
Operating System:
Chap5 Process Scheduling

National Tsing-Hua University
2016, Fall Semester

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 2

Overview
 Basic Concepts
 Scheduling Algorithms
 Special Scheduling Issues
 Scheduling Case Study

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 3

Basic Concepts
 The idea of multiprogramming:

 Keep several processes in memory. Every time one process
has to wait, another process takes over the use of the CPU

 CPU-I/O burst cycle: Process execution consists of a
cycle of CPU execution and I/O wait (i.e., CPU burst
and I/O burst).
 Generally, there is a large number of short CPU bursts, and

a small number of long CPU bursts
 A I/O-bound program would typically has many very short

CPU bursts
 A CPU-bound program might have a few long CPU bursts

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 4

CPU – I/O Burst Cycle

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 5

Histogram of CPU-Burst Times

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 6

CPU Scheduler

new
task

scheduler ready

running waiting terminating
tasks

signal
events

 Selects from ready queue to execute (i.e.
allocates a CPU for the selected process)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 7

Preemptive vs. Non-preemptive
 CPU scheduling decisions may take place when a

process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Non-preemptive scheduling:
 Scheduling under 1 and 4 (no choice in terms of scheduling)
 The process keeps the CPU until it is terminated or

switched to the waiting state
 E.g., Window 3.x

 Preemptive scheduling:
 Scheduling under all cases
 E.g., Windows 95 and subsequent versions, Mac OS X

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 8

Preemptive Issues
 Inconsistent state of shared data
 Require process synchronization (Chap6)
 incurs a cost associated with access to shared data

 Affect the design of OS kernel
 the process is preempted in the middle of critical

changes (for instance, I/O queues) and the kernel
(or the device driver) needs to read or modify the
same structure?

Unix solution: waiting either for a system call to
complete or for an I/O block to take place before
doing a context switch (disable interrupt)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 9

Dispatcher
 Dispatcher module gives control of the CPU to

the process selected by scheduler
 switching context
 jumping to the proper location in the selected

program
 Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running
 Scheduling time
 Interrupt re-enabling time
 Context switch time

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 10

Scheduling Algorithms

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 11

Scheduling Criteria
 CPU utilization

 theoretically: 0%~100%
 real systems: 40% (light)~90% (heavy)

 Throughput
 number of completed processes per time unit

 Turnaround time
 submission ~ completion

 Waiting time
 total waiting time in the ready queue

 Response time
 submission ~ the first response is produced

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 12

Algorithms
 First-Come, First-Served (FCFS) scheduling

 Shortest-Job-First (SJF) scheduling

 Priority scheduling

 Round-Robin scheduling

 Multilevel queue scheduling

 Multilevel feedback queue scheduling

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 13

FCFS Scheduling

 Process (Burst Time) in arriving order:
P1 (24), P2 (3), P3 (3)

 The Gantt Chart of the schedule

 Waiting time: P1 = 0, P2 = 24, P3 = 27
 Average Waiting Time (AWT): (0+24+27) / 3 = 17
 Convoy effect: short processes behind a long process

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 14

FCFS Scheduling

 Process (Burst Time) in arriving order:
P2 (3), P3 (3), P1 (24)

 The Gantt Chart of the schedule

 Waiting time: P1 = 6, P2 = 0, P3 = 3
 Average Waiting Time (AWT): (6+0+3) / 3 = 3

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 15

Shortest-Job-First (SJF) Scheduling
 Associate with each process the length of its next CPU

burst
 A process with shortest burst length gets the CPU first
 SJF provides the minimum average waiting time

(optimal!)
 Two schemes

 Non-preemptive – once CPU given to a process, it cannot be
preempted until its completion

 Preemptive – if a new process arrives with shorter burst
length, preemption happens

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 16

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

0

Schedule

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 17

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

P1

0 7

Schedule

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 18

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=7

P1

0

P2 (4) P4 (4) P3 (1)

7

Schedule
P3

8

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 19

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=8

P1

0

P2 (4) P4 (4)

