Operating System:

Chap8 Memory
Management

National Tsing-Hua University
2016, Fall Semester



o
-
Overview
m Background
B Swapping
m Contiguous Allocation
m Paging
B Segmentation

m Segmentation with Paging

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



"
Background

m Main memory and registers are the only storage
CPU can access directly

m Collection of processes are waiting on disk to be
brought into memory and be executed

m Multiple programs are brought into memory to
improve resource utilization and response time
to users

m A process may be moved between disk and
memory during its execution

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 3



"

Outline

m How to refer memory in a program?
> address binding

m How to load a program into memory ?
> static/dynamic loading and linking

m How to move a program between mem. & disk?

> swap

m How to allocate memory?
> paging, segment

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 4



" A
Multistep Processing of a User Program

SOoOUrnCe
[slgeTe[F=Tag!

cormpiler or

e

other
object
rmocdules

v rmaErmical iy
loadaed
swywsterm

library
exaocution

A rmaErmic i -
ﬁ limbing tirme (run

tirme)

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



"
Address Binding — Compile Time

m Program is written as symbolic code

m Compiler translates symbolic code into absolute code
m If starting location changes =2 recompile
m Example: MS-DOS .COM format binary

Compilem

int data;

main( ) {
data=3* 7,
print(data);

}

Source Program

Chapter8 Memory Management

START
PUSH
MOVE
MULT
MOVE
CALL
POP
.END

moad

.BASE 0x1000

AX 0x1000
AX, 3

AX, 7

(0x1018), AX

print, (0x1018)  ox1010

AX
0x1018

.SPACE (4)

Disk Image

Operating System Concepts — NTHU LSA Lab

PUSH AX
MOVE AX, 3
MULT AX, 7

MOVE  (0x1018), AX
CALL  print, (0x1018)
POP  AX

Memory Content




"

Address Binding — Load Time

m Compiler translates symbolic code into relocatable code

m Relocatable code:

> Machine language that can be run from any memory location
m If starting location changes =2 reload the code

Compilem

int data; START
main( ) { PUSH  AX
data=3*7; MOVE AX, 3
print(data); MULT  AX, 7
) MOVE  (.BS+0x18), AX
CALL  print, (BS+0x18)
POP AX
.END
.SPACE (4)

Source Program Disk Image

moad

0x2000 | PUSH  AX

MOVE AX,3

MULT  AX, 7

MOVE  (0x2018), AX
0x2010 | CALL print, (0x2018)

POP AX
0x2018

Memory Content

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 7



"

Address Binding — Execution Time

m Compiler translates symbolic code into logical-address
(i.e. virtual-address) code

m Special hardware (i.e. MMU) is needed for this scheme
m Most general-purpose OS use this method

Compilem

int data,;
main( ) {

data=3*7;
print(data);

}

Source Program

Chapter8 Memory Management

START
PUSH AX
MOVE AX, 3
MULT  AX,7
MOVE  (0x18), AX
CALL print, (0x18)
POP AX
.EEND
SPACE (4)

Disk Image

Physical {d'dr.

QOB‘CI

0x2000 | PUSH  AX
MOVE  AX, 3 Virtual addr.
MULT AX, 7/

MOVE  (0x18), AX
0x2010 | CALL print, (0x18)

POP AX
0x2018

Memory Content

Operating System Concepts — NTHU LSA Lab 8



" A
Memory-Management Unit (MMU)

m Hardware device that maps virtual to physical address

m The value in the relocation register is added to every
address generated by a user process at the time it is
sent to memory

relocation
register

14000
logical physical

address address
CcCPU + - memory
346 14346

MMU

Chapter8 Mem 9




"
Logical vs. Physical Address

m Logical address — generated by CPU
> a.k.a. virtual address

m Physical address — seen by the memory
module

m compile-time & load-time address binding
> logical addr = physical addr

m Execution-time address binding

> logical addr # physical addr

m The user program deals with logical addresses; it
never sees the real physical addresses

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 10



"

