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Overview 
 Background 
 Swapping 
 Contiguous Allocation 
 Paging 
 Segmentation 
 Segmentation with Paging 
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Background 
 Main memory and registers are the only storage 

CPU can access directly  
 Collection of processes are waiting on disk to be 

brought into memory and be executed 
 Multiple programs are brought into memory to 

improve resource utilization and response time 
to users 

 A process may be moved between disk and 
memory during its execution 
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Outline 
 How to refer memory in a program? 
 address binding 

 How to load a program into memory ? 
 static/dynamic loading and linking 

 How to move a program between mem. & disk? 
 swap 

 How to allocate memory? 
 paging, segment 
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Multistep Processing of a User Program 
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 Program is written as symbolic code 
 Compiler translates symbolic code into absolute code 
 If starting location changes  
 Example: MS-DOS .COM format binary 

int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.BASE  0x1000 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (0x1018), AX 
CALL print, (0x1018) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x1018), AX 
CALL print, (0x1018) 
POP AX 
 

0x1000 

0x1018 

0x1010 

Memory Content 

Address Binding – Compile Time 

Compile Load 

recompile 
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int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (.BS+0x18), AX 
CALL print, (.BS+0x18) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x2018), AX 
CALL print, (0x2018) 
POP AX 
 

0x2000 

0x2018 

0x2010 

Memory Content 

Address Binding – Load Time 
 Compiler translates symbolic code into relocatable code 
 Relocatable code: 

 Machine language that can be run from any memory location  
 If starting location changes  reload the code 

Compile Load 
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Address Binding – Execution Time 
 Compiler translates symbolic code into logical-address 

(i.e. virtual-address) code 
 Special hardware (i.e. MMU) is needed for this scheme 
 Most general-purpose OS use this method 

int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (0x18), AX 
CALL print, (0x18) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x18), AX 
CALL print, (0x18) 
POP AX 
 

0x2000 

0x2018 

0x2010 

Memory Content 

Compile Load 

Virtual addr. 

Physical addr. 
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Memory-Management Unit (MMU) 
 Hardware device that maps virtual to physical address 
 The value in the relocation register is added to every 

address generated by a user process at the time it is 
sent to memory 
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Logical vs. Physical Address 
 Logical address – generated by CPU 
a.k.a. virtual address 

 Physical address – seen by the memory 
module  

 compile-time & load-time address binding 
 logical addr = physical addr 

 Execution-time address binding 
 logical addr ≠ physical addr 

 The user program deals with logical addresses; it 
never sees the real physical addresses 
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Outline 
 How to refer memory in a program? 
 address binding 

 How to load a program into memory ? 
 static/dynamic loading and linking 

 How to move a program between mem. & disk? 
 swap 

 How to allocate memory? 
 paging, segment 
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Dynamic Loading 
 The entire program must be in memory for it to 

execute? 
 No, we can use dynamic-loading 

 A routine is loaded into memory when it is called 

 Better memory-space utilization 
 unused routine is never loaded 
 Particularly useful when large amounts of code are 

infrequently used (e.g., error handling code) 

 No special support from OS is required implemented 
through program (library, API calls) 
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Dynamic Loading Example in C 
 dlopen(): opens a library and prepares it for use 
 desym(): looks up the value of a symbol in a given 

(opened) library. 
 dlclose(): closes a DL library 
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#include <dlfcn.h> 
int main() { 
  double (*cosine)(double); 
  void* handle = dlopen ("/lib/libm.so.6", RTLD_LAZY); 
  cosine = dlsym(handle, "cos"); 
  printf ("%f\n", (*cosine)(2.0)); 
  dlclose(handle); 
} 
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Dynamic Loading 

Function A() { 
   B(); 
} 

Function B() { 
   C(); 
} 

Function C() { 
   …….; 
} 

Disk image 

 

Function A() 

Init 

Function A() 

Function B() 

After B() called 

Function A() 

Function B() 

Function C() 

After C() called 

Function A() 

Function B() 

After C() ends 
Memory content 
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Static Linking 
 Static linking: libraries are combined 

by the loader into the program in-
memory image 
Waste memory: duplicated code 
 Faster during execution time 

*Static linking + Dynamic loading 
 Still can’t prevent duplicated code 

main () 

Libc.lib 

 Program A 
main () 

Libc.lib 

 Program B 
main () 

Libc.lib 

 Program C 

main () 