7

Schedule
P3

8

P2

12

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 20

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=12

P1

0

P2 P4 P3

7 8 12 16

Schedule

Wait time = completion time – arrival time – run time (burst time)
AWT = [(7-0-7)+(12-2-4)+(8-4-1)+(16-5-4)]/4 = (0+6+3+7)/4 = 4
Response Time: P1=0, P2=6, P3=3, P4=7

P4 (4)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 21

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

0

Schedule
P1

7

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 22

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=2

P1

0

P2 (4)

2

Schedule

P1 (5)

P2

6

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 23

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=4

P1

0

P2 (2)

P3

2

Schedule

P1 (5)

4

P3(1)

P2

5

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 24

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=5

P1

0

P2 (2) P4 (4)

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 25

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=7

P1

0

P4 (4)

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

P4

11

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 26

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=11

P1

0

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

P4 P1

11 16
Wait time = completion time – arrival time – run time (burst time)
AWT = [(16-0-7)+(7-2-4)+(5-4-1)+(11-5-4)]/4 = (9+1+0+2)/4 = 3
Response Time: P1=0, P2=0, P3=0, P4=2

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 27

Approximate Shortest-Job-First (SJF)
 SJF difficulty: no way to know length of the

next CPU burst
 Approximate SJF: the next burst can be

predicted as an exponential average of the
measured length of previous CPU bursts

...)
2
1()

2
1()

2
1(

...α)α1(α)α1(α

2
3

1
2

2
2

1

+++=

+−+−+=

−−

−−

nnn

nnn

ttt

ttt
1/2

Commonly,
=α

nnn t τ)α1(ατ 1 −+=+ history
new one

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 28

Exponential predication of next CPU burst

2
4
6
8
10
12

burst length

time

8 6 6 5 9 11
CPU burst tn

guess τn

目前無法顯示此圖像。

t0 t1 t2 t3 t4 t5 t6

10
6 4 6 4 13 13 13

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 29

Priority Scheduling
 A priority number is associated with each process
 The CPU is allocated to the highest priority process

 Preemptive
 Non-preemptive

 SJF is a priority scheduling where priority is the
predicted next CPU burst time

 Problem: starvation (low priority processes never
execute)
 e.g. IBM 7094 shutdown at 1973, a 1967-process never run)

 Solution: aging (as time progresses increase the priority
of processes)
 e.g. increase priority by 1 every 15 minutes

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 30

Round-Robin (RR) Scheduling
 Each process gets a small unit of CPU time

(time quantum), usually 10~100 ms
 After TQ elapsed, process is preempted and

added to the end of the ready queue
 Performance
 TQ large  FIFO
 TQ small  (context switch) overhead increases

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 31

RR Scheduling (TQ = 20)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 32

Multilevel Queue Scheduling
 Ready queue is partitioned into separate queues
 Each queue has its own scheduling algorithm
 Scheduling must be done between queues

 Fixed priority scheduling: possibility of starvation
 Time slice – each queue gets a certain amount of CPU time

(e.g. 80%, 20%)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 33

Multilevel Feedback Queue Scheduling
 A process can move between the various

queues; aging can be implemented
 Idea: separate processes according to the

characteristic of their CPU burst
 I/O-bound and interactive processes in higher

priority queue  short CPU burst
 CPU-bound processes in lower priority queue

long CPU burst

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 34

Multilevel Feedback Queue Example

 A new job enters Q0. Algorithm: FCFS. If it does not
finish in 8 ms CPU time, job is moved to Q1

 At Q1 is again served FCFS and receives 16 ms TQ.
If it still does not finish in 16 ms, it is preempted
and moved to Q2

 Qi only gets executed if Q0 ~Qi-1 is empty

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 35

Multilevel Feedback Queue
 In general, multilevel feedback queue

scheduler is defined by the following
parameters:
Number of queues
Scheduling algorithm for each queue
Method used to determine when to

upgrade a process
Method used to determine when to

demote a process

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 36

Evaluation Methods
 Deterministic modeling – takes a particular

predetermined workload and defines the
performance of each algorithm for that workload
 Cannot be generalized

 Queueing model – mathematical analysis
 Simulation – random-number generator or trace

tapes for workload generation
 Implementation – the only completely accurate way

for algorithm evaluation

Chapter5 Process Scheduling

Review Slides (I)
 Preemptive scheduling vs Non-preemptive

scheduling?
 Issues of preemptive scheduling
 Turnaround time? Waiting time? Response time?

