
Operating System:
Chap5 Process Scheduling

National Tsing-Hua University
2016, Fall Semester

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 2

Overview
 Basic Concepts
 Scheduling Algorithms
 Special Scheduling Issues
 Scheduling Case Study

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 3

Basic Concepts
 The idea of multiprogramming:

 Keep several processes in memory. Every time one process
has to wait, another process takes over the use of the CPU

 CPU-I/O burst cycle: Process execution consists of a
cycle of CPU execution and I/O wait (i.e., CPU burst
and I/O burst).
 Generally, there is a large number of short CPU bursts, and

a small number of long CPU bursts
 A I/O-bound program would typically has many very short

CPU bursts
 A CPU-bound program might have a few long CPU bursts

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 4

CPU – I/O Burst Cycle

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 5

Histogram of CPU-Burst Times

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 6

CPU Scheduler

new
task

scheduler ready

running waiting terminating
tasks

signal
events

 Selects from ready queue to execute (i.e.
allocates a CPU for the selected process)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 7

Preemptive vs. Non-preemptive
 CPU scheduling decisions may take place when a

process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Non-preemptive scheduling:
 Scheduling under 1 and 4 (no choice in terms of scheduling)
 The process keeps the CPU until it is terminated or

switched to the waiting state
 E.g., Window 3.x

 Preemptive scheduling:
 Scheduling under all cases
 E.g., Windows 95 and subsequent versions, Mac OS X

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 8

Preemptive Issues
 Inconsistent state of shared data
 Require process synchronization (Chap6)
 incurs a cost associated with access to shared data

 Affect the design of OS kernel
 the process is preempted in the middle of critical

changes (for instance, I/O queues) and the kernel
(or the device driver) needs to read or modify the
same structure?

Unix solution: waiting either for a system call to
complete or for an I/O block to take place before
doing a context switch (disable interrupt)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 9

Dispatcher
 Dispatcher module gives control of the CPU to

the process selected by scheduler
 switching context
 jumping to the proper location in the selected

program
 Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running
 Scheduling time
 Interrupt re-enabling time
 Context switch time

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 10

Scheduling Algorithms

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 11

Scheduling Criteria
 CPU utilization

 theoretically: 0%~100%
 real systems: 40% (light)~90% (heavy)

 Throughput
 number of completed processes per time unit

 Turnaround time
 submission ~ completion

 Waiting time
 total waiting time in the ready queue

 Response time
 submission ~ the first response is produced

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 12

Algorithms
 First-Come, First-Served (FCFS) scheduling

 Shortest-Job-First (SJF) scheduling

 Priority scheduling

 Round-Robin scheduling

 Multilevel queue scheduling

 Multilevel feedback queue scheduling

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 13

FCFS Scheduling

 Process (Burst Time) in arriving order:
P1 (24), P2 (3), P3 (3)

 The Gantt Chart of the schedule

 Waiting time: P1 = 0, P2 = 24, P3 = 27
 Average Waiting Time (AWT): (0+24+27) / 3 = 17
 Convoy effect: short processes behind a long process

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 14

FCFS Scheduling

 Process (Burst Time) in arriving order:
P2 (3), P3 (3), P1 (24)

 The Gantt Chart of the schedule

 Waiting time: P1 = 6, P2 = 0, P3 = 3
 Average Waiting Time (AWT): (6+0+3) / 3 = 3

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 15

Shortest-Job-First (SJF) Scheduling
 Associate with each process the length of its next CPU

burst
 A process with shortest burst length gets the CPU first
 SJF provides the minimum average waiting time

(optimal!)
 Two schemes

 Non-preemptive – once CPU given to a process, it cannot be
preempted until its completion

 Preemptive – if a new process arrives with shorter burst
length, preemption happens

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 16

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

0

Schedule

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 17

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

P1

0 7

Schedule

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 18

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=7

P1

0

P2 (4) P4 (4) P3 (1)

7

Schedule
P3

8

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 19

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=8

P1

0

P2 (4) P4 (4)

