
Operating System:
Chap8 Memory
Management
National Tsing-Hua University
2016, Fall Semester

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 2

Overview
 Background
 Swapping
 Contiguous Allocation
 Paging
 Segmentation
 Segmentation with Paging

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 3

Background
 Main memory and registers are the only storage

CPU can access directly
 Collection of processes are waiting on disk to be

brought into memory and be executed
 Multiple programs are brought into memory to

improve resource utilization and response time
to users

 A process may be moved between disk and
memory during its execution

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 4

Outline
 How to refer memory in a program?
 address binding

 How to load a program into memory ?
 static/dynamic loading and linking

 How to move a program between mem. & disk?
 swap

 How to allocate memory?
 paging, segment

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 5

Multistep Processing of a User Program

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 6

 Program is written as symbolic code
 Compiler translates symbolic code into absolute code
 If starting location changes 
 Example: MS-DOS .COM format binary

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.BASE 0x1000

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x1018), AX
CALL print, (0x1018)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x1018), AX
CALL print, (0x1018)
POP AX

0x1000

0x1018

0x1010

Memory Content

Address Binding – Compile Time

Compile Load

recompile

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 7

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (.BS+0x18), AX
CALL print, (.BS+0x18)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x2018), AX
CALL print, (0x2018)
POP AX

0x2000

0x2018

0x2010

Memory Content

Address Binding – Load Time
 Compiler translates symbolic code into relocatable code
 Relocatable code:

 Machine language that can be run from any memory location
 If starting location changes  reload the code

Compile Load

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 8

Address Binding – Execution Time
 Compiler translates symbolic code into logical-address

(i.e. virtual-address) code
 Special hardware (i.e. MMU) is needed for this scheme
 Most general-purpose OS use this method

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x18), AX
CALL print, (0x18)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x18), AX
CALL print, (0x18)
POP AX

0x2000

0x2018

0x2010

Memory Content

Compile Load

Virtual addr.

Physical addr.

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 9

Memory-Management Unit (MMU)
 Hardware device that maps virtual to physical address
 The value in the relocation register is added to every

address generated by a user process at the time it is
sent to memory

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 10

Logical vs. Physical Address
 Logical address – generated by CPU
a.k.a. virtual address

 Physical address – seen by the memory
module

 compile-time & load-time address binding
 logical addr = physical addr

 Execution-time address binding
 logical addr ≠ physical addr

 The user program deals with logical addresses; it
never sees the real physical addresses

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 11

Outline
 How to refer memory in a program?
 address binding

 How to load a program into memory ?
 static/dynamic loading and linking

 How to move a program between mem. & disk?
 swap

 How to allocate memory?
 paging, segment

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 12

Dynamic Loading
 The entire program must be in memory for it to

execute?
 No, we can use dynamic-loading

 A routine is loaded into memory when it is called

 Better memory-space utilization
 unused routine is never loaded
 Particularly useful when large amounts of code are

infrequently used (e.g., error handling code)

 No special support from OS is required implemented
through program (library, API calls)

Chapter8 Memory Management

Dynamic Loading Example in C
 dlopen(): opens a library and prepares it for use
 desym(): looks up the value of a symbol in a given

(opened) library.
 dlclose(): closes a DL library

Operating System Concepts – NTHU LSA Lab 13

#include <dlfcn.h>
int main() {
 double (*cosine)(double);
 void* handle = dlopen ("/lib/libm.so.6", RTLD_LAZY);
 cosine = dlsym(handle, "cos");
 printf ("%f\n", (*cosine)(2.0));
 dlclose(handle);
}

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 14

Dynamic Loading

Function A() {
 B();
}

Function B() {
 C();
}

Function C() {
 …….;
}

Disk image

Function A()

Init

Function A()

Function B()

After B() called

Function A()

Function B()

Function C()

After C() called

Function A()

Function B()

After C() ends
Memory content

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 15

Static Linking
 Static linking: libraries are combined

by the loader into the program in-
memory image
Waste memory: duplicated code
 Faster during execution time

*Static linking + Dynamic loading
 Still can’t prevent duplicated code

main ()

Libc.lib

 Program A
main ()

Libc.lib

 Program B
main ()

Libc.lib

 Program C

main ()

Libc.lib

main ()

Libc.lib

main ()

Libc.lib

 Memory

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 16

Dynamic Linking
 Dynamic linking: Linking postponed

until execution time
Only one code copy in memory and

shared by everyone
A stub is included in the program in-

memory image for each lib reference
 Stub call  check if the referred lib is

in memory  if not, load the lib
  execute the lib
DLL (Dynamic link library) on Windows

main ()

main ()

main ()

Libc.lib

 Memory

stub

stub

stub

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 17

Review Slides (1)

 3 types of address binding?
 compile-time
 load-time
 execution-time

 logical address? physical address?
 virtual  physical mapping?

 dynamic loading? static loading?
 dynamic linking? static linking?

