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The notes cover the introduction to partial differentiation (Boas 4.1-4.4).

• Definition of partial differentiation

Consider a function z = f(x, y) and it corresponds to a surface in the three
dimensional space. At a particular point (x0, y0), can one find the “slope” as
for the one-variable function? This question is indeed quite interesting and
motivates us to introduce the partial derivatives,

∂f

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
, (1)

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
. (2)

It is important to emphasize that, when taking partial derivative with respect
to x, the other variable y is held constant. This is the central key to the notion
of partial differentiation. For example, consider the following function and
its equivalent expressions in Cartesian and polar coordinates,

z = x2 − y2 = r2(cos2 θ − sin2 θ) = 2x2 − r2 = r2 − 2y2.

By holding different variables constant, the partial derivatives with respect
to r are also different,(

∂z

∂r

)
θ

= 2r(cos2 θ − sin2 θ),(
∂z

∂r

)
x

= −2r,(
∂z

∂r

)
θ

= 2r.

Thus, the partial differentiation only makes sense when one specifies which
variable is held constant.
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• Taylor expansion with multiple variables

Following the same spirit, one can construct the Taylor expansion for the
function f(x, y) around the point (a, b). Write the function as a power series
of (x− a) and (y − b),

f(x, y) = a00 +
[
a10(x− a) + a01(y − b)

]
+
[
a20(x− a)2 + a11(x− a)(y − b) + a02(y − b)2

]
+ ....

Introduce the short-hand notation fx = ∂f/∂x and fy = ∂f/∂y. It is
straightforward to show that a00 = f(a, b), a10 = fx(a, b) and a01 = fy(a, b).
The coefficients of the higher-order terms can be found in the similar way.
Collecting all pieces together, the Taylor expansion can be cast into the sug-
gesting form,

f(x, y) =
∞∑
n=0

1

n!

(
h
∂

∂x
+ k

∂

∂y

)n
f(a, b) = eh∂/∂x+k∂/∂yf(a, b), (3)

where h = x−a and k = y−b. It is quite interesting that the Taylor expansion
for f(x, y) can be view as acting an exponential operator on f(a, b).

• Total differentials

An important concept in multiple-variable differentiation is total differential.
Consider the change of f(x, y) when both variable change,

∆f = f(x+ ∆x, y + ∆y)− f(x, y)

= [f(x+ ∆x, y)− f(x, y)] + [f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)].

Taking both ∆x and ∆y to be infinitesimal, the above equation becomes

df =
∂f

∂x
dx+

∂f

∂y
dy. (4)

The above equation contains all information you need to know. For instance,
if y is held constant (dy = 0), the equation reduces to(

df

dx

)
y

=
∂f

∂x
.

This is exactly the definition for partial derivative mentioned in previous
paragraphs.



HedgeHog’s notes (April 21, 2010) 3

• Error estimate

Differential is a very useful tool to estimate errors. For instance, the resis-
tance for a cylindrical wire is proportional to its length but inverse propor-
tional to the square of the radius,

R = ρ
L

r2
, (5)

where ρ is some constant depending on the material properties. Suppose
the error in measuring length and radius is about 5%, what is the maximal
resultant error in resistance? This question can be answered easily by taking
the total differential,

dR = ρ
1

r2
dL− 2ρL

1

r3
dr.

Divide the above relation by the resistance R, we obtain the celebrated rela-
tion between different kinds of errors,

dR

R
=
dL

L
− 2

dr

r
.

In the worse case, the errors in length and radius take opposite sign and add
up. Thus, the maximal error in resistance is∣∣∣∣∣dRR

∣∣∣∣∣
max

=

∣∣∣∣∣dLL
∣∣∣∣∣+ 2

∣∣∣∣∣drr
∣∣∣∣∣ ,

which can be as large as 15%! The error in resistance is enhanced by three
times from the original error in length and radius.