7

Schedule
P3

8

P2

12

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 20

Non-Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=12

P1

0

P2 P4 P3

7 8 12 16

Schedule

Wait time = completion time – arrival time – run time (burst time)
AWT = [(7-0-7)+(12-2-4)+(8-4-1)+(16-5-4)]/4 = (0+6+3+7)/4 = 4
Response Time: P1=0, P2=6, P3=3, P4=7

P4 (4)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 21

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=0

P1 (7)

0

Schedule
P1

7

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 22

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=2

P1

0

P2 (4)

2

Schedule

P1 (5)

P2

6

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 23

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=4

P1

0

P2 (2)

P3

2

Schedule

P1 (5)

4

P3(1)

P2

5

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 24

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=5

P1

0

P2 (2) P4 (4)

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 25

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=7

P1

0

P4 (4)

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

P4

11

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 26

Preemptive SJF Example

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1

 P4 5 4

Ready queue: t=11

P1

0

Schedule

P1 (5)

P3

2 4

P2

5

P2

7

P4 P1

11 16
Wait time = completion time – arrival time – run time (burst time)
AWT = [(16-0-7)+(7-2-4)+(5-4-1)+(11-5-4)]/4 = (9+1+0+2)/4 = 3
Response Time: P1=0, P2=0, P3=0, P4=2

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 27

Approximate Shortest-Job-First (SJF)
 SJF difficulty: no way to know length of the

next CPU burst
 Approximate SJF: the next burst can be

predicted as an exponential average of the
measured length of previous CPU bursts

...)
2
1()

2
1()

2
1(

...α)α1(α)α1(α

2
3

1
2

2
2

1

+++=

+−+−+=

−−

−−

nnn

nnn

ttt

ttt
1/2

Commonly,
=α

nnn t τ)α1(ατ 1 −+=+ history
new one

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 28

Exponential predication of next CPU burst

2
4
6
8
10
12

burst length

time

8 6 6 5 9 11
CPU burst tn

guess τn

目目目目目目目目目目

t0 t1 t2 t3 t4 t5 t6

10
6 4 6 4 13 13 13

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 29

Priority Scheduling
 A priority number is associated with each process
 The CPU is allocated to the highest priority process

 Preemptive
 Non-preemptive

 SJF is a priority scheduling where priority is the
predicted next CPU burst time

 Problem: starvation (low priority processes never
execute)
 e.g. IBM 7094 shutdown at 1973, a 1967-process never run)

 Solution: aging (as time progresses increase the priority
of processes)
 e.g. increase priority by 1 every 15 minutes

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 30

Round-Robin (RR) Scheduling
 Each process gets a small unit of CPU time

(time quantum), usually 10~100 ms
 After TQ elapsed, process is preempted and

added to the end of the ready queue
 Performance
 TQ large FIFO
 TQ small (context switch) overhead increases

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 31

RR Scheduling (TQ = 20)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 32

Multilevel Queue Scheduling
 Ready queue is partitioned into separate queues
 Each queue has its own scheduling algorithm
 Scheduling must be done between queues

 Fixed priority scheduling: possibility of starvation
 Time slice – each queue gets a certain amount of CPU time

(e.g. 80%, 20%)

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 33

Multilevel Feedback Queue Scheduling
 A process can move between the various

queues; aging can be implemented
 Idea: separate processes according to the

characteristic of their CPU burst
 I/O-bound and interactive processes in higher

priority queue short CPU burst
 CPU-bound processes in lower priority queue

long CPU burst

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 34

Multilevel Feedback Queue Example

 A new job enters Q0. Algorithm: FCFS. If it does not
finish in 8 ms CPU time, job is moved to Q1

 At Q1 is again served FCFS and receives 16 ms TQ.
If it still does not finish in 16 ms, it is preempted
and moved to Q2

 Qi only gets executed if Q0 ~Qi-1 is empty

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 35

Multilevel Feedback Queue
 In general, multilevel feedback queue

scheduler is defined by the following
parameters:
Number of queues
Scheduling algorithm for each queue
Method used to determine when to

upgrade a process
Method used to determine when to

demote a process

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 36

Evaluation Methods
 Deterministic modeling – takes a particular

predetermined workload and defines the
performance of each algorithm for that workload
 Cannot be generalized

 Queueing model – mathematical analysis
 Simulation – random-number generator or trace

tapes for workload generation
 Implementation – the only completely accurate way

for algorithm evaluation

Chapter5 Process Scheduling

Review Slides (I)
 Preemptive scheduling vs Non-preemptive

scheduling?
 Issues of preemptive scheduling
 Turnaround time? Waiting time? Response time?