Throughput?
 Scheduling algorithms

 FCFS
 Preemptive SJF, Nonpreemptive SJF
 Priority scheduling
 RR
 Multilevel queue
 Multilevel feedback queue

Operating System Concepts – NTHU LSA Lab 37

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 38

Multi-Processor Scheduling
Multi-Core Processor Scheduling
Real-Time Scheduling

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 39

Multi-Processor Scheduling
 Asymmetric multiprocessing:
 all system activities are handled by a processor

(alleviating the need for data sharing)
 the others only execute user code (allocated by

the master)
 far simple than SMP

 Symmetric multiprocessing (SMP):
 each processor is self-scheduling
 all processes in common ready queue, or each

has its own private queue of ready processes
 need synchronization mechanism

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 40

Processor affinity
 Processor affinity: a process has an affinity for

the processor on which it is currently running
A process populates its recent used data in cache

memory of its running processor
 Cache invalidation and repopulation has high cost

 Solution
 soft affinity:

possible to migrate
 between processors

 hard affinity:
not to migrate to other

 processor

Parallel Programming – NTHU LSA Lab Memory

Core1 Cache Core2 Cache

Core1 Core2

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 41

NUMA and CPU Scheduling
NUMA (non-uniform memory access):
Occurs in systems containing combined CPU and

memory boards
 CPU scheduler and memory-placement works together
A process (assigned affinity to a CPU) can be allocated

memory on the board where that CPU resides

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 42

Load-balancing
 Keep the workload evenly distributed across all

processors
 Only necessary on systems where each processor has its

own private queue of eligible processes to execute
 Two strategies:

 Push migration: move (push) processes from overloaded
to idle or less-busy processor

 Pull migration: idle processor pulls a waiting task from a
busy processor

 Often implemented in parallel
 Load balancing often counteracts the benefits of

processor affinity

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 43

Multi-core Processor Scheduling
 Multi-core Processor:

 Faster and consume less power
 memory stall: When access memory, it spends a significant

amount of time waiting for the data become available. (e.g.
cache miss)

 Multi-threaded multi-core systems:
 Two (or more) hardware threads are assigned to each core

(i.e. Intel Hyper-threading)
 Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 44

Multi-core Processor Scheduling
 Two ways to multithread a processor:

 coarse-grained: switch to another thread when a memory
stall occurs. The cost is high as the instruction pipeline
must be flushed.

 fine-grained (interleaved): switch between threads at the
boundary of an instruction cycle. The architecture design
includes logic for thread switching – cost is low.

 Scheduling for Multi-threaded multi-core systems
 1st level: Choose which software thread to run on each

hardware thread (logical processor)
 2nd level: How each core decides which hardware thread

to run

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 45

Real-Time Scheduling
 Real-time does not mean speed, but keeping

deadlines
 Soft real-time requirements:
Missing the deadline is unwanted, but is not

immediately critical
 Examples: multimedia streaming

 Hard real-time requirements:
Missing the deadline results in a fundamental failure
 Examples: nuclear power plant controller

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 46

Real-Time Scheduling Algorithms
 FCFS scheduling algorithm – Non-RTS

 T1 = (0, 4, 10) == (Ready, Execution, Deadline)
 T2 = (1, 2, 4)

 Rate-Monotonic (RM) algorithm
 Shorter period, higher priority
 Fixed-priority RTS scheduling algorithm

 Earliest-Deadline-First (EDF) algorithm
 Earlier deadline, higher priority
 Dynamic priority algorithm

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 47

Rate-Monotonic (RM) Scheduling

 Fixed-priority schedule.
All jobs of the same task have same priority.
 The task’s priority is fixed.