Outline

]
>

m How to load a program into memory ?
> static/dynamic loading and linking

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

11



"
Dynamic Loading

m The entire program must be in memory for it to
execute?
m No, we can use dynamic-loading
> A routine is loaded into memory when it is called
m Better memory-space utilization

> unused routine is never loaded

> Particularly useful when large amounts of code are
infrequently used (e.g., error handling code)

m No special support from OS is required implemented
through program (library, API calls)

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 12



" A
Dynamic Loading Example in C

m dlopen(): opens a library and prepares it for use

m desym(): looks up the value of a symbol in a given
(opened) library.

m dlclose(): closes a DL library

#include <dlfcn.h>
int main() {
double (*cosine)(double);
void* handle = dlopen ("/lib/libm.so.6", RTLD LAZY);
cosine = dlsym(handle, "cos");
printf ("%f\n", (*cosine)(2.0));
dlclose(handle);

)

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

13




"
Dynamic Loading

Disk image Memory content
Init After B() called After C() called After C() ends

Function C() {

Function C()

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



" A0
Static Linking

m Static linking: libraries are combined _ Memory

by the loader into the program in-
memory image

» Waste memory: duplicated code Libelib
> Faster during execution time

*Static linking + Dynamic loading -

> Still can’t prevent duplicated code -
Libc.lib
Program A Program B Program C
Libc.lib Libc.lib Libc.lib Libc.lib

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 15



"
Dynamic Linking
m Dynamic linking: Linking postponed
until execution time

> Only one code copy in memory and
shared by everyone

> A stub is included in the program in-
memory image for each lib reference

» Stub call = check if the referred lib is
in memory =@ if not, load the lib

=>» execute the lib
> DLL (Dynamic link library) on Windows

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

Memory

main ()

stub =

Libc.lib R

16



"
Review Slides ( 1)

m 3 types of address binding?
> compile-time
> load-time
> execution-time
m |logical address? physical address?
> virtual = physical mapping?
m dynamic loading? static loading?

m dynamic linking? static linking?

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

17



" A
Outline

>

m How to move a program between mem. & disk?
> swap

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 18



"

Swapping

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

19



"
Swapping

m A process can be swapped out of memory to a
backing store, and later brought back into
memory for continuous execution

> Also used by midterm scheduling, different from
context switch

m Backing store — a chunk of disk, separated from
file system, to provide direct access to these
memory images

m Why Swap a process:

> Free up memory

> Roll out, roll in: swap lower-priority process with a
higher one

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 20



"
Swapping (cont’d)

m Swap back memory location
> If binding is done at compile/load time
=» swap back memory address must be the same
> If binding is done at execution time
=» swap back memory address can be different

m A process to be swapped == must be idle
> Imagine a process that is waiting for I/O is swapped

> Solutions:
+ Never swap a process with pending 1/0

+ /O operations are done through OS buffers (i.e. a
memory space not belongs to any user processes)

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 21



" JE
Process Swapping to Backing Store
m Major part of swap time is transfer time; total

transfer time is directly proportional to the
amount of memory swapped

operating
system

@ swap out

@ swap in

backing store

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 22



"

Contiguous Memory
Allocation

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

23



"

Memory Allocation

m Fixed-partition allocation:
> Each process loads into one partition of fixed-size

> Degree of multi-programming is bounded by the
number of partitions

m Variable-size partition
> Hole: block of contiguous free memory
> Holes of various size are scattered in memory

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 24



Multiple Partition (Variable-Size) Method

m When a process arrives, it is allocated a hole large
enough to accommodate it

m The OS maintains info. on each in-use and free hole

m A freed hole can be merged with another hole to
form a larger hole

OS

process 5

process 8

process 2

—

Chapter8 Memory Management

OS

process 5

process 2

Operating System Concepts — NTHU LSA Lab

—

OS

OS

process 5

process 5

process 9

process 9

process 10

process 2

process 2

25



"

