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The notes cover matrix operations (Boas 3.6). I will go through the basic
matrix operations and also touch upon the notion of commutators, functions
of matrices and so on.

e Basic Operations

Additions and subtractions of matrices are simple. Multiplication between
matrices is more complicated and can be written in the algebraic form,

(AB)ij =Y AuBy;. (1)

From the definition, it is clear that the column number of A and the row

number of B must equal. Otherwise, the summation over the index k is not

well defined. That is to say, not all matrices can be multiplied together!
It’s often convenient to define the transpose of a matrix,

(A" = Ay, (2)

by switching the rows and columns. For a m x n matrix, its transpose is an
n X m matrix. For a square matrix, it remains a square matrix of the same
size. If AT = A, the matrix is called symmetric. It is interesting to mention
that the determinant remains invariant under the operation of transpose,

det(A”) = det A. (3)
In addition, if both A and B are square matrices of the same dimension,
det(AB) = det Adet B. (4)
The above identity is quite useful. For instance, choose A = k1,

det(kB) = det(k1)det B = k™ det B.

e Commutators

Suppose we choose two matrices to compute their product,

a=(10) 2=(17)
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The answer depends on the order of multiplication,
01 0 — (1 0
AB = (1 o><¢ 0 >:1<o —1)
0 — 0 1 (1 0
BA:(@ 0)(1 0>2_2<0 —1)'

Observe that AB is not the same as BA an we say that A and B do not
commute. The commutator between A and B is

[A, B] = AB — BA. (5)

In general, the commutator between two square matrices (of the same di-
mension) is not zero, marking the unique feature of matrix multiplication.

The non-commuting properties are extremely important concept in quan-
tum theory. For instance, the momentum of a particle can be viewed as the
differential operator,

d
—ih—.
p— = dz

Starting from the relation (d/dx)[zf(x)] = z(d/dx)f + f(z), one can obtain
the operator identity,

[x,d/dx] = -1, — [z,p] =ih. (6)

The non-trivial commutator between x and p explains the uncertainty prin-
ciple between these two observables.

The commutator exhibits interesting algebra as well. It is straightforward
to show that the commutator for matrix products can be decomposed by the
following rules,

[A, BC| = [A,B]C + B[A,C], [AB,C]=A[B,C]+ [A,C]B. (7)
Similarly, one can prove the Jacobi identity among three matrices,

[A,[B,C]] + [B,[C, A]] + [C, [A, B]] = 0. (8)

e Inverse Matrix

To solve the linearly coupled equations, we need to invert the matrix. The
inverse of a matrix is defined as

MM =M1'M=1. (9)
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If a matrix has an inverse, it is invertible; if it doesn’t have an inverse, it is
called singular. It is quite nice that the inversion of a matrix can be done by
finding the cofactor,

1
M= cr. 10
det M (10)
Here is an explicit example to get you familiar with the formula,
1 0 -1 9 0
M=| -2 3 o0 — Cp=(-)"| 7 2|:4'
1 -3 2

One can carefully work out the other matrix elements in the cofactor

6 4 3 6 3 3
C=133 3 and the inverse is M ™! = 3 4 3 2
3 2 3 3 3 3

You may be amazed why the formula works. Here is some hint to the formal
proof. Recall that the determinant of a matrix can be written down by
Laplace decomposition. Choose the first row for the expansion,

det M = ZMlicli = Z Mli(CT)il.

The above relation establishes the equality of the first row and the first
column of the matrix equation MM~! = 1.

e Rotation Matrix

Rotations in two dimensions can be written in matrix form,

R(9>:<COSQ —sin9>' (11)

sinf cos®

The determinant of the rotation matrix is cos?@ + sin?6 = 1. Do you know
why the determinant of a rotation matrix is always one disregarding the angle
of rotation? Try to multiply two rotation matrices together,

( cosf; —sinb; ) < cosfy —sinbs ) _ ( cos(0y + 63) —sin(0; + 0s) )

sinf; cosb, sinfl, cosbs sin(f; + 63)  cos(61 + 02)

It is beautiful that the rule for matrix multiplication provides the correct
intuition we know about rotations,

R(61)R(02) = R(61 + 65). (12)
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e Functions of Matrices

The angular momentum along the z-axis can be expressed as a matrix,

(0 = ) . s (1 0\
LZ_(i 0 ),and1tssquare1s LZ_(O 1>_1.

Consider a function of L, which can be expanded in Taylor series. We can
simplify the function by making use of the above relation,

L)—4+30, +202+ I3 =6+4L, = O —4i
z ? 4 6

It is quite interesting that the matrix for angular momentum L, is directly
related to the rotation matrix R(6),

Lo , (—iL.0)*> (—iL.0)® (—iL,0)* (iL.0)°
e = 14+ (—il.0)+ TR TR TR ST

62 o4 , VAR

cosf@ —sinf )

sinff cosf

= 1(cosf) —iL,(sinf) = (

The above matrix identity points out the fundamental relation between the
rotation and its corresponding angular momentum.



