Operating System:

Chap5 Process Scheduling

National Tsing-Hua University
2016, Fall Semester

"
Overview
m Basic Concepts
m Scheduling Algorithms

m Special Scheduling Issues
m Scheduling Case Study

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

"
Basic Concepts

m The idea of multiprogramming:

> Keep several processes in memory. Every time one process
has to wait, another process takes over the use of the CPU

m CPU-1/0 burst cycle: Process execution consists of a
cycle of CPU execution and |/O wait (i.e., CPU burst
and |/O burst).

> Generally, there is a large number of short CPU bursts, and
a small number of long CPU bursts

> A 1/O-bound program would typically has many very short
CPU bursts

> A CPU-bound program might have a few long CPU bursts

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 3

" JdE
CPU —1/0O Burst Cycle

Chapter5 Process Scheduling

il
E]
E]

load store
adld store
read from Fil=

Wl Fore L5009

Stovre ircreirneEint
ianellen
ot taos Filles

sady fiogs LA

load store
add store
read foorm File

wall fou 1702

Operating System Concepts — NTHU LSA Lab

ZPL Bburst

Pl Burst

2 Burst

ZPL bur=t

1 Bbur=t

" A
Histogram of CPU-Burst Times

N

8 16 24
burst duration (milliseconds)

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 5

'_
CPU Scheduler

m Selects from ready queue to execute (i.e.
allocates a CPU for the selected process)

new
task

signal ﬁaiting terminating
events tasks

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

"
Preemptive vs. Non-preemptive

m CPU scheduling decisions may take place when a
Process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

m Non-preemptive scheduling:
> Scheduling under 1 and 4 (no choice in terms of scheduling)

> The process keeps the CPU until it is terminated or
switched to the waiting state

> E.g., Window 3.x
m Preemptive scheduling:

> Scheduling under all cases

> E.g., Windows 95 and subsequent versions, Mac OS X
Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 7

"
Preemptive Issues

m |Inconsistent state of shared data
> Require process synchronization (Chap6)
> incurs a cost associated with access to shared data

m Affect the design of OS kernel

> the process is preempted in the middle of critical
changes (for instance, I/O queues) and the kernel
(or the device driver) needs to read or modify the
same structure?

> Unix solution: waiting either for a system call to
complete or for an 1/0 block to take place before
doing a context switch (disable interrupt)

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 8

"
Dispatcher

m Dispatcher module gives control of the CPU to
the process selected by scheduler
> switching context
> jumping to the proper location in the selected
pProgram

m Dispatch latency — time it takes for the
dispatcher to stop one process and start
another running

> Scheduling time
> Interrupt re-enabling time
> Context switch time

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 9

" S

Scheduling Algorithms

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

10

» S
Scheduling Criteria

m CPU utilization
> theoretically: 0%~100%
> real systems: 40% (light)~90% (heavy)
m Throughput
> number of completed processes per time unit

m Turnaround time
> submission ~ completion

m Waiting time
> total waiting time in the ready queue

m Response time
> submission ~ the first response is produced

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

"
Algorithms

m First-Come, First-Served (FCFS) scheduling
m Shortest-Job-First (SJF) scheduling

m Priority scheduling

m Round-Robin scheduling

m Multilevel queue scheduling

m Multilevel feedback queue scheduling

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

12

FCES Scheduling

m Process (Burst Time) in arriving order:
P1(24), P2(3), P3(3)
m The Gantt Chart of the schedule

P, P, | P,

m Waiting time: P1 =0, P2=24, P3=27
m Average Waiting Time (AWT): (0+24+427) /3 =17
m Convoy effect: short processes behind a long process

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

13

" A
FCES Scheduling

m Process (Burst Time) in arriving order:
P2 (3), P3(3), P1(24)
m The Gantt Chart of the schedule

P, | P, P,

m Waitingtime: P1=6, P2=0, P3=3
m Average Waiting Time (AWT): (6+0+3) /3 =3

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

"
Shortest-Job-First (SJF) Scheduling

m Associate with each process the length of its next CPU
burst

m A process with shortest burst length gets the CPU first

m SJF provides the minimum average waiting time
(optimall)

m Two schemes

> Non-preemptive — once CPU given to a process, it cannot be
preempted until its completion

> Preemptive — if a new process arrives with shorter burst
length, preemption happens

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 15

Non-Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time Burst Time
0 7
2 4
4 1
5 4

Ready queue: t=0

P1(7)

Schedule

|
0

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

16

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=0
P1(7)
Schedule 1
P1
0 4

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

17

" A
Non-Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time Burst Time
0 7
2 4
4 1
5 4

