (4)

The above equation contains all information you need to know. For instance,
if y is held constant (dy = 0), the equation reduces to

af\  of
ir) = o

This is exactly the definition for partial derivative mentioned in previous
paragraphs.
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e Error estimate

Differential is a very useful tool to estimate errors. For instance, the resis-
tance for a cylindrical wire is proportional to its length but inverse propor-
tional to the square of the radius,

L

where p is some constant depending on the material properties. Suppose
the error in measuring length and radius is about 5%, what is the maximal
resultant error in resistance? This question can be answered easily by taking
the total differential,

1 1
dR = p—dL —2pL—dr.
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Divide the above relation by the resistance R, we obtain the celebrated rela-
tion between different kinds of errors,
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In the worse case, the errors in length and radius take opposite sign and add
up. Thus, the maximal error in resistance is
dR
R
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which can be as large as 15%! The error in resistance is enhanced by three
times from the original error in length and radius.