Libc.lib 

main () 

Libc.lib 

main () 

Libc.lib 

 Memory 
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Dynamic Linking 
 Dynamic linking: Linking postponed 

until execution time  
Only one code copy in memory and 

shared by everyone 
A stub is included in the program in-

memory image for each lib reference 
 Stub call  check if the referred lib is 

in memory  if not, load the lib  
  execute the lib 
DLL (Dynamic link library) on Windows 

main () 

main () 

main () 

Libc.lib 

 Memory 

stub 

stub 

stub 
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Review Slides ( 1 ) 

 3 types of address binding? 
 compile-time 
 load-time 
 execution-time 

 logical address? physical address? 
 virtual  physical mapping? 

 dynamic loading? static loading? 
 dynamic linking? static linking? 
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Outline 
 How to refer memory in a program? 
 address binding 

 How to load a program into memory ? 
 static/dynamic loading and linking 

 How to move a program between mem. & disk? 
 swap 

 How to allocate memory? 
 paging, segment 
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Swapping 
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Swapping 
 A process can be swapped out of memory to a 

backing store, and later brought back into 
memory for continuous execution 
Also used by midterm scheduling, different from 

context switch 
 Backing store – a chunk of disk, separated from 

file system, to provide direct access to these 
memory images  

 Why Swap a process: 
 Free up memory 
 Roll out, roll in: swap lower-priority process with a 

higher one 
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Swapping (cont’d) 
 Swap back memory location 
 If binding is done at compile/load time  
   swap back memory address must be the same 
 If binding is done at execution time 
   swap back memory address can be different 

 A process to be swapped == must be idle 
 Imagine a process that is waiting for I/O is swapped 
 Solutions: 

Never swap a process with pending I/O 
I/O operations are done through OS buffers (i.e. a 
memory space not belongs to any user processes) 
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Process Swapping to Backing Store 
 Major part of swap time is transfer time; total 

transfer time is directly proportional to the 
amount of memory swapped 
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Contiguous Memory 
Allocation 
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Memory Allocation 

 Fixed-partition allocation:  
 Each process loads into one partition of fixed-size 
Degree of multi-programming is bounded by the 

number of partitions 
 

 Variable-size partition 
Hole: block of contiguous free memory 
Holes of various size are scattered in memory 
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Multiple Partition (Variable-Size) Method 
 When a process arrives, it is allocated a hole large 

enough to accommodate it 
 The OS maintains info. on each in-use and free hole 
 A freed hole can be merged with another hole to 

form a larger hole 
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Dynamic Storage Allocation Problem 
 How to satisfy a request of size n from a list of 

free holes 
 First-fit – allocate the 1st hole that fits 
 Best-fit – allocate the smallest hole that fits 
Must search through the whole list 

 Worst-fit – allocate the largest hole 
Must also search through the whole list 

 First-fit and best-fit better than worst-fit in 
terms of speed and storage utilization 
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Fragmentation 
 External fragmentation 

 Total free memory space is big enough to 
satisfy a request, but is not contiguous 

 Occur in variable-size allocation 
 Internal fragmentation 

 Memory that is internal to a partition  
 but is not being used 
 Occur in fixed-partition allocation 

 Solution: compaction 
 Shuffle the memory contents to place all 

free memory together in one large block  
 at execution time 
 Only if binding is done at execution time 

P2 
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Review Slides ( 2 ) 

 Swapping? 
 Contiguous memory allocation? 
fixed-size memory allocation? 
variable-size memory allocation? 

first-fit, best-fit, worst-fit? 

 External & internal fragmentation? 
compaction? 
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Non-Contiguous Memory 
Allocation — Paging 
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Paging Concept 
 Method: 

 Divide physical memory into fixed-sized blocks called frames 
 Divide logical address space into blocks of the same size called 

pages 
 To run a program of n pages, need to find n free frames and 

load the program 
 keep track of free frames  
 Set up a page table to translate logical to physical addresses 

 Benefit: 
 Allow the physical-address space of a process to be 

noncontiguous 
 Avoid external fragmentation 
 Limited internal fragmentation 
 Provide shared memory/pages 
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Paging Example 
 Page table: 
 Each entry maps to the base address of a page in 

physical memory  
A structure maintained by OS for each process  

Page table includes only pages owned by a process 
A process cannot access memory outside its space 
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Address Translation Scheme 
 Logical address is divided into two parts: 
 Page number (p)  

used as an index into a page table which contains base 
address of each page in physical memory 
N bits means a process can allocate at most 2N pages  
  2N x page size memory size 

 Page offset (d)  
combined with base address to define the physical 
memory address that is sent to the memory unit 
N bits means the page size is 2N 

 Physical addr = page base addr + page offset 
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Address Translation Architecture 

MMU 

 If Page size is 1KB(2^10) & Page 2 maps to frame 5 
 Given 13 bits logical address: (p=2,d=20),  
    what is physical addr.? 

