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The notes introduce the elementary complex fucntions (Chap 2, Sections
11-16 in Boas). In particular, we would encounter the multi-valued loga-
rithmic function and learn to live with its indefinite values. Then, we can
sensibly answer what a complex root like (1 + i)1−i means. At the end, we
apply complex algebra to find the interference pattern for the multiple-slip
experiment.

• Elementary functions

Starting from our good old friend, the exponential function can be decom-
posed into two parts,

ez = ex(cos y + i sin y). (1)

It is important to emphasize that the complex exponential function is not
monotonic anymore. If you walk along the imaginary axis, the exponential
function is basically the sinusoidal function. Similarly, one can generalize the
trigonometric functions in the entire complex plane,

sin z =
eiz − e−iz

2i
, (2)

cos z =
eiz + e−iz

2
. (3)

It should be straightforward to convince yourself that both sin z and cos z
are not bounded anymore. However, the identity sin2 z + cos2 z = 1 remains
valid, going beyond its original geometric meaning.

• Multi-valued logarithmic function

As we proved in the previous lecture,

ez1ez2 = ez1+z2 ,

it implies that its inverse function satisfies the relation

ln z1 + ln z2 = ln(z1z2).
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In the polar representation, the logarithmic function on the complex plane is

ln z = ln r + i(θ + 2nπ), (4)

where n = 0,±1,±2, ... is an arbitrary integer. This means that the loga-
rithmic function is not single-valued. For instance, taking logarithm of the
simple integer z = −1, you end up with infinite imaginary numbers,

ln(−1) = ln 1 + i(2n+ 1)π = ±πi,±3πi,±5πi, ....

• Complex powers and roots

With the help of complex logarithmic function, we can compute general com-
plex powers/roots defined as

ab = eb ln a. (5)

Since ln a is multiple valued, the power ab is multiple valued as well unless
the principle value is specified. As an example, one can compute the complex
power of a complex number,

(1 + i)1−i =
√

2eπ/4
[
cos(π/4− ln

√
2) + i sin(π/4− ln

√
2)
]
e2nπ,

where n is an arbitrary integer.

• Multiple-slit interferences

The complex algebra helps tremendously in some physical examples. Con-
sider the N -slip interference experiment. One needs to sum up all amplitudes
first and squares the total amplitude to get the intensity pattern. However,
summing a bunch of sinusoidal functions is not trivial. In this case, it is bet-
ter to introduce the complex amplitude. The summation is easy in complex
analysis,

Atot = A0e
iωt + A0e

i(ωt+δ) + ...+ A0e
i[ωt+(N−1)δ]

= A0e
i[ωt+(N−1)δ/2] sin(Nδ/2)

sin(δ/2)
, (6)

where A0 is the amplitude for each slip, N is the number of slips and δ is the
phase shift between adjacent slips. Taking the imaginary part of the above
expression, the physical amplitude is

Atot = A0 sin
(
ωt+

N − 1

2
δ
)

sin(Nδ/2)

sin(δ/2)
. (7)
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Figure 1: The intensity plot for the 4-slip interference pattern.

Square the amplitude and average over time and we obtain the interfer-
ence pattern for the total intensity,

I(δ) =
A2

0

2

sin2(Nδ/2)

sin2(δ/2)
. (8)

The result for N = 4 is shown in Fig. 1. As expected, the intensity is
periodic when the phase shift δ winds 2π. Within each period, there are one
major peak and N − 2 minor peaks. A special case occurs for double-slip
interferences – no minor peaks as learned in high-school physics.


