
Eigenvalues and Eigenvectors of Matrices
Hsiu-Hau Lin
hsiuhau@phys.nthu.edu.tw
(Apr 8, 2010)

The notes cover the method to obtain eigenvalues and eigenvectors for
matrices (Boas 3.11).

• Eigenvalues and eigenvectors

A matrix maps one vector to another. However, it is possible that, when
acting on specific vectors, the matrix returns the same vector with a scaling
factor in front,

Mr = λr. (1)

The vector r is called the eigenvector of the matrix with the eigenvalue λ.
Let’s start with a simple example,(
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)(
x
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)
= λ
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)
.

Obviously, a trivial solution (x, y) = (0, 0) satisfies the above equation. To
secure non-trivial solutions, the determinant must vanish and delivers the
eigenvalues in return,∣∣∣∣∣ 5− λ −2

−2 2− λ

∣∣∣∣∣ = 0 → λ = 1, 6.

Once the eigenvalues are known, one can work out the corresponding eigen-
vectors one by one,

λ = 1,
1√
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)
; λ = 6,
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)
.

One may notice that the eigenvectors form an orthonormal basis.

• Similarity transformation

The diagonal matrix is related to the original one by similarity transfor-
mation. Construct the orthogonal matrix S from the eigenvectors and the
diagonal matrix D from the eigenvalues,
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)
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)
, D =
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)
=
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)
. (2)
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The eigen equations are equivalent to the matrix identity,

S−1MS = D. (3)

Transformation of this kind is named similarity transformation. The trans-
formation S correspond to the coordinate transformation,

r = Sr′. (4)

Thus, the original matrix M is transformed into a much simpler form in the
new coordinate system,

Mr = R, →
(
S−1MS

)
r′ = R′.

That’s why we go through the troubles to diagonalize the matrix and find
its eigenvalues and eigenvectors.

Bringing the matrix into diagonal form can be helpful in many aspects.
For instance, consider the 3× 3 matrix,

M =

 1 −4 2
−4 1 −2

2 −2 −2

 ,
with eigenvalues λ = 6,−3,−3 and eigenvectors (2,−2, 1), (1, 1, 0) and (−1, 1, 4).
The product of M to arbitrary power can be evaluated by transforming into
the eigenbasis,

Mn = S−1DnS.

It is trivial to evaluate Dn first. Then, Mn can be found by similarity trans-
formation back to the original coordinate system. The eigenbasis also help
to establish useful identity such as

det
(
eM
)

= eTrM . (5)

In the eigenbasis, the identity can be easily proved, det(eM) = eλ1eλ2 ...eλn =

e
∑

i
λi = exp(TrM). We can then use similarity transformation to arbitrary

coordinate systems and establish the generality of the identity.

• Diagonalizing Hermitian matrices

Matrices are complex in general. Hermitian matrices, H = H†, are commonly
found in physics with many surprisingly beautiful properties. For instance,
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the angular momentum along the z-axis is captured by a Hermitian matrix,

Lz =

 0 −i 0
i 0 0
0 0 0

 ,
Following the same method, the Hermitian matrix can be brought into diag-
onal form with eigenvalues and eigenvectors,

λ = 1, 0,−1; r1 =
1√
2

 1
i
0

 , r0 =

 0
0
1

 , r−1 =
1√
2

 1
−i
0

 .
The eigenvalues are real even though the matrix Lz is not. The eigenvectors
with different eigenvalues are orthogonal to each other. These nice properties
are true for general Hermitian matrices.

Let me walk you through the proof in the following. Write down the
eigen equation and its adjoint (transpose and complex conjugate) for the
Hermitian matrix,

Hr = λr, r†H = λ∗r†.

Compute inner product for the two equations, it leads to

r†Hr = λr†r = λ∗r†r → (λ− λ∗)r†r = 0.

Since r†r 6= 0, the eigenvalue must be real, λ = λ∗. Similarly, we can play
the same trick to eigen equations with different eigenvalues,

r†1H = λ1r
†
1, Hr2 = λ2r2.

Taking the inner product, we obtain an important identity

r†1Hr2 = λ1r
†
1r2 = λ2r

†
1r2, → (λ1 − λ2)r

†
1r2 = 0.

Thus, if λ1 6= λ2, the corresponding eigenvectors are orthogonal, r†1r2 = 0.
An interesting subtlety is left for your exercise: what happens if λ1 = λ2?

• Lorentz transformation revisited

We now revisit the Lorentz transformation in the reduced dimensions (t, x),(
ct′

x′

)
=

(
coshα − sinhα
− sinhα coshα

)(
ct
x

)
. (6)
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One can diagonalize the Lorentz transformation and obtain the eigenvalues
and eigenvectors,

λ± = coshα± sinhα =

√
c+ u

c− u
,

√
c− u
c+ u

, r± =
1√
2

(
1
∓1

)
. (7)

The physical meaning for the eigenvectors are transparent: these represent
the light traveling along the positive and negative x-axis. What is the phys-
ical meaning for these eigenvalues? Let me state without proof that the
angular frequency ω and the wave number k follows the same Lorentz trans-
formation, (

ω′

ck′

)
=

(
coshα − sinhα
− sinhα coshα

)(
ω
ck

)
.

For light waves, ω = ck and the transformation becomes rather simple,(
ω′

ω′

)
=

(
coshα − sinhα
− sinhα coshα

)(
ω
ω

)
=

√
c− u
c+ u

(
ω
ω

)
.

The relation between the angular frequencies in the moving frame and the
rest frame is

ω′ =

√
c− u
c+ u

ω. (8)

The meaning of the eigenvalues is just the relativistic Doppler effect!

• Simultaneous diagonalization

Finally, I would like to comment on the eigensystems for two commuting
matrices F and G. Suppose the eigen equation for the matrix F is

Fr = λfr. (9)

Acting the commuting matrix G on the equation,

GFr = λfGr → F (Gr) = λf (Gr),

and one finds that Gr is also an eigenvector with the same eigenvalue λf . If
the eigenvalue is not degenerate, it directly implies that the eigenvectors r
and Gr are linearly dependent, i.e.

Gr = λgr. (10)

The above eigen equation means that F and G share the same eigenvector
r, but with different eigenvalues λf and λg.