Ready queue: t=7

P2(4) [p3 (1) PN
Schedule I |
P1 P3
0 7 8

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

18

" A
Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=8
P2 [PA@
Schedule I |
P1 P3 P2
0 V4 8 12

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

" A
Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=12

Schedule
3 SR

0 7 8 12 16
Wait time = completion time — arrival time — run time (burst time)

AWT = [(7-0-7)+(12-2-4)+(8-4-1)+(16-5-4)]/4 = (0+6+3+7)/4 =4
Response Time: P1=0, P2=6, P3=3, P4=7

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 20

Preemptive SJF Example

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
Ready queue: t=0

P1 (7)
Schedule
P1
0 4

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

21

Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time

Burst Time

Uk NO

I WS

Ready queue: t=2

P1 (5)

P2 (4)

Schedule !

P1 P2

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

" A
Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=4
P1 (5) P2 (2) |P3(1)
Schedule J
P1 P2 | P3
|
0 2 4 5

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

" A
Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=5

P1 (5) P2 (2 I PA@
Schedule Ij

P1 P2 P3 P2

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

" A
Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=7
P1 (5)
Schedule
oL [ez | po | po [N
0 2 4 5 4 11

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

" A
Preemptive SJF Example

Process Arrival Time Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=11

P1 (5)
Schedule I |
P1 P2 | P3| P2 — P1
0 2 4 5 V4 11 16

Wait time = completion time — arrival time — run time (burst time)
AWT = [(16-0-7)+(7-2-4)+(5-4-1)+(11-5-4)]/4 = (9+1+0+2)/4 = 3
Response Time: P1=0, P2=0, P3=0, P4=2

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 26

" A
Approximate Shortest-Job-First (SJF)

m SJF difficulty: no way to know length of the
next CPU burst

m Approximate SJF: the next burst can be
predicted as an exponential average of the

measured length of previous CPU bursts
T 1 =01, + (1 —a)t y«—nhistory
new one

Commonly, =ot +(1-a)at_, +(1—a)at _, +...

12— 1 1 1
“ = O+) + G+

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 27

" A
Exponential predication of next CPU burst

burst length
12 —
10 -
o /
. /
4
2 time

t0 t1 t2 t3 t4 t5 té

CPUburstt, 6 4 6 4 13 13 13
guess T, 10 8 6 6 5 9 11

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 28

"
Priority Scheduling

m A priority number is associated with each process

m The CPU is allocated to the highest priority process
> Preemptive
> Non-preemptive

m SJF is a priority scheduling where priority is the
predicted next CPU burst time

m Problem: starvation (low priority processes never
execute)
> e.g. IBM 7094 shutdown at 1973, a 1967-process never run)
m Solution: aging (as time progresses increase the priority
of processes)

> e.g. increase priority by 1 every 15 minutes
Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 29

"
Round-Robin (RR) Scheduling

m Each process gets a small unit of CPU time
(time quantum), usually 10~100 ms

m After TQ elapsed, process is preempted and
added to the end of the ready queue

m Performance
> TQ large = FIFO
> TQ small =» (context switch) overhead increases

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 30

RR Scheduling (TQ = 20)

Process Burst Time
P, 53
P, 17
P, 68
P, 24

P, | P, | P, | Ps| Py

P

P

Py

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but better

response.

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

£

31

"
Multilevel Queue Scheduling
m Ready queue is partitioned into separate queues

m Each queue has its own scheduling algorithm

m Scheduling must be done between queues

> Fixed priority scheduling: possibility of starvation

> Time slice — each queue gets a certain amount of CPU time
(e.g. 80%, 20%

ighest priority

- I system processes - I
[T [T

interactive editing processes

batch processes

student processes

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 32

"
Multilevel Feedback Queue Scheduling

m A process can move between the various
gueues; aging can be implemented

m |dea: separate processes according to the
characteristic of their CPU burst

> |/O-bound and interactive processes in higher
priority queue =» short CPU burst

> CPU-bound processes in lower priority queue=>
long CPU burst

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 33

" A
Multilevel Feedback Queue Example

—I quianturm = 8

‘ |— |
quantum = 16 ‘j
|
FCFsS

m A new job enters Q, Algorithm: FCFS. If it does not
finish in 8 ms CPU time, job is moved to Q,

m At Q, is again served FCFS and receives 16 ms TQ.
If it still does not finish in 16 ms, it is preempted
and moved to Q,

m Q only gets executed if Q,~Q, , is empty

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 34

"

Multilevel Feedback Queue

m In general, multilevel feedback queue
scheduler is defined by the following
parameters:

»>Number of queues
> Scheduling algorithm for each queue

> Method used to determine when to
upgrade a process

»>Method used to determine when to
demote a process

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

'_
Evaluation Methods

m Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each algorithm for that workload