Dynamic Storage Allocation Problem

m How to satisfy a request of size n from a list of

free holes
m First-fit — allocate the 1st hole that fits

m Best-fit — allocate the smallest hole that fits
> Must search through the whole list

m Worst-fit — allocate the largest hole
> Must also search through the whole list
m First-fit and best-fit better than worst-fit in
terms of speed and storage utilization

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

26



ERE
Fragmentation
m External fragmentation

> Total free memory space is big enough to g Extemna 0 Internal
satisfy a request, but is not contiguous 0S 0S
» Occur in variable-size allocation 300 250 En
m /nternal fragmentation 388 51 | 200
> Memory that is internal to a partition 250
but is not being used 900 -
> Occur in fixed-partition allocation 1000 1000+ = = =
m Solution: compaction Compaction
» Shuffle the memory contents to place all 0 oS
free memory together in one large block 300
at execution time
> Only if binding is done at execution time 800
900 Pl

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

1000

27


簡報者
簡報註解
Fixed also


"
Review Slides ( 2 )
m Swapping?
m Contiguous memory allocation?

> fixed-size memory allocation?

> variable-size memory allocation?
¢ first-fit, best-fit, worst-fit?

m External & internal fragmentation?

»>compaction?

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

28



" SN

Non-Contiguous Memory
Allocation — Paging

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

29



"
Paging Concept
m Method:

> Divide physical memory into fixed-sized blocks called frames

> Divide logical address space into blocks of the same size called
pages

> To run a program of n pages, need to find n free frames and
load the program

> keep track of free frames
> Set up a page table to translate logical to physical addresses

m Benefit:

> Allow the physical-address space of a process to be
noncontiguous

> Avoid external fragmentation
> Limited internal fragmentation
> Provide shared memory/pages

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 30



" A
Paging Example
m Page table:

> Each entry maps to the base address of a page in
physical memory

> A structure maintained by OS for each process
¢ Page table includes only pages owned by a process
¢ A process cannot access memory outside its space

I\>

O
1
=2

Ppage tam\

Ppage 3

physical
aat=laslelg




"

Address Translation Scheme

m Logical address is divided into two parts:
> Page number (p)

¢ used as an index into a page table which contains base
address of each page in physical memory

+ N bits means a process can allocate at most 2N pages
=>» 2N x page size memory size
> Page offset (d)

¢+ combined with base address to define the physical
memory address that is sent to the memory unit

¢ N bits means the page size is 2N

m Physical addr = page base addr + page offset

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 32



Address Translation Architecture

m |f Page size is 1KB(2210) & Page 2 maps to frame 5
m Given 13 bits logical address: (p=2,d=20),

what is physical addr.?

> 5*(1KB)+20=1,010,000,000,000+0,000,010,100

=1,010,000,010,100

.................................................................... f
MMU : }
logical physicai
address address fOO00 . . . 0000
E | vy
cPu = p | d | [+ a =
................................................................... f1 1 1 1 — 1 1 1 1
P
e f
_ physical
memory

page table

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

33



'_
Address Translation

m Total number of pages does not need to be the same as
the total number of frames

> Total # pages determines the logical memory size of a process
> Total # frames depending on the size of physical memory

m E.g.: Given 32 bits logical address, 36 bits physical
address and 4KB page size, what does it mean?
> Page table size: 232 / 212 = 220 entries
> Max program memory: 232 = 4GB
> Total physical memory size: 23 = 64GB
> Number of bits for page number: 22° pages = 20bits
> Number of bits for frame number: 224 frames = 24bits
> Number of bits for page offset: 4KB page size = 2'? bytes=> 12

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 34



" A
Free Frames

free-frame list free-frame list
14 15
13 13

18
20 14
15

15

16

17

new process new process 18

14 19
13

18 20
20

Cnew-process page table ) 21

(b)

Before allocation After allocation

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



"
Page / Frame Size

m The page (frame) size is defined by hardware

> Typically a power of 2
> Ranging from 512 bytes to 16MMB / page
> 4KB / 8KB page is commonly used

m Internal fragmentation?
> Larger page size =» More space waste

m But page sizes have grown over time
> memory, process, data sets have become larger
> better |/O performance (during page fault)
> page table is smaller