Throughput?
 Scheduling algorithms

 FCFS
 Preemptive SJF, Nonpreemptive SJF
 Priority scheduling
 RR
 Multilevel queue
 Multilevel feedback queue

Operating System Concepts – NTHU LSA Lab 37

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 38

Multi-Processor Scheduling
Multi-Core Processor Scheduling
Real-Time Scheduling

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 39

Multi-Processor Scheduling
 Asymmetric multiprocessing:
 all system activities are handled by a processor

(alleviating the need for data sharing)
 the others only execute user code (allocated by

the master)
 far simple than SMP

 Symmetric multiprocessing (SMP):
 each processor is self-scheduling
 all processes in common ready queue, or each

has its own private queue of ready processes
 need synchronization mechanism

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 40

Processor affinity
 Processor affinity: a process has an affinity for

the processor on which it is currently running
A process populates its recent used data in cache

memory of its running processor
 Cache invalidation and repopulation has high cost

 Solution
 soft affinity:

possible to migrate
 between processors

 hard affinity:
not to migrate to other

 processor

Parallel Programming – NTHU LSA Lab Memory

Core1 Cache Core2 Cache

Core1 Core2

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 41

NUMA and CPU Scheduling
NUMA (non-uniform memory access):
Occurs in systems containing combined CPU and

memory boards
 CPU scheduler and memory-placement works together
A process (assigned affinity to a CPU) can be allocated

memory on the board where that CPU resides

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 42

Load-balancing
 Keep the workload evenly distributed across all

processors
 Only necessary on systems where each processor has its

own private queue of eligible processes to execute
 Two strategies:

 Push migration: move (push) processes from overloaded
to idle or less-busy processor

 Pull migration: idle processor pulls a waiting task from a
busy processor

 Often implemented in parallel
 Load balancing often counteracts the benefits of

processor affinity

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 43

Multi-core Processor Scheduling
 Multi-core Processor:

 Faster and consume less power
 memory stall: When access memory, it spends a significant

amount of time waiting for the data become available. (e.g.
cache miss)

 Multi-threaded multi-core systems:
 Two (or more) hardware threads are assigned to each core

(i.e. Intel Hyper-threading)
 Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 44

Multi-core Processor Scheduling
 Two ways to multithread a processor:

 coarse-grained: switch to another thread when a memory
stall occurs. The cost is high as the instruction pipeline
must be flushed.

 fine-grained (interleaved): switch between threads at the
boundary of an instruction cycle. The architecture design
includes logic for thread switching – cost is low.

 Scheduling for Multi-threaded multi-core systems
 1st level: Choose which software thread to run on each

hardware thread (logical processor)
 2nd level: How each core decides which hardware thread

to run

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 45

Real-Time Scheduling
 Real-time does not mean speed, but keeping

deadlines
 Soft real-time requirements:
Missing the deadline is unwanted, but is not

immediately critical
 Examples: multimedia streaming

 Hard real-time requirements:
Missing the deadline results in a fundamental failure
 Examples: nuclear power plant controller

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 46

Real-Time Scheduling Algorithms
 FCFS scheduling algorithm – Non-RTS

 T1 = (0, 4, 10) == (Ready, Execution, Deadline)
 T2 = (1, 2, 4)

 Rate-Monotonic (RM) algorithm
 Shorter period, higher priority
 Fixed-priority RTS scheduling algorithm

 Earliest-Deadline-First (EDF) algorithm
 Earlier deadline, higher priority
 Dynamic priority algorithm

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 47

Rate-Monotonic (RM) Scheduling

 Fixed-priority schedule.
All jobs of the same task have same priority.
 The task’s priority is fixed.

