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"
Basic Concepts

m The idea of multiprogramming:

> Keep several processes in memory. Every time one process
has to wait, another process takes over the use of the CPU

m CPU-1/0 burst cycle: Process execution consists of a
cycle of CPU execution and |/O wait (i.e., CPU burst
and |/O burst).

> Generally, there is a large number of short CPU bursts, and
a small number of long CPU bursts

> A 1/O-bound program would typically has many very short
CPU bursts

> A CPU-bound program might have a few long CPU bursts
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Histogram of CPU-Burst Times

N
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burst duration (milliseconds)
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CPU Scheduler

m Selects from ready queue to execute (i.e.
allocates a CPU for the selected process)

new
task

signal ﬁaiting terminating
events tasks
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Preemptive vs. Non-preemptive

m CPU scheduling decisions may take place when a
Process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

m Non-preemptive scheduling:
> Scheduling under 1 and 4 (no choice in terms of scheduling)

> The process keeps the CPU until it is terminated or
switched to the waiting state

> E.g., Window 3.x
m Preemptive scheduling:

> Scheduling under all cases

> E.g., Windows 95 and subsequent versions, Mac OS X
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"
Preemptive Issues

m |Inconsistent state of shared data
> Require process synchronization (Chap6)
> incurs a cost associated with access to shared data

m Affect the design of OS kernel

> the process is preempted in the middle of critical
changes (for instance, I/O queues) and the kernel
(or the device driver) needs to read or modify the
same structure?

> Unix solution: waiting either for a system call to
complete or for an 1/0 block to take place before
doing a context switch (disable interrupt)
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"
Dispatcher

m Dispatcher module gives control of the CPU to
the process selected by scheduler
> switching context
> jumping to the proper location in the selected
pProgram

m Dispatch latency — time it takes for the
dispatcher to stop one process and start
another running

> Scheduling time
> Interrupt re-enabling time
> Context switch time
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Scheduling Algorithms
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Scheduling Criteria

m CPU utilization
> theoretically: 0%~100%
> real systems: 40% (light)~90% (heavy)
m Throughput
> number of completed processes per time unit

m Turnaround time
> submission ~ completion

m Waiting time
> total waiting time in the ready queue

m Response time
> submission ~ the first response is produced
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Algorithms

m First-Come, First-Served (FCFS) scheduling
m Shortest-Job-First (SJF) scheduling

m Priority scheduling

m Round-Robin scheduling

m Multilevel queue scheduling

m Multilevel feedback queue scheduling
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FCES Scheduling

m Process (Burst Time) in arriving order:
P1(24), P2(3), P3(3)
m The Gantt Chart of the schedule

P, P, | P,

m Waiting time: P1 =0, P2=24, P3=27
m Average Waiting Time (AWT): (0+24+427) /3 =17
m Convoy effect: short processes behind a long process
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FCES Scheduling

m Process (Burst Time) in arriving order:
P2 (3), P3(3), P1(24)
m The Gantt Chart of the schedule

P, | P, P,

m Waitingtime: P1=6, P2=0, P3=3
m Average Waiting Time (AWT): (6+0+3) /3 =3
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Shortest-Job-First (SJF) Scheduling

m Associate with each process the length of its next CPU
burst

m A process with shortest burst length gets the CPU first

m SJF provides the minimum average waiting time
(optimall)

m Two schemes

> Non-preemptive — once CPU given to a process, it cannot be
preempted until its completion

> Preemptive — if a new process arrives with shorter burst
length, preemption happens
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Non-Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time  Burst Time
0 7
2 4
4 1
5 4

Ready queue: t=0

P1(7)

Schedule

|
0
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Non-Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=0
P1(7)
Schedule 1
P1
0 4
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Non-Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time  Burst Time
0 7
2 4
4 1
5 4

Ready queue: t=7

P2(4)  [p3 (1) PN
Schedule I |
P1 P3
0 7 8

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

18



" A
Non-Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=8
P2 [PA@
Schedule I |
P1 P3 P2
0 V4 8 12
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Non-Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=12

Schedule
3 SR

0 7 8 12 16
Wait time = completion time — arrival time — run time (burst time)

AWT = [(7-0-7)+(12-2-4)+(8-4-1)+(16-5-4)]/4 = (0+6+3+7)/4 =4
Response Time: P1=0, P2=6, P3=3, P4=7
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Preemptive SJF Example

Process Arrival Time  Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
Ready queue: t=0

P1 (7)
Schedule
P1
0 4
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Preemptive SJF Example

Process

P1
P2

P3
P4

Arrival Time

Burst Time

Uk NO

I WS

Ready queue: t=2

P1 (5)

P2 (4)

Schedule !

