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The notes cover linear operators and discuss linear independence of func-
tions (Boas 3.7-3.8).

e Linear operators

An operator maps one thing into another. For instance, the ordinary func-
tions are operators mapping numbers to numbers. A linear operator satisfies
the properties,

O(A+B)=0(A) +0(B),  O(kA) = kO(A), (1)

where k is a number. As we learned before, a matrix maps one vector into
another. One also notices that

M(ry 4+ 7o) = Mry + Mr,, M(kr) = kMr.

Thus, matrices are linear operators.

e Orthogonal matrix

The length of a vector remains invariant under rotations,

(« y')<‘;’:>:(m y)MTM<°;’>.

The constraint can be elegantly written down as a matrix equation,
MM = MM" =1. (2)

In other words, M7 = M~!. For matrices satisfy the above constraint,
they are called orthogonal matrices. Note that, for orthogonal matrices,
computing inverse is as simple as taking transpose — an extremely helpful
property for calculations.

From the product theorem for the determinant, we immediately come to
the conclusion det M = +1. In two dimensions, any 2 X 2 orthogonal matrix
with determinant 1 corresponds to a rotation, while any 2 x 2 orthogonal
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matrix with determinant —1 corresponds to a reflection about a line. Let’s
come back to our good old friend — the rotation matrix,

R(0) = ( cosf) —siné >’ R < cosf sinf > (3)

sinff cosf —sinf@ cosf

It is straightforward to check that RT R = RR” = 1.

You may wonder why we call the matrix “orthogonal”? What does it
mean that a matrix is orthogonal? (to what?!) Here comes the charming
reason for the name. Writing down the product RT R explicitly,

cosf sinf cos) —sin€ \ [ wvi-vy vicva ) (10 (@)
—sinf cosf sinf cosf S\ vevy varve /] O 1)

we realize that an orthogonal matrix contains a complete bases of orthogonal
vectors in the same dimensions!

e Rotations and reflections in 2D

Consider the rotation matrix and the reflection about the z-axis (also called
parity operator in the y-direction),

cosf) —sinf 1 0
R(0) = ( sinf cos# )’ Py = (O —1 > (5)
We can construct two operators by combining R(#) and P, in different orders,
C = R(9)FP,, D = P,R(6). (6)

One can check that det C = det D = —1 and they do not correspond to the
usual rotations. Carrying out the matrix multiplication, the operator C' in

explicit matrix form is
cosf sinf
C_<sin9 —cosG)' (7)

To figure what the operator do, we can act C' on unit vectors along z- and

y-directions,
cosf siné 1) [ cost
sinf —cos@ 0/ \ sin6 )’

cosf sinf 0\ sin
sinf —cos# 1) \ —cosb |-
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Plotting out the mappings, one can see that C' corresponds to a reflection
about the line at #/2. While the geometric picture is nice, it is also comforting
to know about the algebraic approach,

cosf sinf x x
Cr=r - (sin@ —COSQ><y>:<y>' (8)

After some algebra, the above matrix equation gives the relation for the
reflection line,

y  sin(6/2)

r  cos(f/2)

This is exactly what we expected. Now we turn to the other operator D,

1 0 cosf) —sind cosff —sind
D_PyR(e)_<O —1) (sin& cos 6 >_<—sin«9 —cos@)'
You may have guessed that D corresponds to a reflection about some line —

this is indeed true. Absorbing the minus sign into the sin function, we come
to the identity

P,R(0) = R(—0)P, = R ()P, (9)

Thus, D corresponds to a reflection about the line at —6/2.

¢ Rotations and reflections in 3D

We can generalize the discussions to three dimensions. Any 3 x 3 orthogo-
nal matrices with determinant 1 can be brought into the standard form by
choosing the rational axis to coincide with the z-axis,

cosf —sinf 0
R(#) = | sinf cosf 0 |. (10)
0 0 1

Similarly, Any 3 x 3 orthogonal matrices with determinant —1 can be brought
into the standard form,

. cos) —sinf 0
R(#) = | sinf cosf 0 (11)
0 0 -1
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and corresponds to a rotation about the (appropriate) z-axis followed by a
reflection through the xy-plane. An example will help to digest the notaion,

0 -1 0
L= -1 0 0
0 0 1
First of all, det L = —1 and thus corresponds to an improper rotation (ro-

tation + reflection). We can find out the normal vector for the reflection
plane,

In=-n — -1 0 0 ny | =—1 ny
0 0 1 n, n,

Or, we can take a different view and try to figure out the equation for the
plane directly,

0 -1 0 T T
Lr=r — -1 0 0 y | =1y
0 0 1 z z

Both methods give the reflection plane x + y = 0 and explains the action of
the operator L.

e Wronskian for linear independence

Following similar definition for vectors, we say that a set of functions is
linearly dependent if some linear combinations of them give identical zero,

kifi(z) + ko fa(2) + .o+ b fo(2) = 0, (12)

where k% + k3 + ... + k2 # 0. Taking derivatives of the above equation, we
can cook up a complete set of equations,

0,
0,

kufi(@) + kafo(w)+ o +hnfy(2)

ke f70 (@) o fS V@) Ak SO (@) = 0,
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If we can find non-trivial solutions for (k1, ko, ..., k,,), the functions are linearly
dependent. From previous lectures, we know that it amounts to require

fl f2 fn
h fo T

W<f17f27"'7f”) : : .
fl(n—l) f2(n—1) . fl=D)

where W (f1, fa, ..., fn) is the Wronskian. It is important to emphasize that
“dependent functions” implies W = 0, but W = 0 does not necessarily imply
the functions are linearly dependent.