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 36



"
Paging Summary

m Paging helps separate user’s view of memory and the
actual physical memory
m User view’s memory: one single contiguous space

> Actually, user’s memory is scatter out in physical memory
m OS maintains a copy of the page table for each process

m OS maintains a frame table for managing physical
memory
> One entry for each physical frame
> Indicate whether a frame is free or allocated
> If allocated, to which page of which process or processes

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 37



"
Implementation of Page Table

m Page table is kept in memory

m Page-table base register (PTBR)
> The physical memory address of the page table
> The PTBR value is stored in PCB (Process Control Block)
> Changing the value of PTBR during Context-switch

m With PTBR, each memory reference results in

2 memory reads

> One for the page table and one for the real address

m The 2-access problem can be solved by

> Translation Look-aside Buffers (TLB) (HW) which is

implemented by Associative memory (HW)
Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 38



Associative Memory

m All memory entries can be accessed at the same time
> Each entry corresponds to an associative register
m But number of entries are limited

> Typical number of entries: 64 ~ 1024
B Associative memory — parallel search

Page #

Frame #

Address translation (A", A™)

+ If A" is in associative register, get frame # out.
+ Otherwise get frame # from page table in memory

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

39



" A
Translation Look-aside Buffer (TLB)

m A cache for page table shared by all processes

m TLB must be flushed after a context switch

> Otherwise, TLB entry must has a PID field
(address-space identifiers (ASIDs) )

f

Chapter8 Me

page table 40



"

Effective Memory-Access Time

m 20 ns for TLB search

m 100 ns for memory access

m Effective Memory-Access Time (EMAT)

> 70% TLB hit-ratio:
EMAT = 0.70 x (20 + 100) + (1-0.70) * (20+100+100) = 150 ns

> 98% TLB hit-ratio
EMAT =0.98x120+0.02x220=122ns

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 41



o
-«

Review Slides ( 3)
B memory frame? page? typical page size?
m page table? virtual = physical translation?
m What is PTBR register? When to update it?
m Memory reads # for each reference?
m HW support for paging speed?

> associative memory
> TLB

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

42



"

Memory Protection

m Each page is associated with a set of protection
bit in the page table

> E.g., a bit to define read/write/execution permission

m Common use: valid-invalid bit

> Valid: the page/frame is in the process’ logical
address space, and is thus a legal page

> Invalid: the page/frame is not in the process’ logical
address space

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 43



" A
Valid-Invalid Bit Example

m Potential issues:

> Un-used page entry cause memory waste =» use page table
length register (PTLR)

> Process memory may NOT be on the boundary of a page =
memory limit register is still needed

lalalelale]

frame Nnumber

walid —inwvalid bit

page O " vy 3
o 2 W

[E==te 1| = w 4

page 2 =2 .} A =
= i W

page 3 L3 a A% (=3
5 2 W

page 4 (5] Q i -
ra (&) i

page S =

page table

12,287

12290—
valid but illegal

page O

Ppage 1

page =2

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

10466
16383

44



"
Shared Pages

m Paging allows processes share common code, which
must be reentrant

m Reentrant code (pure code)
> It never change during execution
> text editors, compilers, web servers, etc

m Only one copy of the shared code needs to be kept in
physical memory

m Two (several) virtual addresses are mapped to one
physical address

m Process keeps a copy of its own private data and code

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 45



" A
Shared Pages by Page Table

m Shared code must appear in the same location

in the logical address space of all processes

)

)

Chapter8 Memory Management

page table
for F’1

page table
for Py

ed 1

ed 2

ed3

data 2

)

process .iD2

page table
for P,

Operating System Concepts — NTHU LSA Lab

46



"
Page Table Memory Structure

m Page table could be huge and difficult to be loaded
> 4GB (23?) logical address space with 4KB (212) page
=21 million (22°) page table entry
> Assume each entry need 4 bytes (32bits)
=>» Total size=4MB
> Need to break it into several smaller page tables, better
within a single page size (i.e. 4KB)
> Or reduce the total size of page table
m Solutions:
> Hierarchical Paging
> Hash Page Tables
> Inverted Page Table