P1 P2
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Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=4
P1 (5) P2 (2) |P3(1)
Schedule J
P1 P2 | P3
|
0 2 4 5
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Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=5

P1 (5) P2 (2 I PA@
Schedule Ij

P1 P2 P3 P2
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Preemptive SJF Example

Process Arrival Time  Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4
Ready queue: t=7
P1 (5)
Schedule
oL [ ez | po | po [N
0 2 4 5 4 11
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Preemptive SJF Example

Process Arrival Time  Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Ready queue: t=11

P1 (5)
Schedule I |
P1 P2 | P3| P2 — P1
0 2 4 5 V4 11 16

Wait time = completion time — arrival time — run time (burst time)
AWT = [(16-0-7)+(7-2-4)+(5-4-1)+(11-5-4)]/4 = (9+1+0+2)/4 = 3
Response Time: P1=0, P2=0, P3=0, P4=2
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Approximate Shortest-Job-First (SJF)

m SJF difficulty: no way to know length of the
next CPU burst

m Approximate SJF: the next burst can be
predicted as an exponential average of the

measured length of previous CPU bursts
T 1 =01, + (1 —a )t y«—nhistory
new one

Commonly, =ot +(1-a)at_, +(1—a)at _, +...

12— 1 1 1
“ = O+ ) + G+
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Exponential predication of next CPU burst

burst length
12 —
10 -
o /
. /
4
2 time

t0 t1 t2 t3 t4 t5 té

CPUburstt, 6 4 6 4 13 13 13
guess T, 10 8 6 6 5 9 11
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"
Priority Scheduling

m A priority number is associated with each process

m The CPU is allocated to the highest priority process
> Preemptive
> Non-preemptive

m SJF is a priority scheduling where priority is the
predicted next CPU burst time

m Problem: starvation (low priority processes never
execute)
> e.g. IBM 7094 shutdown at 1973, a 1967-process never run)
m Solution: aging (as time progresses increase the priority
of processes)

> e.g. increase priority by 1 every 15 minutes
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Round-Robin (RR) Scheduling

m Each process gets a small unit of CPU time
(time quantum), usually 10~100 ms

m After TQ elapsed, process is preempted and
added to the end of the ready queue

m Performance
> TQ large = FIFO
> TQ small =» (context switch) overhead increases
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RR Scheduling (TQ = 20)

Process Burst Time
P, 53
P, 17
P, 68
P, 24

P, | P, | P, | Ps| Py

P

P

Py

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but better

response.

Chapter5 Process Scheduling

Operating System Concepts — NTHU LSA Lab

£

31



"
Multilevel Queue Scheduling
m Ready queue is partitioned into separate queues

m Each queue has its own scheduling algorithm

m Scheduling must be done between queues

> Fixed priority scheduling: possibility of starvation

> Time slice — each queue gets a certain amount of CPU time
(e.g. 80%, 20%

ighest priority

- I system processes - I
[ T [ T

interactive editing processes

batch processes

student processes
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"
Multilevel Feedback Queue Scheduling

m A process can move between the various
gueues; aging can be implemented

m |dea: separate processes according to the
characteristic of their CPU burst

> |/O-bound and interactive processes in higher
priority queue =» short CPU burst

> CPU-bound processes in lower priority queue=>
long CPU burst
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Multilevel Feedback Queue Example