> Cannot be generalized
B Queueing model — mathematical analysis

m Simulation —random-number generator or trace
tapes for workload generation

m Implementation — the only completely accurate way
for algorithm evaluation

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 36

"
Review Slides (|)

m Preemptive scheduling vs Non-preemptive
scheduling?

m Issues of preemptive scheduling

m Turnaround time? Waiting time? Response time?
Throughput?
m Scheduling algorithms
> FCFS
> Preemptive SJF, Nonpreemptive SJF
> Priority scheduling
> RR
> Multilevel queue
> Multilevel feedback queue

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

37

Multi-Processor Scheduling
Multi-Core Processor Scheduling
Real-Time Scheduling

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 38

"
Multi-Processor Scheduling

m Asymmetric multiprocessing:

> all system activities are handled by a processor
(alleviating the need for data sharing)

> the others only execute user code (allocated by
the master)

> far simple than SMP

m Symmetric multiprocessing (SMP):
> each processor is self-scheduling

> all processes in common ready queue, or each
has its own private queue of ready processes

> need synchronization mechanism

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 39

"

Processor affinity

m Processor affinity: a process has an affinity for
the processor on which it is currently running

> A process populates its recent used data in cache
memory of its running processor

> Cache invalidation and repopulation has high cost

m Solution

> soft affinity:
¢ possible to migrate
between processors

> hard affinity:
¢ not to migrate to other
processor

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

40

" A
NUMA and CPU Scheduling

m NUMA (non-uniform memory access):

> Occurs in systems containing combined CPU and
memory boards

» CPU scheduler and memory-placement works together

> A process (assigned affinity to a CPU) can be allocated
memory on the board where that CPU resides

CFU CPU

lfast access W Jvfast access
oy

memaory memaory

comiputer

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 41

"
Load-balancing

m Keep the workload evenly distributed across all
pProcessors

> Only necessary on systems where each processor has its
own private queue of eligible processes to execute

m Two strategies:

> Push migration: move (push) processes from overloaded
to idle or less-busy processor

> Pull migration: idle processor pulls a waiting task from a
busy processor

> Often implemented in parallel

m Load balancing often counteracts the benefits of
processor affinity

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 42

"

Multi-core Processor Scheduling

m Multi-core Processor:

> Faster and consume less power

> memory stall: When access memory, it spends a significant

amount of time waiting for the data become available. (e.g.
cache miss)

m Multi-threaded multi-core systems:

> Two (or more) hardware threads are assigned to each core

(i.e. Intel Hyper-threading)

> Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

thread

thread,

C

compute cycle

%]

memory stall cycle

MM C

M

C

MM

time

threadg

Chapte

43

"
Multi-core Processor Scheduling

m Two ways to multithread a processor:

> coarse-grained: switch to another thread when a memory
stall occurs. The cost is high as the instruction pipeline
must be flushed.

> fine-grained (interleaved): switch between threads at the
boundary of an instruction cycle. The architecture design
includes logic for thread switching — cost is low.

m Scheduling for Multi-threaded multi-core systems

> 1st level: Choose which software thread to run on each
hardware thread (logical processor)

> 2nd level: How each core decides which hardware thread
to run

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 44

"
Real-Time Scheduling

m Real-time does not mean speed, but keeping
deadlines
m Soft real-time requirements:

> Missing the deadline is unwanted, but is not
immediately critical

> Examples: multimedia streaming

m Hard real-time requirements:
> Missing the deadline results in a fundamental failure

> Examples: nuclear power plant controller

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 45

"
Real-Time Scheduling Algorithms

m FCFS scheduling algorithm — Non-RTS
> T1=(0, 4, 10) == (Ready, Execution, Deadline)
> T2=(1, 2, 4)
m Rate-Monotonic (RM) algorithm
> Shorter period, higher priority
> Fixed-priority RTS scheduling algorithm
m Earliest-Deadline-First (EDF) algorithm

> Earlier deadline, higher priority
> Dynamic priority algorithm

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

46

"
Rate-Monotonic (RM) Scheduling

m Fixed-priority schedule.
> All jobs of the same task have same priority.
> The task’s priority is fixed.

m The shorter period, the higher priority.

m Ex: T:i=(4,1), T>=(5,2), T3=(20,5) (Period, Execution)
> "."period: 4<5<20
> ..priority: Ti> T2 > Ts

_ L

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 47

" A
Early Deadline First (EDF) Scheduler

m Dynamic-priority scheduler
> Task’s priority is not fixed
> Task’s priority is determined by deadline.

m Ex: T:=(2,0.9),

> time:8.9
delay
T u_‘iu \
0 1 2 3 4 5 5) 7 8 9 10
T, | 1.1 1.2 1.0 1.1 0, ‘
0 1 2 3 4 6 7 8 9

