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The notes cover linear vector space and special matrices (Boas 3.9-3.10).

¢ Index notation

As mentioned in previous notes, the matrix multiplication can be expressed
in index notation,

(AB)ij = Y AixBy;. (1)

Familiarity of the index notation can help to prove several useful theorems.
For instance, the identity matrix can be expressed in terms of the Kronecker
delta,

|1, fori=yj,
5ij_{ 0, fori # j, (2)

It then becomes clear that any matrix multiplied by the identity matrix
remains the same, >, 0;zMy; = M,;;. The Kronecker delta is useful for other
purpose as well. For instance, the following integral is of essential importance
for Fourier series and can be expressed elegantly by the Kronecker delta,

™
/ COS MT COSNL AT = Ty,

—T

Making use of the index notation, we can prove that the transpose of the
product of several matrices equals the product of the transpose matrices in
opposite order,

(ABCD)" = D"CTBT AT, (3)
Let’s take the product of two matrices as an illustrating example,

[(AB)"];; = (AB)ji = > AjBui = > (AT)i(B ) = (BTAT),;.

The rule is simple — when taking the transpose of the product, one just need
to take the transpose for each matrix and multiply them in opposite order.
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Another interesting theorem is about the cyclic invariance of the trace,
Tr(ABC) = Tr(BCA) = Tr(CAB). (4)
The proof is again straightforward in the index notation,
Tr(ABC) = ZAiijkai = Z CyiAi; B, = Tr(CAB).
ijk ijk

It is important to emphasize that Tr(ABC) and Tr(BAC) do not equal to
each other in general. Let us consider an interesting counter example for the
trace theorem,

V1 0 0 0
0 .. V10
V3 |, At=] 0 V2
0 0 0

O O O O

0
0
0

V3

e
I
oo oo

These two matrices are annihilation and creation operators for the simple
harmonic oscillator in quantum mechanics. Compute the product of these
two matrices,

1000 0000
0200 0100
AAt=10 0 3 0 , AftA=100 20
000 4 000 3

The difference between the products AA", ATA is just the identity matrix,
AAT —ATA =1, (5)

However, strange thing happens when taking the trace for the above relation.
For the left-hand side, the trace should be zero according to the theorem but
the trace of the right-hand side is infinite,

Tr(AAT) — Tr(ATA) = 0 # Tr 1!

Since infinity is clearly not equal to zero, we must make some mistake some-
where. Can you figure out where the discrepancy lies?
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e Linear vector space

It is common practice that we can describe the position of a particle by a three
dimensional vector. Similarly, the velocity needs another three dimensional
vectors. For a system consists of IV particles, we thus need 2N vectors in the
three dimensional space to capture its motion. But, we can also construct
a 6N dimensional vector in an abstract space to describe the motion of the
system. This 6N dimensional space has a name — phase space. You will learn
more about the phase space in classical mechanics.
One can also use vector notation to label different genome sequences,

A = (0,0,1,1,0,0,1,1,0,0),
B = (1,1,1,0,1,0,0,0,1,0).

Between two different genome sequences, the notion of “distance” is still
meaningful and often referred as the Hamming distance,

n n

d(A,B) =) (A; — B)? = > (1 —=0a,p)=n— Zn:(SAiBZ..

i=1 i=1 =1

The sequence space is quite compact and crowded. As you can readily tell,
each sequence has as many neighbors as the number of base pairs n but
the maximal distance between any two sequences is only n. Because of the
huge number of neighbors and the close distance, it is also nicknamed as
Manhattan measure.

e Four-dimensional spacetime

In special relativity, the motion of a particle is better described by a four-
dimensional vector. The well-known Lorentz transformation can be casted
into matrix form,

ct’ 0l —yu/e 0 0 ct

| | —u/c ¥ 00 x (6)
y | 0 0 10 y |’

Z 0 0 0 1 z

where v = 1/4/1 — (u/c)?. When the velocity is slow (in comparison to
the speed of light), v ~ 1 and the Lorentz transformation simplify into
the Galilean transformation. Since the transformation for the transverse
directions are trivial, we can shrink the 4 x4 matrix into 2 x 2 and concentrate
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on the non-trivial coordinates. As can be verify by straightforward algebra,
the matrix elements can be expressed by hyperbolic functions,

1
cosha =7 = ———, sinha = y(u/c) = ufe

s 7
1= (u/c)? V1= (u/e)? o

The Lorentz transformation in the reduced dimensions (t, ) is
< ct’ > B ( cosha —sinha > ( ct ) (8)
)\ —sinha cosha x )
The above matrix resembles the rotation matrix in two dimensions if the
hyperbolic functions are replaced by the sinusoidal ones. There is a deeper
connection between them because of similar group structure.