—I quianturm = 8

‘ |— |
quantum = 16 ‘j
|
FCFsS

m A new job enters Q, Algorithm: FCFS. If it does not
finish in 8 ms CPU time, job is moved to Q,

m At Q, is again served FCFS and receives 16 ms TQ.
If it still does not finish in 16 ms, it is preempted
and moved to Q,

m Q only gets executed if Q,~Q, , is empty
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Multilevel Feedback Queue

m In general, multilevel feedback queue
scheduler is defined by the following
parameters:

»>Number of queues
> Scheduling algorithm for each queue

> Method used to determine when to
upgrade a process

»>Method used to determine when to
demote a process
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Evaluation Methods

m Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each algorithm for that workload

> Cannot be generalized
B Queueing model — mathematical analysis

m Simulation —random-number generator or trace
tapes for workload generation

m Implementation — the only completely accurate way
for algorithm evaluation
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Review Slides ( | )

m Preemptive scheduling vs Non-preemptive
scheduling?

m Issues of preemptive scheduling

m Turnaround time? Waiting time? Response time?
Throughput?
m Scheduling algorithms
> FCFS
> Preemptive SJF, Nonpreemptive SJF
> Priority scheduling
> RR
> Multilevel queue
> Multilevel feedback queue

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab
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Multi-Processor Scheduling
Multi-Core Processor Scheduling
Real-Time Scheduling
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"
Multi-Processor Scheduling

m Asymmetric multiprocessing:

> all system activities are handled by a processor
(alleviating the need for data sharing)

> the others only execute user code (allocated by
the master)

> far simple than SMP

m Symmetric multiprocessing (SMP):
> each processor is self-scheduling

> all processes in common ready queue, or each
has its own private queue of ready processes

> need synchronization mechanism
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Processor affinity

m Processor affinity: a process has an affinity for
the processor on which it is currently running

> A process populates its recent used data in cache
memory of its running processor

> Cache invalidation and repopulation has high cost

m Solution

> soft affinity:
¢ possible to migrate
between processors

> hard affinity:
¢ not to migrate to other
processor

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab
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NUMA and CPU Scheduling

m NUMA (non-uniform memory access):

> Occurs in systems containing combined CPU and
memory boards

» CPU scheduler and memory-placement works together

> A process (assigned affinity to a CPU) can be allocated
memory on the board where that CPU resides

CFU CPU

lfast access W Jvfast access
oy

memaory memaory

comiputer
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"
Load-balancing

m Keep the workload evenly distributed across all
pProcessors

> Only necessary on systems where each processor has its
own private queue of eligible processes to execute

m Two strategies:

> Push migration: move (push) processes from overloaded
to idle or less-busy processor

> Pull migration: idle processor pulls a waiting task from a
busy processor

> Often implemented in parallel

m Load balancing often counteracts the benefits of
processor affinity
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Multi-core Processor Scheduling

m Multi-core Processor:

> Faster and consume less power

> memory stall: When access memory, it spends a significant

amount of time waiting for the data become available. (e.g.
cache miss)

m Multi-threaded multi-core systems:

> Two (or more) hardware threads are assigned to each core

(i.e. Intel Hyper-threading)

> Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

thread

thread,

C

compute cycle

%]

memory stall cycle

MM C

M

C

MM

time

threadg

Chapte
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"
Multi-core Processor Scheduling

m Two ways to multithread a processor:

> coarse-grained: switch to another thread when a memory
stall occurs. The cost is high as the instruction pipeline
must be flushed.

> fine-grained (interleaved): switch between threads at the
boundary of an instruction cycle. The architecture design
includes logic for thread switching — cost is low.

m Scheduling for Multi-threaded multi-core systems

> 1st level: Choose which software thread to run on each
hardware thread (logical processor)

> 2nd level: How each core decides which hardware thread
to run
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Real-Time Scheduling

m Real-time does not mean speed, but keeping
deadlines
m Soft real-time requirements:

> Missing the deadline is unwanted, but is not
immediately critical

> Examples: multimedia streaming

m Hard real-time requirements:
> Missing the deadline results in a fundamental failure

