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The notes cover matrix operations (Boas 3.6). I will go through the basic
matrix operations and also touch upon the notion of commutators, functions
of matrices and so on.

• Basic Operations

Additions and subtractions of matrices are simple. Multiplication between
matrices is more complicated and can be written in the algebraic form,

(AB)ij =
∑
k

AikBkj. (1)

From the definition, it is clear that the column number of A and the row
number of B must equal. Otherwise, the summation over the index k is not
well defined. That is to say, not all matrices can be multiplied together!

It’s often convenient to define the transpose of a matrix,

(AT )ij = Aji, (2)

by switching the rows and columns. For a m× n matrix, its transpose is an
n×m matrix. For a square matrix, it remains a square matrix of the same
size. If AT = A, the matrix is called symmetric. It is interesting to mention
that the determinant remains invariant under the operation of transpose,

det(AT ) = detA. (3)

In addition, if both A and B are square matrices of the same dimension,

det(AB) = detA detB. (4)

The above identity is quite useful. For instance, choose A = k1,

det(kB) = det(k1) detB = kn detB.

• Commutators

Suppose we choose two matrices to compute their product,

A =

(
0 1
1 0

)
, B =

(
0 −i
i 0

)
.
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The answer depends on the order of multiplication,

AB =

(
0 1
1 0

)(
0 −i
i 0

)
= i

(
1 0
0 −1

)

BA =

(
0 −i
i 0

)(
0 1
1 0

)
= −i

(
1 0
0 −1

)
.

Observe that AB is not the same as BA an we say that A and B do not
commute. The commutator between A and B is

[A,B] = AB −BA. (5)

In general, the commutator between two square matrices (of the same di-
mension) is not zero, marking the unique feature of matrix multiplication.

The non-commuting properties are extremely important concept in quan-
tum theory. For instance, the momentum of a particle can be viewed as the
differential operator,

p→ −ih̄ d
dx
.

Starting from the relation (d/dx)[xf(x)] = x(d/dx)f + f(x), one can obtain
the operator identity,

[x, d/dx] = −1, → [x, p] = ih̄. (6)

The non-trivial commutator between x and p explains the uncertainty prin-
ciple between these two observables.

The commutator exhibits interesting algebra as well. It is straightforward
to show that the commutator for matrix products can be decomposed by the
following rules,

[A,BC] = [A,B]C +B[A,C], [AB,C] = A[B,C] + [A,C]B. (7)

Similarly, one can prove the Jacobi identity among three matrices,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (8)

• Inverse Matrix

To solve the linearly coupled equations, we need to invert the matrix. The
inverse of a matrix is defined as

MM−1 = M−1M = 1. (9)
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If a matrix has an inverse, it is invertible; if it doesn’t have an inverse, it is
called singular. It is quite nice that the inversion of a matrix can be done by
finding the cofactor,

M−1 =
1

detM
CT . (10)

Here is an explicit example to get you familiar with the formula,

M =

 1 0 −1
−2 3 0
1 −3 2

 → C12 = (−1)1+2

∣∣∣∣∣ −2 0
1 2

∣∣∣∣∣ = 4.

One can carefully work out the other matrix elements in the cofactor

C =

 6 4 3
3 3 3
3 2 3

 and the inverse is M−1 =
1

3

 6 3 3
4 3 2
3 3 3

 .
You may be amazed why the formula works. Here is some hint to the formal
proof. Recall that the determinant of a matrix can be written down by
Laplace decomposition. Choose the first row for the expansion,

detM =
∑
i

M1iC1i =
∑
i

M1i(C
T )i1.

The above relation establishes the equality of the first row and the first
column of the matrix equation MM−1 = 1.

• Rotation Matrix

Rotations in two dimensions can be written in matrix form,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (11)

The determinant of the rotation matrix is cos2 θ + sin2 θ = 1. Do you know
why the determinant of a rotation matrix is always one disregarding the angle
of rotation? Try to multiply two rotation matrices together,(

cos θ1 − sin θ1

sin θ1 cos θ1

)(
cos θ2 − sin θ2

sin θ2 cos θ2

)
=

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
.

It is beautiful that the rule for matrix multiplication provides the correct
intuition we know about rotations,

R(θ1)R(θ2) = R(θ1 + θ2). (12)
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• Functions of Matrices

The angular momentum along the z-axis can be expressed as a matrix,

Lz =

(
0 −i
i 0

)
, and its square is L2

z =

(
1 0
0 1

)
= 1.

Consider a function of Lz which can be expanded in Taylor series. We can
simplify the function by making use of the above relation,

f(Lz) = 4 + 3Lz + 2L2
z + L3

z = 6 + 4Lz =

(
6 −4i
4i 6

)
.

It is quite interesting that the matrix for angular momentum Lz is directly
related to the rotation matrix R(θ),

e−iLzθ = 1 + (−iLzθ) +
(−iLzθ)2

2!
+

(−iLzθ)3

3!
+

(−iLzθ)4

4!
+

(iLzθ)
5

5!
+ ...

= 1

(
1− θ2

2!
+
θ4

4!
+ ...

)
− iLz

(
θ − θ3

3!
+
θ5

5!
...

)

= 1(cos θ)− iLz(sin θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

The above matrix identity points out the fundamental relation between the
rotation and its corresponding angular momentum.