 The shorter period, the higher priority.
 Ex: T1=(4,1), T2=(5,2), T3=(20,5) (Period, Execution)

∵period: 4 < 5 < 20
∴priority: T1 > T2 > T3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 48

Early Deadline First (EDF) Scheduler

 Dynamic-priority scheduler
 Task’s priority is not fixed
 Task’s priority is determined by deadline.

 Ex: T1=(2,0.9), T2=(5,2.3)
 time:

0.9

1.1

0.9

1.2

0.9

1.0

0.9

1.1

0.9

0.2
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0

T1

T2

0.9 2 2.9 4.1 5 6 6.9 8 8.9
delay

Chapter5 Process Scheduling

Review Slides (II)
 What is processor affinity?
 Real-time scheduler
 Rate-Monotonic
 Earliest deadline first

Operating System Concepts – NTHU LSA Lab 49

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 50

Operating System Examples
 Solaris
 Windows
 Linux

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 51

Solaris Scheduler
 Priority-based multilevel feedback

queue scheduling
 Six classes of scheduling:

 real-time, system, time sharing,
interactive, fair share, fixed priority

 Each class has its own priorities
and scheduling algorithm

 The scheduler converts the class-
specific priorities into global
priorities

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 52

Solaris Scheduler Example
(time sharing, interactive)
 Inverse relationship between priorities and time slices:

the higher the priority, the smaller the time slice
 Time quantum expired: the new priority of a thread that has

used its entire time quantum without blocking
 Return from sleep: the new priority of a thread that is

returning from sleeping (I/O wait)

Higher priority New priority

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 53

Windows XP Scheduler
 Similar to Solaris: Multilevel feedback queue
 Scheduling: from the highest priority queue to lowest

priority queue (priority level: 0 ~ 31)
 The highest-priority thread always run
 Round-robin in each priority queue

 Priority changes dynamically except for Real-Time class
real-time high above

normal normal below
normal idle priority

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

class
relative

Variable Class Real-Time Class

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 54

Linux Scheduler
 Preemptive priority based scheduling

 But allows only user mode processes to be preempted
 Two separate process priority ranges
 Lower values indicate higher priorities
 Higher priority with longer time quantum

 Real-time tasks: (priority range 0~99)
 static priorities

 Other tasks: (priority range 100~140)
 dynamic priorities based on task interactivity

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 55

Linux Scheduler
 Scheduling algorithm

 A runnable task is eligible for execution as long as it has
remaining time quantum

 When a task exhausted its time quantum, it is considered
expired and not eligible for execution

 New priority and time quantum is given after a task is expired

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 56

Reading Material & HW
 Chap 5
 Problems
 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.10, 5.14, 5.15, 5.22

	Operating System:�Chap5 Process Scheduling
	Overview
	Basic Concepts
	CPU – I/O Burst Cycle
	Histogram of CPU-Burst Times
	CPU Scheduler
	Preemptive vs. Non-preemptive
	Preemptive Issues
	Dispatcher
	Scheduling Algorithms
	Scheduling Criteria
	Algorithms
	FCFS Scheduling
	FCFS Scheduling
	Shortest-Job-First (SJF) Scheduling
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Approximate Shortest-Job-First (SJF)
	Exponential predication of next CPU burst
	Priority Scheduling
	Round-Robin (RR) Scheduling
	RR Scheduling (TQ = 20)
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Multilevel Feedback Queue Example
	Multilevel Feedback Queue
	Evaluation Methods
	Review Slides (I)
	Multi-Processor Scheduling �Multi-Core Processor Scheduling�Real-Time Scheduling
	Multi-Processor Scheduling
	Processor affinity
	NUMA and CPU Scheduling
	Load-balancing
	Multi-core Processor Scheduling
	Multi-core Processor Scheduling
	Real-Time Scheduling
	Real-Time Scheduling Algorithms
	Rate-Monotonic (RM) Scheduling
	Early Deadline First (EDF) Scheduler
	Review Slides (II)
	投影片編號 50
	Solaris Scheduler
	Solaris Scheduler Example �(time sharing, interactive)
	Windows XP Scheduler
	Linux Scheduler
	Linux Scheduler
	Reading Material & HW

