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The notes cover vectors, lines and planes (Boas 3.4-3.5). I will review
the basic properties of vectors including inner and outer products between
two vectors. In Cartesian coordinates, the vector products can be expressed
in terms of decomposed components. Lines and planes can be expressed
by appropriate outer and inner products. Finally, the important notation
of linear independence is introduced and its connection to determinant is
explained.

• Vectors

A vector contains two important pieces of information – length (magnitude)
and direction. I shall not bore you with the addition/substraction of vectors,
which should be taught in high-school math. Unlike ordinary numbers, there
are two kinds of products between two vectors. The scalar product (inner
product) is defined as

A ·B = |A||B| cos θ, (1)

where θ is angle between A and B and |A|, |B| denote the lengths of the
corresponding vectors. The vector product, also known as outer product, is
slightly more complicated,

A×B = |A||B| sin θ êAB, (2)

where 0 ≥ θ < π is the positive angle between A and B. The unit vector
êAB follows the right-hand rule and is orthogonal to both A and B.

• Vectors in Cartesian coordinates

In Cartesian coordinates, a vector can be represented by its components

V = Vxi + Vyj + Vzk, (3)

where i, j and k are unit vectors along the (positive) direction of x-, y- and
z-axes. The inner products of these base vectors follow the relations,

i · i = j · j = k · k = 1,

i · j = j · k = k · i = 0.
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By distributive law, the inner product can be expressed in terms of Cartesian
components,

A ·B = AxBx + AyBy + AzBz. (4)

Similarly, we can work out the relations for outer products between the
base vectors,

i× j = −i× j = k,

j × k = −k × j = i,

k × i = −i× k = j,

i× i = j × j = k × k = 0.

These relations can be elegantly expressed in terms of the Levi-Civita symbol,

êi × êj = εijkêk, (5)

where ê1 = i, ê2 = j and ê3 = k. The distributive laws thus gives the
important formula,

(A×B)k =
3∑

i,j=1

εijkAiBj. (6)

Or, it can be written as a determinant

A×B =

∣∣∣∣∣∣∣
i j k
Ax Ay Ak

Bx By Bz

∣∣∣∣∣∣∣ . (7)

• Lines

We can make use to the inner and outer products to describe lines and planes.
Suppose r0 is a point on a particular straight line. An arbitrary point r on
the line must satisfy the geometric constraint,

(r − r0)× ê = 0, (8)

where ê is the unit vector along the direction of the straight line. It is
important that the constraint is purely geometrical and is independent of
coordinate choices. In Cartesian coordinates, the above constraint can be
brought into the form,

x− x0

a
=
y − y0

b
=
z − z0

c
, (9)

where (a, b, c) is a vector (not necessarily a unit vector) parallel to ê.
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• Planes

Suppose r0 is a point on a particular plane. An arbitrary point r on the
plane must satisfy the geometric constraint,

(r − r0) · n̂ = 0, (10)

where n̂ is the normal vector of the plane. Again, the constraint is geometric
and stands without any introduction of specific coordinates. In Cartesian
coordinates, the above constraint can be casted into

ax+ by + cz = d, (11)

where (a, b, c) is a vector (not necessarily a unit vector) parallel to n̂.

• Linear independence and rank

For a set of n vectors, they are called linearly dependent if the following
constraint

k1V1 + k2V2 + ...+ knVn = 0 (12)

allows a non-trivial solution for ki with k2
1 + k2

2 + ... + k2
n 6= 0. One the

other hand, if the above constraint is only satisfied with the trivial solution
(k1, k2, ..., kn) = (0, 0, ..., 0), these vectors are called linearly independent.

Take n = 3 as an example. We can introduce the coefficient matrix

M =

 V1x V1y V1z

V2x V2y V2z

V3x V3y V3z

 (13)

to rewrite the constraint in a more familiar form

Mk = 0, →

 V1x V1y V1z

V2x V2y V2z

V3x V3y V3z


 k1

k2

k3

 = 0. (14)

Obviously, (k1, k2, k3) = (0, 0, 0) is a solution. Therefore, if detM 6= 0, this
would be the only solution and the vectors V1,V2,V3 are linearly indepen-
dent. If detM = 0, there are infinite solutions and it is possible to find
non-trivial solutions, satisfying the requirement k2

1 +k2
2 + ...+k2

n 6= 0. In this
case, the three vectors are linearly dependent. It is very cute that we can
use the determinant constructed from the three vectors to figure out whether
they are linearly independent or not.