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 18

Outline
 How to refer memory in a program?
 address binding

 How to load a program into memory ?
 static/dynamic loading and linking

 How to move a program between mem. & disk?
 swap

 How to allocate memory?
 paging, segment

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 19

Swapping

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 20

Swapping
 A process can be swapped out of memory to a

backing store, and later brought back into
memory for continuous execution
Also used by midterm scheduling, different from

context switch
 Backing store – a chunk of disk, separated from

file system, to provide direct access to these
memory images

 Why Swap a process:
 Free up memory
 Roll out, roll in: swap lower-priority process with a

higher one

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 21

Swapping (cont’d)
 Swap back memory location
 If binding is done at compile/load time
  swap back memory address must be the same
 If binding is done at execution time
  swap back memory address can be different

 A process to be swapped == must be idle
 Imagine a process that is waiting for I/O is swapped
 Solutions:

Never swap a process with pending I/O
I/O operations are done through OS buffers (i.e. a
memory space not belongs to any user processes)

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 22

Process Swapping to Backing Store
 Major part of swap time is transfer time; total

transfer time is directly proportional to the
amount of memory swapped

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 23

Contiguous Memory
Allocation

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 24

Memory Allocation

 Fixed-partition allocation:
 Each process loads into one partition of fixed-size
Degree of multi-programming is bounded by the

number of partitions

 Variable-size partition
Hole: block of contiguous free memory
Holes of various size are scattered in memory

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 25

Multiple Partition (Variable-Size) Method
 When a process arrives, it is allocated a hole large

enough to accommodate it
 The OS maintains info. on each in-use and free hole
 A freed hole can be merged with another hole to

form a larger hole

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 26

Dynamic Storage Allocation Problem
 How to satisfy a request of size n from a list of

free holes
 First-fit – allocate the 1st hole that fits
 Best-fit – allocate the smallest hole that fits
Must search through the whole list

 Worst-fit – allocate the largest hole
Must also search through the whole list

 First-fit and best-fit better than worst-fit in
terms of speed and storage utilization

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 27

Fragmentation
 External fragmentation

 Total free memory space is big enough to
satisfy a request, but is not contiguous

 Occur in variable-size allocation
 Internal fragmentation

 Memory that is internal to a partition
 but is not being used
 Occur in fixed-partition allocation

 Solution: compaction
 Shuffle the memory contents to place all

free memory together in one large block
 at execution time
 Only if binding is done at execution time

P2

OS

P1

0

300

600
700

900
1000

External
0

250

500

750

1000

OS

P2

P1

P3

Internal

Compaction

P2

OS

P1

0

300

800
900

1000

簡報者
簡報註解
Fixed also

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 28

Review Slides (2)

 Swapping?
 Contiguous memory allocation?
fixed-size memory allocation?
variable-size memory allocation?

first-fit, best-fit, worst-fit?

 External & internal fragmentation?
compaction?

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 29

Non-Contiguous Memory
Allocation — Paging

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 30

Paging Concept
 Method:

 Divide physical memory into fixed-sized blocks called frames
 Divide logical address space into blocks of the same size called

pages
 To run a program of n pages, need to find n free frames and

load the program
 keep track of free frames
 Set up a page table to translate logical to physical addresses

 Benefit:
 Allow the physical-address space of a process to be

noncontiguous
 Avoid external fragmentation
 Limited internal fragmentation
 Provide shared memory/pages

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 31

Paging Example
 Page table:
 Each entry maps to the base address of a page in

physical memory
A structure maintained by OS for each process

Page table includes only pages owned by a process
A process cannot access memory outside its space

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 32

Address Translation Scheme
 Logical address is divided into two parts:
 Page number (p)

used as an index into a page table which contains base
address of each page in physical memory
N bits means a process can allocate at most 2N pages
  2N x page size memory size

 Page offset (d)
combined with base address to define the physical
memory address that is sent to the memory unit
N bits means the page size is 2N

 Physical addr = page base addr + page offset

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 33

Address Translation Architecture

MMU

 If Page size is 1KB(2^10) & Page 2 maps to frame 5
 Given 13 bits logical address: (p=2,d=20),
 what is physical addr.?