> Examples: nuclear power plant controller
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Real-Time Scheduling Algorithms

m FCFS scheduling algorithm — Non-RTS
> T1=(0, 4, 10) == (Ready, Execution, Deadline)
> T2=(1, 2, 4)
m Rate-Monotonic (RM) algorithm
> Shorter period, higher priority
> Fixed-priority RTS scheduling algorithm
m Earliest-Deadline-First (EDF) algorithm

> Earlier deadline, higher priority
> Dynamic priority algorithm

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab
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"
Rate-Monotonic (RM) Scheduling

m Fixed-priority schedule.
> All jobs of the same task have same priority.
> The task’s priority is fixed.

m The shorter period, the higher priority.

m Ex: T:i=(4,1), T>=(5,2), T3=(20,5) (Period, Execution)
> "."period: 4<5<20
> ..priority: Ti> T2 > Ts

_ L

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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" A
Early Deadline First (EDF) Scheduler

m Dynamic-priority scheduler
> Task’s priority is not fixed
> Task’s priority is determined by deadline.

m Ex: T:=(2,0.9),

> time:8.9
delay
T u_‘iu \
0 1 2 3 4 5 5) 7 8 9 10
T, | 1.1 1.2 1.0 1.1 0, ‘
0 1 2 3 4 6 7 8 9
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Review Slides (lI)

m What is processor affinity?

m Real-time scheduler
» Rate-Monotonic
> Earliest deadline first

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab
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Operating System Examples

Solaris
Windows
Linux

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab
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. global
Solaris Scheduler e
m Priority-based multilevel feedback | %

gueue scheduling

m Six classes of scheduling:

> real-time, system, time sharing,
interactive, fair share, fixed priority

m Each class has its own priorities
and scheduling algorithm

m The scheduler converts the class-
specific priorities into global
priorities

lowest ¥
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99

60
59

scheduling
order

interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads
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" A
Solaris Scheduler Example

(time sharing, interactive)
m Inverse relationship between priorities and time slices:

the higher the priority, the smaller the time slice

> Time quantum expired: the new priority of a thread that has
used its entire time quantum without blocking

> Return from sleep: the new priority of a thread that is
returning from sleeping (I/0O wait)

tTirme returm
tirme QquIaAanturm frorm
Priority uianturm ex pired sleesp

O =200 O 50

L= =200 O 50
10 180 O 51
15 180 L= L="0
=20 1=20 10 52
=25 120 15 52
=20 =20 =20 53
35 S0 =25 5«3
=3O =3O =0 55
=] = ] =S5 5
50 <O <O 58
55 = =4 5 58
v 59 =20 e =] 59

Higher priority J
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" A
Windows XP Scheduler

m Similar to Solaris: Multilevel feedback queue

m Scheduling: from the highest priority queue to lowest
priority queue (priority level: 0 ~ 31)
> The highest-priority thread always run
> Round-robin in each priority queue

m Priority changes dynamically except for Real-Time class

class . . above below |. .
relative real-time high normal normal normal idle priority
time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

\ J _
Y T~
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Linux Scheduler

m Preemptive priority based scheduling
> But allows only user mode processes to be preempted
> Two separate process priority ranges
> Lower values indicate higher priorities
> Higher priority with longer time quantum
m Real-time tasks: (priority range 0~99)
> static priorities
m Other tasks: (priority range 100~140)

> dynamic priorities based on task interactivity

NnuMmMeric
Priority

O

o9
100

140

relative
Priority

Time
guantum

highest

real-time
tasks

other
tasks

lowvwest

200 ms

10O Ms

Chapter5 Process Scheduling
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Linux Scheduler

m Scheduling algorithm

> A runnable task is eligible for execution as long as it has
remaining time quantum

> When a task exhausted its time quantum, it is considered
expired and not eligible for execution

> New priority and time quantum is given after a task is expired

active expired
array array
priority task lists priority task lists
[O] O—O [O] O—O—O
[1] @ —@ @ [1] @
[140] @ [140] @—@
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Reading Material & HW

m Chap 5

m Problems
»5.3,54,55,5.6,5.7,5.8,5.10, 5.14, 5.15, 5.22
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