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 47



"
Hierarchical Paging

m Break up the logical address space into multiple page
tables
> Paged the page table
> i.e. n-level page table

m Two-level paging (32-bit address with 4KB (212) page size)
> 12-bit offset (d) = 4KB (21?) page size
> 10-bit outer page number = 1K (2°) page table entries
> 10-bit inner page number=> 1K (21°) page table entries

» 3 memory accesses page number page offset
Pi ‘ P2 d
10 10 12

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 48



" A
Two-Level Page Table Example

page number page offset
. | b, d Level-1 Level-2
10 10 12
000100
001000
210-4

101100

outer-page
table

900

page of
page table

page table

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 49



" A
Two-Level Address Translation

logical address
Py | Py | d

outer-page
table

page of
page table

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 50



" A
Two-Level Page Table Translation Example

—> 0000001000
Q10001001001 Bytes
000010000
0000001000
0000010000
> | 0000011000 > 0000011000
0000100000 0010000000
3
2° < 0010100000 || 2910
entries 0000101000
24 0011100000
0000110000 -
entries )
3001110000
0000111000 .| T>0011100000— F 01001
0001000000 1011100000
3 000100000
Number of inner tables: 23
Number of pages: 24
Chapter8 Memory Management 51




'_
64-bit Address

m How about 64-bit address? (assume each entry
needs 4Bytes)
> 42 (pl) + 10 (p2) + 12 (offset)

=>» outer table requires 2#?x 4B = 16TB contiguous memory!!!

> 12 (p1)+10 (p2)+10 (p3)+10 (p4)+10 (p5)+12 (offset)
=>» outer table requires 212 x 4B = 16KB contiguous memory
=2 6 memory accesses!!!

m Examples:
> SPARC (32-bit) and Linux use 3-level paging
> Motorola 68030 (32-bit) use 4-level paging

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 52



" A
Hashed Page Table

m Commonly-used for address > 32 bits

m Virtual page number is hashed into a hash table

m The size of the hash table varies

> Larger hash table =» smaller chains in each entry

m Each entry in the hashed table contains

> (Virtual Page Number, Frame Number, Next Pointer)

> Pointers waste memory Buckets:

> Traverse linked list waste time &

0

1001

cause additional memory references

Hash function

f(p) = p%5

HIWIN(PF

14

99

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

53



" A
Hashed Page Table Address Translation

logical address

Chapter8 Memory Management

v

physical
address

d

—b

—-Iq|5|’T|_T|p|r|

hash table

Operating System Concepts — NTHU LSA Lab

physical
memory

54



" A
Improved Hashed Page Table

Implementation
Buckets | Hash.Array | Hash_Array

(size of a single page) (size of a single page)

0 > | Next Ptr > | Next Ptr

1 0 | Page# | Frame# 0 Page# | Frame#

2

3
M M

N

Source: M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page table for 64-bit
address spaces. SIGOPS Oper. Syst. Rev. 29, 5 (December 1995), 184-200.
http://pages.cs.wisc.edu/~markhill/papers/sosp95 pagetables.pdf

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 55



"
Inverted Page Table

m Maintains NO page table for each process
m Maintains a frame table for the whole memory

> One entry for each real frame of memory
m Each entry in the frame table has
> (PID, Page Number)

m Eliminate the memory needed for page tables but
Increase memory access time

> Each access needs to search the whole frame table
> Solution: use hashing for the frame table

m Hard to support shared page/memory

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 56



" A
Inverted Page Table Addr Translation

logical
address

physical
address > ph:.'.f5|ca|
memory

d

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



"
Review Slides ( 4 )

B memory protection by page table?
> valid, invalid bits?

m page table memory structure?

> hierarchical = 2-level, 3-level, etc
> hash table =@ linked list
> inverted page table

m How are pages shared by different processes?