 5*(1KB)+20 =1,010,000,000,000+0,000,010,100
 =1,010,000,010,100

Chapter8 Memory Management

Address Translation
 Total number of pages does not need to be the same as

the total number of frames
 Total # pages determines the logical memory size of a process
 Total # frames depending on the size of physical memory

 E.g.: Given 32 bits logical address, 36 bits physical
address and 4KB page size, what does it mean?
 Page table size: 232 / 212 = 220 entries
 Max program memory: 232 = 4GB
 Total physical memory size: 236 = 64GB
 Number of bits for page number: 220 pages  20bits
 Number of bits for frame number: 224 frames  24bits
 Number of bits for page offset: 4KB page size = 212 bytes 12

Operating System Concepts – NTHU LSA Lab 34

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 35

Free Frames

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 36

Page / Frame Size
 The page (frame) size is defined by hardware
 Typically a power of 2
 Ranging from 512 bytes to 16MB / page
 4KB / 8KB page is commonly used

 Internal fragmentation?
 Larger page size  More space waste

 But page sizes have grown over time
memory, process, data sets have become larger
 better I/O performance (during page fault)
 page table is smaller

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 37

Paging Summary
 Paging helps separate user’s view of memory and the

actual physical memory
 User view’s memory: one single contiguous space

 Actually, user’s memory is scatter out in physical memory

 OS maintains a copy of the page table for each process
 OS maintains a frame table for managing physical

memory
 One entry for each physical frame
 Indicate whether a frame is free or allocated
 If allocated, to which page of which process or processes

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 38

Implementation of Page Table
 Page table is kept in memory
 Page-table base register (PTBR)

 The physical memory address of the page table
 The PTBR value is stored in PCB (Process Control Block)
 Changing the value of PTBR during Context-switch

 With PTBR, each memory reference results in
 2 memory reads

 One for the page table and one for the real address

 The 2-access problem can be solved by
 Translation Look-aside Buffers (TLB) (HW) which is

implemented by Associative memory (HW)

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 39

Associative Memory
 All memory entries can be accessed at the same time

 Each entry corresponds to an associative register
 But number of entries are limited

 Typical number of entries: 64 ~ 1024

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 40

Translation Look-aside Buffer (TLB)
 A cache for page table shared by all processes
 TLB must be flushed after a context switch
Otherwise, TLB entry must has a PID field

(address-space identifiers (ASIDs))

MMU

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 41

Effective Memory-Access Time

 20 ns for TLB search
 100 ns for memory access
 Effective Memory-Access Time (EMAT)
 70% TLB hit-ratio:
 EMAT = 0.70 x (20 + 100) + (1-0.70) * (20+100+100) = 150 ns

 98% TLB hit-ratio
EMAT = 0.98 x 120 + 0.02 x 220 = 122 ns

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 42

Review Slides (3)
 memory frame? page? typical page size?
 page table? virtual  physical translation?
 What is PTBR register? When to update it?
 Memory reads # for each reference?
 HW support for paging speed?
 associative memory
 TLB

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 43

Memory Protection
 Each page is associated with a set of protection

bit in the page table
 E.g., a bit to define read/write/execution permission

 Common use: valid-invalid bit
Valid: the page/frame is in the process’ logical

address space, and is thus a legal page
 Invalid: the page/frame is not in the process’ logical

address space

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 44

Valid-Invalid Bit Example
 Potential issues:

 Un-used page entry cause memory waste  use page table
length register (PTLR)

 Process memory may NOT be on the boundary of a page 
memory limit register is still needed

12290
valid but illegal

10466
16383

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 45

Shared Pages
 Paging allows processes share common code, which

must be reentrant
 Reentrant code (pure code)
 It never change during execution
 text editors, compilers, web servers, etc

 Only one copy of the shared code needs to be kept in
physical memory

 Two (several) virtual addresses are mapped to one
physical address

 Process keeps a copy of its own private data and code

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 46

Shared Pages by Page Table
 Shared code must appear in the same location

in the logical address space of all processes

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 47

Page Table Memory Structure
 Page table could be huge and difficult to be loaded

 4GB (232) logical address space with 4KB (212) page
 1 million (220) page table entry
 Assume each entry need 4 bytes (32bits)
  Total size=4MB
 Need to break it into several smaller page tables, better

within a single page size (i.e. 4KB)
 Or reduce the total size of page table

 Solutions:
 Hierarchical Paging
 Hash Page Tables
 Inverted Page Table

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 48

Hierarchical Paging
 Break up the logical address space into multiple page

tables
 Paged the page table
 i.e. n-level page table

 Two-level paging (32-bit address with 4KB (212) page size)
 12-bit offset (d)  4KB (212) page size
 10-bit outer page number 1K (210) page table entries
 10-bit inner page number 1K (210) page table entries
 3 memory accesses

Chapter8 Memory Management

Two-Level Page Table Example

Operating System Concepts – NTHU LSA Lab 49

Level-1 Level-2

210

210

212

000100
001000

101100

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 50

Two-Level Address Translation

Chapter8 Memory Management

Two-Level Page Table Translation Example

51

010001001001

0000001000

0000010000

0000011000

0000100000

0000101000

0000110000

0000111000

0001000000

 23

entries

0010000000

0010100000

0011100000
. . .