The matrix form is not just for “good looking” but can be helpful from
time to time. For instance, the rule of matrix multiplication provides a
simple route to derive the velocity addition rule in special relativity. For
a particle moving at velocity v, its motion satisfies z = vt. In the moving
frame, its motions becomes 2’ = v't' and we would like to figure out the

relation between v and v’. Starting from the relation x = vt, the Lorentz
transformation gives

ct’ \ [ cosha(ct) — sinha(vt)
)\ —sinha(et) + cosha(vt) |-
The velocity v observed in the moving frame can be found,

, ' (v/c)cosha —sinha v—u
V= — = ; C = .
t"  cosha — (v/c)sinh « 1 —uv/c?

Note that, if v = ¢ (motion of light) in the rest frame, v" = ¢ in the moving
frame and echoes the assumption that the speed of light is invariant.

e Orthonormal basis: Gram-Schmidt method

Schwarz inequality for n-dimensional Fuclidean space is

n 2 n n
(Z AZ-BJ < (Z A?) (Z Bf) .~ lA-Bl<aB. ()
i=1 i=1 i=1
The proof involves a central idea of projection. Choosing the vector

C =BA- (A B)B/B,
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compute its length and the inequality follows. The projection can help to
construct orthogonal vectors. Take two vectors A and B as example,

B=B-(B-aa — B -A=0.

Generalizing the above idea, one can build up an orthonormal basis by Gram-
Schmidt method. This method is best learnt by working through examples.
Consider the following three vectors,

A =(0,0,5,0), B=(2,0,3,0), C=(7,1,-5,3).

The first unit vector in the orthonormal basis can be constructed by normal-
izing the first vector,

é, = AJ/A=1(0,0,1,0).

To construct the second unit vector, one needs to subtract the projection
along the first unit vector,

B—(B-é)é =(2,0,0,0), — & =(1,0,0,0).

Following the same spirit, the last one can be found by subtracting projec-
tions along the previous directions,

1
C—-(C-é)e—(C-é)e;=(0,1,0,3), — e3=—=(0,1,0,3).
(C-é1)ér — (C-ér)é; = ( ) 3 \/ﬁ( )
The generalization to higher dimensions is straightforward but the algebra
can be tedious. Luckily, we have computers these days. You only need to be
familiar with the algorithm of the Gram-Schmidt method — write a program
and leave the messy algebra to your computer.

e Complex vector space: Hermitian and unitary matrices

As you may have guessed, there is no reason to limit our imagination —
vectors can be complex as well. The inner product between two vectors is
not necessarily real anymore. Consider two complex vectors

31 -1
1—1 1424
243 |’ B = 3—1 |’

1+2 l

A:



HedgeHog's notes (March 27, 2010) 6

there are two types of inner products (complex conjugate to each other),
A'B =4-4i=B'A.

In quantum mechanics, a particle is described by a complex vector named
wave function. Two types of matrices are often encountered in physics —
Hermitian and unitary matrices. The angular momentum along the z-axis is
captured by a Hermitian matrix,

(0 = ) . s (1 0
LZ_(i 0 ),and1tssquare1s LZ_(O 1>_1.

As explained in class before, the rotation matrix can be obtained by expo-
nentiating the angular momentum,

(—iL.0)?  (—i[.0° (—iL.0)' (iL.0)
T Y
cos) —sinf >

e” = 1 4 (—iL.0) +

sinff cosf

= 1(cos€)—iLZ(sin9):<

This relation is not a coincidence. Construct a matrix U by exponentiating
a Hermitian matrix H,

U=¢et, Ut = e " = ¢ (10)

one can show that the matrix U is unitary because e/fe=*# = 1.



