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The notes cover linear operators and discuss linear independence of func-
tions (Boas 3.7-3.8).

• Linear operators

An operator maps one thing into another. For instance, the ordinary func-
tions are operators mapping numbers to numbers. A linear operator satisfies
the properties,

O(A+B) = O(A) +O(B), O(kA) = kO(A), (1)

where k is a number. As we learned before, a matrix maps one vector into
another. One also notices that

M(r1 + r2) = Mr1 +Mr2, M(kr) = kMr.

Thus, matrices are linear operators.

• Orthogonal matrix

The length of a vector remains invariant under rotations,

(
x′ y′

)( x′

y′

)
=
(
x y

)
MTM

(
x
y

)
.

The constraint can be elegantly written down as a matrix equation,

MTM = MMT = 1. (2)

In other words, MT = M−1. For matrices satisfy the above constraint,
they are called orthogonal matrices. Note that, for orthogonal matrices,
computing inverse is as simple as taking transpose – an extremely helpful
property for calculations.

From the product theorem for the determinant, we immediately come to
the conclusion detM = ±1. In two dimensions, any 2× 2 orthogonal matrix
with determinant 1 corresponds to a rotation, while any 2 × 2 orthogonal
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matrix with determinant −1 corresponds to a reflection about a line. Let’s
come back to our good old friend – the rotation matrix,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, RT =

(
cos θ sin θ
− sin θ cos θ

)
. (3)

It is straightforward to check that RTR = RRT = 1.
You may wonder why we call the matrix “orthogonal”? What does it

mean that a matrix is orthogonal? (to what?!) Here comes the charming
reason for the name. Writing down the product RTR explicitly,(

cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
v1 · v1 v1 · v2

v2 · v1 v2 · v2

)
=

(
1 0
0 1

)
, (4)

we realize that an orthogonal matrix contains a complete bases of orthogonal
vectors in the same dimensions!

• Rotations and reflections in 2D

Consider the rotation matrix and the reflection about the x-axis (also called
parity operator in the y-direction),

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, Py =

(
1 0
0 −1

)
. (5)

We can construct two operators by combining R(θ) and Py in different orders,

C = R(θ)Py, D = PyR(θ). (6)

One can check that detC = detD = −1 and they do not correspond to the
usual rotations. Carrying out the matrix multiplication, the operator C in
explicit matrix form is

C =

(
cos θ sin θ
sin θ − cos θ

)
. (7)

To figure what the operator do, we can act C on unit vectors along x- and
y-directions, (

cos θ sin θ
sin θ − cos θ

)(
1
0

)
=

(
cos θ
sin θ

)
,(

cos θ sin θ
sin θ − cos θ

)(
0
1

)
=

(
sin θ
− cos θ

)
.



HedgeHog’s notes (March 24, 2010) 3

Plotting out the mappings, one can see that C corresponds to a reflection
about the line at θ/2. While the geometric picture is nice, it is also comforting
to know about the algebraic approach,

Cr = r →
(

cos θ sin θ
sin θ − cos θ

)(
x
y

)
=

(
x
y

)
. (8)

After some algebra, the above matrix equation gives the relation for the
reflection line,

y

x
=

sin(θ/2)

cos(θ/2)
.

This is exactly what we expected. Now we turn to the other operator D,

D = PyR(θ) =

(
1 0
0 −1

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ
− sin θ − cos θ

)
.

You may have guessed that D corresponds to a reflection about some line –
this is indeed true. Absorbing the minus sign into the sin function, we come
to the identity

PyR(θ) = R(−θ)Py = R−1(θ)Py. (9)

Thus, D corresponds to a reflection about the line at −θ/2.

• Rotations and reflections in 3D

We can generalize the discussions to three dimensions. Any 3 × 3 orthogo-
nal matrices with determinant 1 can be brought into the standard form by
choosing the rational axis to coincide with the z-axis,

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (10)

Similarly, Any 3×3 orthogonal matrices with determinant −1 can be brought
into the standard form,

R̃(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 −1

 (11)
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and corresponds to a rotation about the (appropriate) z-axis followed by a
reflection through the xy-plane. An example will help to digest the notaion,

L =

 0 −1 0
−1 0 0
0 0 1

 .
First of all, detL = −1 and thus corresponds to an improper rotation (ro-
tation + reflection). We can find out the normal vector for the reflection
plane,

Ln = −n →

 0 −1 0
−1 0 0
0 0 1


 nx

ny

nz

 = −

 nx

ny

nz

 .
Or, we can take a different view and try to figure out the equation for the
plane directly,

Lr = r →

 0 −1 0
−1 0 0
0 0 1


 x
y
z

 =

 x
y
z

 .
Both methods give the reflection plane x+ y = 0 and explains the action of
the operator L.

• Wronskian for linear independence

Following similar definition for vectors, we say that a set of functions is
linearly dependent if some linear combinations of them give identical zero,

k1f1(x) + k2f2(x) + ...+ knfn(x) = 0, (12)

where k2
1 + k2

2 + ... + k2
n 6= 0. Taking derivatives of the above equation, we

can cook up a complete set of equations,

k1f1(x) + k2f2(x)+ ... +knfn(x) = 0,

k1f
′
1(x) + k2f

′
2(x)+ ... +knf

′
n(x) = 0,

...

k1f
(n−1)
1 (x) + k2f

(n−1)
2 (x)+ ... +knf

(n−1)
n (x) = 0.
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If we can find non-trivial solutions for (k1, k2, ..., kn), the functions are linearly
dependent. From previous lectures, we know that it amounts to require

W (f1, f2, ..., fn) ≡

∣∣∣∣∣∣∣∣∣∣
f1 f2 ... fn

f ′1 f ′2 ... f ′n
...

... ...
...

f
(n−1)
1 f

(n−1)
2 ... f (n−1)

n

∣∣∣∣∣∣∣∣∣∣
= 0, (13)

where W (f1, f2, ..., fn) is the Wronskian. It is important to emphasize that
“dependent functions” implies W = 0, but W = 0 does not necessarily imply
the functions are linearly dependent.