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 58



" JEE———

Non-Contiguous Memory
Allocation — Segmentation

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

59



" A
Segmentation

B Memory-management
scheme that supports
user view of memory

m A program is a collection
of segments. A segment
is a logical unit such as:

> main program

> function, object

> local/global variables,
> stack, symbol table,
> arrays, etc...

subroutine

main
program

logical address space

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

60



" J
Logical View of Segmentation

user space physical memory space

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

61



"

Segmentation Table

m Logical address: (seg#, offset)
> Offset has the SAME length as physical addr.
m Segmentation table — maps two-dimensional
physical addresses; each table entry has:
> Base (4 bytes): the start physical addr
> Limit (4 bytes): the length of the segment
m Segment-table base register (STBR):
> the physical addr of the segmentation table

m Segment-table length register (STLR):
> the # of segments

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 62



Segmentation Hardware

m Limit register is used to check offset length

m MMU allocate memory by assigning an
appropriate base address for each segment

> Physical address cannot overlap between segments

limit | base
10000 _101000
Seg0
*able | base,
CPU —>| s | d | \
d
ves Seqgl
00100
no 01100
Seg2

trap; addressing error

physical memory
Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

63



Address Translation Comparison

B Segment

> Table entry: (segment base addr., limit )

> Segment base addr. can be arbitrary

> The length of “offset” is the same as the physical memory size
m Page:

> Table entry: (frame base addr.)

> Frame base addr. = frame number * page size

> The length of “offset” is the same as page size

=

10000 01000 Saa0
segment ~
cPU =l T a ] table base\
Segl
Seg2

trap; addressing error physical memory

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 64




Example of Segmentation

subroutine stack

segment 3

syrmbol
table

segment O

lirmit base

Sgrt segment 4

main
program

segment 2

logical address space

1000 1400
400 | 6300
400 | 4300

1100 | 3200

1000 | 4700

segment table

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

segment 3

segment 2

segment 4

65



Sharing of Segments

segrment O

data 1

lirmit

base

segmeant 1

logical rmearmicry
process M

segrment O

52868
-

A3062
8348

data 2

segment table
process P

aditor

lirmit

bhase

segment 1

_,_o—'_'_'-'-'-

—

logical marmiery
process ~,

Chapter8 Memory Management

25286
aas0

43062
L0003

saegment table
process P,

Operating System Concepts — NTHU LSA Lab

phywsical meamory:

66




"
Protection & Sharing

m Protection bits associated with segments

> Read-only segment (code)
> Read-write segments (data, heap, stack)

m Code sharing occurs at segment level

> Shared memory communication

> Shared library

m Share segment by having same base in
two segment tables

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 67



"

Segmentation with
Paging

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab



" A
Basic Concept

m Apply segmentation in logical address space
m Apply paging in physical address space

Process Segments Pages

Page/
Frame

logical address hysical address
Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 69



"

Address Translation

m CPU generates logical address

> Glven to segmentation unit
=» produces linear addresses
> Linear address given to paging unit

equivalent of MMU

=>»generates physical address in main memory
m Segmentation and paging units form

Chapter8 Memory Management

Operating System Concepts — NTHU LSA Lab

logical linear physical
CPU address } segmentation | address } paging | address | physical
unit unit memory
(seg0,20) (x100020) (x500020)

70




" A
Example: The Intel Pentium

m lLogical-address space is divided into 2 partitions:

> 1st: 8K(213) segments (private), local descriptor table (LDT)

> 2nd: 8K(213) segments (shared), global descriptor table (GDT)
m Logical address:

> max # of segments per process = 214 = 16K
> size of a segment < 232 = 4GB

selector offset

/ -~ -

—_—
—
~~

r segment number | GDT/LDT | protection imgl
13 1 2

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 71




" A0
Intel Pentium Segmentation

m Segment descriptor
> Segment base address and length
> Access right and privileged level

logical address selector offset

descriptor table

—» segment descriptor

32-bit linear address

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab

(2




Intel Pentium Paging (Two-Level)

m Page size can be either 4KB or 4MB

> Each page directory entry has a flag for indication

(logical address)