1011100000
. . .

0000001000

0001000000

24

entries

Number of inner tables: 23

Number of pages: 24

25

Bytes

0000010000

0011100000
01001

0010

0000011000

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 52

64-bit Address
 How about 64-bit address? (assume each entry

needs 4Bytes)
 42 (p1) + 10 (p2) + 12 (offset)
 outer table requires 242 x 4B = 16TB contiguous memory!!!

 12 (p1)+10 (p2)+10 (p3)+10 (p4)+10 (p5)+12 (offset)
 outer table requires 212 x 4B = 16KB contiguous memory
 6 memory accesses!!!

 Examples:
 SPARC (32-bit) and Linux use 3-level paging
Motorola 68030 (32-bit) use 4-level paging

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 53

Hashed Page Table
 Commonly-used for address > 32 bits
 Virtual page number is hashed into a hash table
 The size of the hash table varies

 Larger hash table  smaller chains in each entry

 Each entry in the hashed table contains
 (Virtual Page Number, Frame Number, Next Pointer)
 Pointers waste memory
 Traverse linked list waste time &
 cause additional memory references

Hash function
f(p) = p%5

0
1
2
3
4

Buckets:

14

1001
7

59

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 54

Hashed Page Table Address Translation

Chapter8 Memory Management

Improved Hashed Page Table
Implementation

Operating System Concepts – NTHU LSA Lab 55

Buckets

Next Ptr

Page# Frame#

. .

. .

. .

0

1

2

3

.

.

.

.

N

0

.

.

M

Hash Array
(size of a single page)

Next Ptr

Page# Frame# 0

.

.

M

Hash Array
(size of a single page)

Source: M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page table for 64-bit
 address spaces. SIGOPS Oper. Syst. Rev. 29, 5 (December 1995), 184-200.
 http://pages.cs.wisc.edu/~markhill/papers/sosp95_pagetables.pdf

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 56

Inverted Page Table
 Maintains NO page table for each process
 Maintains a frame table for the whole memory

 One entry for each real frame of memory

 Each entry in the frame table has
 (PID, Page Number)

 Eliminate the memory needed for page tables but
increase memory access time
 Each access needs to search the whole frame table
 Solution: use hashing for the frame table

 Hard to support shared page/memory

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 57

Inverted Page Table Addr Translation

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 58

Review Slides (4)
 memory protection by page table?
 valid, invalid bits?

 page table memory structure?
 hierarchical  2-level, 3-level, etc
 hash table  linked list
 inverted page table

 How are pages shared by different processes?

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 59

Non-Contiguous Memory
Allocation — Segmentation

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 60

Segmentation
 Memory-management

scheme that supports
user view of memory

 A program is a collection
of segments. A segment
is a logical unit such as:
 main program
 function, object
 local/global variables,
 stack, symbol table,
 arrays, etc…

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 61

Logical View of Segmentation

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 62

Segmentation Table
 Logical address: (seg#, offset)
Offset has the SAME length as physical addr.

 Segmentation table – maps two-dimensional
physical addresses; each table entry has:
 Base (4 bytes): the start physical addr
 Limit (4 bytes): the length of the segment

 Segment-table base register (STBR):
 the physical addr of the segmentation table

 Segment-table length register (STLR):
 the # of segments

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 63

Segmentation Hardware
 Limit register is used to check offset length
 MMU allocate memory by assigning an

appropriate base address for each segment
 Physical address cannot overlap between segments

Seg0

Seg1

Seg2

base

d

10000 01000

00100
01100

Chapter8 Memory Management

Address Translation Comparison
 Segment

 Table entry: (segment base addr. , limit)
 Segment base addr. can be arbitrary
 The length of “offset” is the same as the physical memory size

 Page:
 Table entry: (frame base addr.)
 Frame base addr. = frame number * page size
 The length of “offset” is the same as page size

Operating System Concepts – NTHU LSA Lab 64

Seg0

Seg1

Seg2

base

d

10000 01000

00100
01100

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 65

Example of Segmentation

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 66

Sharing of Segments

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 67

Protection & Sharing
 Protection bits associated with segments
 Read-only segment (code)
 Read-write segments (data, heap, stack)