 5*(1KB)+20 =1,010,000,000,000+0,000,010,100 
           =1,010,000,010,100 
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Address Translation 
 Total number of pages does not need to be the same as 

the total number of frames 
 Total # pages determines the logical memory size of a process 
 Total # frames depending on the size of physical memory 

 E.g.: Given 32 bits logical address, 36 bits physical 
address and 4KB page size, what does it mean? 
 Page table size: 232 / 212 = 220 entries 
 Max program memory: 232 = 4GB  
 Total physical memory size: 236 = 64GB 
 Number of bits for page number: 220 pages  20bits 
 Number of bits for frame number: 224 frames  24bits 
 Number of bits for page offset: 4KB page size  = 212 bytes 12 
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Free Frames 
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Page / Frame Size 
 The page (frame) size is defined by hardware 
 Typically a power of 2 
 Ranging from 512 bytes to 16MB / page 
 4KB / 8KB page is commonly used 

 Internal fragmentation? 
 Larger page size  More space waste 

 But page sizes have grown over time 
memory, process, data sets have become larger 
 better I/O performance (during page fault) 
 page table is smaller 
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Paging Summary 
 Paging helps separate user’s view of memory and the 

actual physical memory 
 User view’s memory: one single contiguous space 

 Actually, user’s memory is scatter out in physical memory 

 OS maintains a copy of the page table for each process 
 OS maintains a frame table for managing physical 

memory 
 One entry for each physical frame 
 Indicate whether a frame is free or allocated 
 If allocated, to which page of which process or processes 



Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 38 

Implementation of Page Table 
 Page table is kept in memory 
 Page-table base register (PTBR)  

 The physical memory address of the page table 
 The PTBR value is stored in PCB (Process Control Block) 
 Changing the value of PTBR during Context-switch 

 With PTBR, each memory reference results in     
     2 memory reads  

 One for the page table and one for the real address 

 The 2-access problem can be solved by 
 Translation Look-aside Buffers (TLB) (HW) which is 

implemented by Associative memory  (HW) 
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Associative Memory 
 All memory entries can be accessed at the same time 

 Each entry corresponds to  an associative register 
 But number of entries are limited 

 Typical number of entries: 64 ~ 1024 
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Translation Look-aside Buffer (TLB) 
 A cache for page table shared by all processes 
 TLB must be flushed after a context switch 
Otherwise, TLB entry must has a PID field 

(address-space identifiers (ASIDs) ) 

MMU 
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Effective Memory-Access Time 

 20 ns for TLB search 
 100 ns for memory access 
 Effective Memory-Access Time (EMAT) 
 70% TLB hit-ratio: 
  EMAT = 0.70 x (20 + 100) + (1-0.70) * (20+100+100) = 150 ns 

 98% TLB hit-ratio 
EMAT = 0.98 x 120 + 0.02 x 220 = 122 ns 
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Review Slides ( 3 ) 
 memory frame? page? typical page size? 
 page table? virtual  physical translation? 
 What is PTBR register? When to update it? 
 Memory reads # for each reference? 
 HW support for paging speed? 
 associative memory 
 TLB  
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Memory Protection 
 Each page is associated with a set of protection 

bit in the page table 
 E.g., a bit to define read/write/execution permission 

 Common use: valid-invalid bit  
Valid: the page/frame is in the process’ logical 

address space, and is thus a legal page 
 Invalid: the page/frame is not in the process’ logical 

address space 
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Valid-Invalid Bit Example 
 Potential issues: 

 Un-used page entry cause memory waste  use page table 
length register  (PTLR) 

 Process memory may NOT be on the boundary of a page  
memory limit register is still needed 

12290 
valid but illegal 

10466 
16383 
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Shared Pages 
 Paging allows processes share common code, which 

must be reentrant  
 Reentrant code (pure code) 
 It never change during execution 
 text editors, compilers, web servers, etc 