Chapter8 Memory Management

4kB | page directory | page table | offset |
31 22 21 12 11 O
page 4-KB
table page
Quter page table
ez, O
irectory
r 3 4-MB
page
| T
4MB | page directory | offset |
31 22 21 O
Operating System Concepts — NTHU LSA Lab

73



Example Question

m Let the physical mem size is 512B, the page size is 32B and the
logical address of a program can have 8 segments. Given a 12
bits hexadecimal logical address “448”, translate the addr.
With blow page and segment tables.

m linear addr:010111110, phy addr:001011110
page offset

010001001000  geq offset

000110110

Seg# 010110110

— | 001110110

000110110
100110110
100000100
010110110

000010110

Chapter8 Memory Management

|

—010111110

page#

\4
—(001011110

OINOTIOW|F |~

\l




" A
Review Slides ( 5 )

B Segmentation vs. Paging?

Paging segmentation
Length Fixed Varied
Fragmentation | Internal External

Table entry Page number = frame Seg ID = (base addr,
number limit length)
View Physical memory User program

m Paged segmentation?

Chapter8 Memory Management

Operating System Concepts — NTHU LSA Lab 75




"
Reading Material & HW

m Chap 8

m Problem Set:
> 8.1, 8.3, 8.4, 8.5, 812, 8.15, 8.16, 8.20, 8.23

m Interesting Reading:

> M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page
table for 64-bit address spaces. SIGOPS Oper. Syst. Rev. 29,
5 (December 1995), 184-200.

> http://pages.cs.wisc.edu/~markhill/papers/sosp95 pageta
bles.pdf

Chapter8 Memory Management Operating System Concepts — NTHU LSA Lab 76



	Operating System:�Chap8 Memory Management
	Overview
	Background
	Outline
	Multistep Processing of a User Program
	Address Binding – Compile Time
	Address Binding – Load Time
	Address Binding – Execution Time
	Memory-Management Unit (MMU)
	Logical vs. Physical Address
	Outline
	Dynamic Loading
	Dynamic Loading Example in C
	Dynamic Loading
	Static Linking
	Dynamic Linking
	Review Slides ( 1 )
	Outline
	Swapping
	Swapping
	Swapping (cont’d)
	Process Swapping to Backing Store
	Contiguous Memory Allocation
	Memory Allocation
	Multiple Partition (Variable-Size) Method
	Dynamic Storage Allocation Problem
	Fragmentation
	Review Slides ( 2 )
	Non-Contiguous Memory Allocation — Paging
	Paging Concept
	Paging Example
	Address Translation Scheme
	Address Translation Architecture
	Address Translation
	Free Frames
	Page / Frame Size
	Paging Summary
	Implementation of Page Table
	Associative Memory
	Translation Look-aside Buffer (TLB)
	Effective Memory-Access Time
	Review Slides ( 3 )
	Memory Protection
	Valid-Invalid Bit Example
	Shared Pages
	Shared Pages by Page Table
	Page Table Memory Structure
	Hierarchical Paging
	Two-Level Page Table Example
	Two-Level Address Translation 
	Two-Level Page Table Translation Example
	64-bit Address
	Hashed Page Table
	Hashed Page Table Address Translation
	Improved Hashed Page Table Implementation
	Inverted Page Table
	Inverted Page Table Addr Translation
	Review Slides ( 4 )
	Non-Contiguous Memory Allocation — Segmentation
	Segmentation
	Logical View of Segmentation
	Segmentation Table
	Segmentation Hardware
	Address Translation Comparison
	Example of Segmentation
	Sharing of Segments
	Protection & Sharing
	Segmentation with Paging
	Basic Concept
	Address Translation
	Example: The Intel Pentium
	Intel Pentium Segmentation
	Intel Pentium Paging (Two-Level)
	Example Question
	Review Slides ( 5 )
	Reading Material & HW