 Code sharing occurs at segment level
 Shared memory communication
 Shared library

 Share segment by having same base in
two segment tables

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 68

Segmentation with
Paging

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 69

Basic Concept

Segments Pages

Page/
Frame

Process

logical address physical address

 Apply segmentation in logical address space
 Apply paging in physical address space

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 70

Address Translation
 CPU generates logical address
Given to segmentation unit
 produces linear addresses
 Linear address given to paging unit
 generates physical address in main memory

 Segmentation and paging units form
equivalent of MMU

(seg0,20) (x100020) (x500020)

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 71

Example: The Intel Pentium
 Logical-address space is divided into 2 partitions:

 1st: 8K(213) segments (private), local descriptor table (LDT)
 2nd: 8K(213) segments (shared), global descriptor table (GDT)

 Logical address:
 max # of segments per process =

 size of a segment

segment number
13 1 2

GDT/LDT protection info

selector
16 32

offset

214 = 16K
≤ 232 = 4GB

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 72

Intel Pentium Segmentation
 Segment descriptor

 Segment base address and length
 Access right and privileged level

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 73

Intel Pentium Paging (Two-Level)
 Page size can be either 4KB or 4MB
 Each page directory entry has a flag for indication

Outer page table

4kB

4MB

0
1

Chapter8 Memory Management

000110110
010110110
001110110
000110110
100110110
100000100
010110110
000010110

4
1
3
0
5
2
8

7

…

010001001000

001011110

Example Question
 Let the physical mem size is 512B, the page size is 32B and the

logical address of a program can have 8 segments. Given a 12
bits hexadecimal logical address “448”, translate the addr.
With blow page and segment tables.

 linear addr:010111110, phy addr:001011110

Seg#
010111110

Seg offset page offset

page#

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 75

Review Slides (5)
 Segmentation vs. Paging?

 Paged segmentation?

Paging segmentation
Length Fixed Varied
Fragmentation Internal External

Table entry Page number  frame
number

Seg ID  (base addr,
limit length)

View Physical memory User program

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 76

Reading Material & HW
 Chap 8
 Problem Set:

 8.1, 8.3, 8.4, 8.5, 8.12, 8.15, 8.16, 8.20, 8.23
 Interesting Reading:

 M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page
table for 64-bit address spaces. SIGOPS Oper. Syst. Rev. 29,
5 (December 1995), 184-200.

 http://pages.cs.wisc.edu/~markhill/papers/sosp95_pageta
bles.pdf

	Operating System:�Chap8 Memory Management
	Overview
	Background
	Outline
	Multistep Processing of a User Program
	Address Binding – Compile Time
	Address Binding – Load Time
	Address Binding – Execution Time
	Memory-Management Unit (MMU)
	Logical vs. Physical Address
	Outline
	Dynamic Loading
	Dynamic Loading Example in C
	Dynamic Loading
	Static Linking
	Dynamic Linking
	Review Slides (1)
	Outline
	Swapping
	Swapping
	Swapping (cont’d)
	Process Swapping to Backing Store
	Contiguous Memory Allocation
	Memory Allocation
	Multiple Partition (Variable-Size) Method
	Dynamic Storage Allocation Problem
	Fragmentation
	Review Slides (2)
	Non-Contiguous Memory Allocation — Paging
	Paging Concept
	Paging Example
	Address Translation Scheme
	Address Translation Architecture
	Address Translation
	Free Frames
	Page / Frame Size
	Paging Summary
	Implementation of Page Table
	Associative Memory
	Translation Look-aside Buffer (TLB)
	Effective Memory-Access Time
	Review Slides (3)
	Memory Protection
	Valid-Invalid Bit Example
	Shared Pages
	Shared Pages by Page Table
	Page Table Memory Structure
	Hierarchical Paging
	Two-Level Page Table Example
	Two-Level Address Translation
	Two-Level Page Table Translation Example
	64-bit Address
	Hashed Page Table
	Hashed Page Table Address Translation
	Improved Hashed Page Table Implementation
	Inverted Page Table
	Inverted Page Table Addr Translation
	Review Slides (4)
	Non-Contiguous Memory Allocation — Segmentation
	Segmentation
	Logical View of Segmentation
	Segmentation Table
	Segmentation Hardware
	Address Translation Comparison
	Example of Segmentation
	Sharing of Segments
	Protection & Sharing
	Segmentation with Paging
	Basic Concept
	Address Translation
	Example: The Intel Pentium
	Intel Pentium Segmentation
	Intel Pentium Paging (Two-Level)
	Example Question
	Review Slides (5)
	Reading Material & HW