 Only one copy of the shared code needs to be kept in 
physical memory  

 Two (several) virtual addresses are mapped to one 
physical address  

 Process keeps a copy of its own private data and code 
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Shared Pages by Page Table 
 Shared code must appear in the same location 

in the logical address space of all processes 
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Page Table Memory Structure 
 Page table could be huge and difficult to be loaded 

 4GB (232) logical address space with 4KB (212) page  
  1 million (220) page table entry 
 Assume each entry need 4 bytes (32bits)  
  Total size=4MB 
 Need to break it into several smaller page tables, better 

within a single page size (i.e. 4KB) 
 Or reduce the total size of page table 

 Solutions: 
 Hierarchical Paging 
 Hash Page Tables 
 Inverted Page Table 
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Hierarchical Paging 
 Break up the logical address space into multiple page 

tables  
 Paged the page table  
 i.e. n-level page table 

 Two-level paging (32-bit address with 4KB (212) page size) 
 12-bit offset (d)  4KB (212) page size 
 10-bit outer page number 1K (210) page table entries 
 10-bit inner page number 1K (210) page table entries 
 3 memory accesses 
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Two-Level Page Table Example 
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Level-1 Level-2 

210 

210 

212 

000100 
001000 

101100 
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Two-Level Address Translation  
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Two-Level Page Table Translation Example 

51 

010001001001 

0000001000 

0000010000 

0000011000 

0000100000 

0000101000 

0000110000 

0000111000 

0001000000 

    23 

entries 
 

0010000000 

0010100000 

0011100000 
. . . 

1011100000 
. . . 

0000001000 

0001000000 

24 

entries 

Number of inner tables: 23 

Number of pages: 24 

25 

Bytes 

0000010000 

0011100000 
01001 

0010 

0000011000 
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64-bit Address 
 How about 64-bit address? (assume each entry 

needs 4Bytes) 
 42 (p1) + 10 (p2) + 12 (offset) 
 outer table requires 242 x 4B = 16TB contiguous memory!!! 

 12 (p1)+10 (p2)+10 (p3)+10 (p4)+10 (p5)+12 (offset) 
 outer table requires 212 x 4B = 16KB contiguous memory 
 6 memory accesses!!! 

 Examples: 
 SPARC (32-bit) and Linux use 3-level paging 
Motorola 68030 (32-bit) use 4-level paging 
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Hashed Page Table 
 Commonly-used for address > 32 bits 
 Virtual page number is hashed into a hash table 
 The size of the hash table varies 

 Larger hash table  smaller chains in each entry  

 Each entry in the hashed table contains 
 (Virtual Page Number, Frame Number, Next Pointer) 
 Pointers waste memory 
 Traverse linked list waste time & 
 cause additional memory references 

Hash function 
f(p) = p%5 

0 
1 
2 
3 
4 

Buckets: 

14 

1001 
7 

59 
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Hashed Page Table Address Translation 
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Improved Hashed Page Table 
Implementation 
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Buckets 

Next Ptr 

Page# Frame# 

. . 

. . 

. . 

0 

1 

2 

3 

. 

. 

. 

. 

N 

0 

. 

. 

M 

Hash Array 
(size of a single page) 

Next Ptr 

Page# Frame# 0 

. 

. 

M 

Hash Array 
(size of a single page) 

Source: M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page table for 64-bit  
 address spaces. SIGOPS Oper. Syst. Rev. 29, 5 (December 1995), 184-200. 
 http://pages.cs.wisc.edu/~markhill/papers/sosp95_pagetables.pdf 
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Inverted Page Table 
 Maintains NO page table for each process 
 Maintains a frame table for the whole memory 

 One entry for each real frame of memory 

 Each entry in the frame table has 
 (PID, Page Number) 

 Eliminate the memory needed for page tables but 
increase memory access time 
 Each access needs to search the whole frame table 
 Solution: use hashing for the frame table 

 Hard to support shared page/memory 
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Inverted Page Table Addr Translation 
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Review Slides ( 4 ) 
 memory protection by page table? 
 valid, invalid bits? 

 page table memory structure? 
 hierarchical  2-level, 3-level, etc 
 hash table  linked list 
 inverted page table 

 How are pages shared by different processes? 
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Non-Contiguous Memory 
Allocation — Segmentation 
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Segmentation 
 Memory-management 

scheme that supports 
user view of memory  

 A program is a collection 
of segments.  A segment 
is a logical unit such as: 
 main program 
 function, object 
 local/global variables,  
 stack, symbol table,  
 arrays, etc… 
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Logical View of Segmentation 
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Segmentation Table 
 Logical address: (seg#, offset) 
Offset has the SAME length as physical addr. 