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 48

"
Review Slides (lI)

m What is processor affinity?

m Real-time scheduler
» Rate-Monotonic
> Earliest deadline first

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

49

"

Operating System Examples

Solaris
Windows
Linux

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

50

. global
Solaris Scheduler e
m Priority-based multilevel feedback | %

gueue scheduling

m Six classes of scheduling:

> real-time, system, time sharing,
interactive, fair share, fixed priority

m Each class has its own priorities
and scheduling algorithm

m The scheduler converts the class-
specific priorities into global
priorities

lowest ¥

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

100
99

60
59

scheduling
order

interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads

51

A

first

v last

" A
Solaris Scheduler Example

(time sharing, interactive)
m Inverse relationship between priorities and time slices:

the higher the priority, the smaller the time slice

> Time quantum expired: the new priority of a thread that has
used its entire time quantum without blocking

> Return from sleep: the new priority of a thread that is
returning from sleeping (I/0O wait)

tTirme returm
tirme QquIaAanturm frorm
Priority uianturm ex pired sleesp

O =200 O 50

L= =200 O 50
10 180 O 51
15 180 L= L="0
=20 1=20 10 52
=25 120 15 52
=20 =20 =20 53
35 S0 =25 5«3
=3O =3O =0 55
=] =] =S5 5
50 <O <O 58
55 = =4 5 58
v 59 =20 e =] 59

Higher priority J

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab NeW prOflty 52

" A
Windows XP Scheduler

m Similar to Solaris: Multilevel feedback queue

m Scheduling: from the highest priority queue to lowest
priority queue (priority level: 0 ~ 31)
> The highest-priority thread always run
> Round-robin in each priority queue

m Priority changes dynamically except for Real-Time class

class . . above below |. .
relative real-time high normal normal normal idle priority
time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

\ J _
Y T~
Chapter5 Process Scﬁ(?u?rl]é-rl me OCple?‘aStlﬁg System Concepts — NTI\-|/Ua£IS%IB|ag CI ass 53

'_
Linux Scheduler

m Preemptive priority based scheduling
> But allows only user mode processes to be preempted
> Two separate process priority ranges
> Lower values indicate higher priorities
> Higher priority with longer time quantum
m Real-time tasks: (priority range 0~99)
> static priorities
m Other tasks: (priority range 100~140)

> dynamic priorities based on task interactivity

NnuMmMeric
Priority

O

o9
100

140

relative
Priority

Time
guantum

highest

real-time
tasks

other
tasks

lowvwest

200 ms

10O Ms

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

54

'_
Linux Scheduler

m Scheduling algorithm

> A runnable task is eligible for execution as long as it has
remaining time quantum

> When a task exhausted its time quantum, it is considered
expired and not eligible for execution

> New priority and time quantum is given after a task is expired

active expired
array array
priority task lists priority task lists
[O] O—O [O] O—O—O
[1] @ —@ @ [1] @
[140] @ [140] @—@

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 55

" A
Reading Material & HW

m Chap 5

m Problems
»5.3,54,55,5.6,5.7,5.8,5.10, 5.14, 5.15, 5.22

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

56

	Operating System:�Chap5 Process Scheduling
	Overview
	Basic Concepts
	CPU – I/O Burst Cycle
	Histogram of CPU-Burst Times
	CPU Scheduler
	Preemptive vs. Non-preemptive
	Preemptive Issues
	Dispatcher
	Scheduling Algorithms
	Scheduling Criteria
	Algorithms
	FCFS Scheduling
	FCFS Scheduling
	Shortest-Job-First (SJF) Scheduling
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Approximate Shortest-Job-First (SJF)
	Exponential predication of next CPU burst
	Priority Scheduling
	Round-Robin (RR) Scheduling
	RR Scheduling (TQ = 20)
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Multilevel Feedback Queue Example
	Multilevel Feedback Queue
	Evaluation Methods
	Review Slides (I)
	Multi-Processor Scheduling �Multi-Core Processor Scheduling�Real-Time Scheduling
	Multi-Processor Scheduling
	Processor affinity
	NUMA and CPU Scheduling
	Load-balancing
	Multi-core Processor Scheduling
	Multi-core Processor Scheduling
	Real-Time Scheduling
	Real-Time Scheduling Algorithms
	Rate-Monotonic (RM) Scheduling
	Early Deadline First (EDF) Scheduler
	Review Slides (II)
	投影片編號 50
	Solaris Scheduler
	Solaris Scheduler Example �(time sharing, interactive)
	Windows XP Scheduler
	Linux Scheduler
	Linux Scheduler
	Reading Material & HW