 The shorter period, the higher priority.
 Ex: T1=(4,1), T2=(5,2), T3=(20,5) (Period, Execution)

∵period: 4 < 5 < 20
∴priority: T1 > T2 > T3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 48

Early Deadline First (EDF) Scheduler

 Dynamic-priority scheduler
 Task’s priority is not fixed
 Task’s priority is determined by deadline.

 Ex: T1=(2,0.9), T2=(5,2.3)
 time:

0.9

1.1

0.9

1.2

0.9

1.0

0.9

1.1

0.9

0.2
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0

T1

T2

0.9 2 2.9 4.1 5 6 6.9 8 8.9
delay

Chapter5 Process Scheduling

Review Slides (II)
 What is processor affinity?
 Real-time scheduler
 Rate-Monotonic
 Earliest deadline first

Operating System Concepts – NTHU LSA Lab 49

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 50

Operating System Examples
 Solaris
 Windows
 Linux

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 51

Solaris Scheduler
 Priority-based multilevel feedback

queue scheduling
 Six classes of scheduling:

 real-time, system, time sharing,
interactive, fair share, fixed priority

 Each class has its own priorities
and scheduling algorithm

 The scheduler converts the class-
specific priorities into global
priorities

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 52

Solaris Scheduler Example
(time sharing, interactive)
 Inverse relationship between priorities and time slices:

the higher the priority, the smaller the time slice
 Time quantum expired: the new priority of a thread that has

used its entire time quantum without blocking
 Return from sleep: the new priority of a thread that is

returning from sleeping (I/O wait)

Higher priority New priority

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 53

Windows XP Scheduler
 Similar to Solaris: Multilevel feedback queue
 Scheduling: from the highest priority queue to lowest

priority queue (priority level: 0 ~ 31)
 The highest-priority thread always run
 Round-robin in each priority queue

 Priority changes dynamically except for Real-Time class
real-time high above

normal normal below
normal idle priority

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

class
relative

Variable Class Real-Time Class

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 54

Linux Scheduler
 Preemptive priority based scheduling

 But allows only user mode processes to be preempted
 Two separate process priority ranges
 Lower values indicate higher priorities
 Higher priority with longer time quantum

 Real-time tasks: (priority range 0~99)
 static priorities

 Other tasks: (priority range 100~140)
 dynamic priorities based on task interactivity

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 55

Linux Scheduler
 Scheduling algorithm

 A runnable task is eligible for execution as long as it has
remaining time quantum

 When a task exhausted its time quantum, it is considered
expired and not eligible for execution

 New priority and time quantum is given after a task is expired

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 56

Reading Material & HW
 Chap 5
 Problems
 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.10, 5.14, 5.15, 5.22

	Operating System:�Chap5 Process Scheduling
	Overview
	Basic Concepts
	CPU – I/O Burst Cycle
	Histogram of CPU-Burst Times
	CPU Scheduler
	Preemptive vs. Non-preemptive
	Preemptive Issues
	Dispatcher
	Scheduling Algorithms
	Scheduling Criteria
	Algorithms
	FCFS Scheduling
	FCFS Scheduling
	Shortest-Job-First (SJF) Scheduling
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Non-Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Preemptive SJF Example
	Approximate Shortest-Job-First (SJF)
	Exponential predication of next CPU burst
	Priority Scheduling
	Round-Robin (RR) Scheduling
	RR Scheduling (TQ = 20)
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Multilevel Feedback Queue Example
	Multilevel Feedback Queue
	Evaluation Methods
	Review Slides (I)
	Multi-Processor Scheduling �Multi-Core Processor Scheduling�Real-Time Scheduling
	Multi-Processor Scheduling
	Processor affinity
	NUMA and CPU Scheduling
	Load-balancing
	Multi-core Processor Scheduling
	Multi-core Processor Scheduling
	Real-Time Scheduling
	Real-Time Scheduling Algorithms
	Rate-Monotonic (RM) Scheduling
	Early Deadline First (EDF) Scheduler
	Review Slides (II)
	投影片編號 50
	Solaris Scheduler
	Solaris Scheduler Example �(time sharing, interactive)
	Windows XP Scheduler
	Linux Scheduler
	Linux Scheduler
	Reading Material & HW