 Segmentation table – maps two-dimensional 
physical addresses; each table entry has: 
 Base (4 bytes): the start physical addr 
 Limit (4 bytes): the length of the segment 

 Segment-table base register (STBR):  
 the physical addr of the segmentation table 

 Segment-table length register (STLR):  
 the # of segments 
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Segmentation Hardware 
 Limit register is used to check offset length 
 MMU allocate memory by assigning an 

appropriate base address for each segment 
 Physical address cannot overlap between segments 

Seg0 

Seg1 

Seg2 

base 

d 

10000 01000 

00100 
01100 
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Address Translation Comparison 
 Segment 

 Table entry: (segment base addr. , limit ) 
 Segment base addr. can be arbitrary 
 The length of “offset” is the same as the physical memory size 

 Page: 
 Table entry: (frame base addr.) 
 Frame base addr. = frame number * page size 
 The length of “offset” is the same as page size 
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Seg0 

Seg1 

Seg2 

base 

d 

10000 01000 

00100 
01100 
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Example of Segmentation 
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Sharing of Segments 
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Protection & Sharing 
 Protection bits associated with segments 
 Read-only segment (code) 
 Read-write segments (data, heap, stack) 

 Code sharing occurs at segment level 
 Shared memory communication 
 Shared library 

 Share segment by having same base in 
two segment tables 
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Segmentation with 
Paging 
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Basic Concept 

Segments Pages 

Page/ 
Frame 

Process 

logical address physical address 

 Apply segmentation in logical address space 
 Apply paging in physical address space 
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Address Translation 
 CPU generates logical address 
Given to segmentation unit 
 produces linear addresses  
 Linear address given to paging unit 
 generates physical address in main memory 

 Segmentation and paging units form 
equivalent of MMU 

(seg0,20) (x100020) (x500020) 
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Example: The Intel Pentium 
 Logical-address space is divided into 2 partitions: 

 1st: 8K(213) segments (private), local descriptor table (LDT) 
 2nd: 8K(213) segments (shared), global descriptor table (GDT)  

 Logical address:  
 max # of segments per process = 

 size of a segment 

segment number 
13 1 2 

GDT/LDT protection info 

selector 
16 32 

offset 

214 = 16K 
≤ 232 = 4GB 
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Intel Pentium Segmentation 
 Segment descriptor 

 Segment base address and length 
 Access right and privileged level 
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Intel Pentium Paging (Two-Level) 
 Page size can be either 4KB or 4MB 
 Each page directory entry has a flag for indication 

Outer page table 

4kB 

4MB 

0 
1 
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000110110 
010110110 
001110110 
000110110 
100110110 
100000100 
010110110 
000010110 

4 
1 
3 
0 
5 
2 
8 

7 

…
 

010001001000 

001011110 

Example Question 
 Let the physical mem size is 512B, the page size is 32B and the 

logical address of a program can have 8 segments. Given a 12 
bits hexadecimal logical address “448”, translate the addr. 
With blow page and segment tables.   

 linear addr:010111110, phy addr:001011110 

Seg# 
010111110 

Seg offset page offset 

page# 
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Review Slides ( 5 ) 
 Segmentation vs. Paging? 

 
 
 
 
 
 
 

 Paged segmentation? 

Paging segmentation 
Length Fixed Varied 
Fragmentation Internal External 

Table entry Page number  frame 
number 

Seg ID  (base addr, 
limit length) 

View Physical memory User program 
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Reading Material & HW 
 Chap 8 
 Problem Set: 

 8.1, 8.3, 8.4, 8.5, 8.12, 8.15, 8.16, 8.20, 8.23 
 Interesting Reading: 

 M. Talluri, M. D. Hill, and Y. A. Khalidi. 1995. A new page 
table for 64-bit address spaces. SIGOPS Oper. Syst. Rev. 29, 
5 (December 1995), 184-200. 

 http://pages.cs.wisc.edu/~markhill/papers/sosp95_pageta
bles.pdf 
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