
Operating System:
Chap4 Multithreaded
Programming
National Tsing-Hua University
2016, Fall Semester

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 2

Overview
 Thread Introduction
 Multithreading Models
 Threaded Case Study
 Threading Issues

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 3 Operating System Concepts – NTHU LSA Lab 3

Threads
 A.k.a lightweight process:

basic unit of CPU utilization

 All threads belonging to the
same process share
code section, data section,

and OS resources (e.g. open
files and signals)

 But each thread has its own
(thread control block)
 thread ID, program counter,

register set, and a stack

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 4

Motivation
 Example: a web browser

 One thread displays contents while the other thread
receives data from network

 Example: a web server
 One request / process: poor performance
 One request / thread: better performance as code and

resource sharing
 Example: RPC server

 One RPC request / thread

When a request is issued,
creates (or notifies) a thread
to serve the request.

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 5

Benefits of Multithreading
 Responsiveness: allow a program to continue running

even if part of it is blocked or is performing a lengthy
operation

 Resource sharing: several different threads of activity
all within the same address space

 Utilization of MP arch.: Several thread may be running
in parallel on different processors

 Economy: Allocating memory and resources for process
creation is costly. In Solaris, creating a process is about
30 times slower than is creating a thread, and context
switching is about five times slower. A register set
switch is still required, but no memory-management
related work is needed

Chapter4 Multithreaded

Why Thread?
 Lower creation/management cost vs. Process

 Faster inter-process communication vs. MPI

Parallel Programming – NTHU LSA Lab

platform fork() pthread_create() speedup
AMD 2.4 GHz Opteron 17.6 1.4 15.6x
IBM 1.5 GHz POWER4 104.5 2.1 49.8x
INTEL 2.4 GHz Xeon 54.9 1.6 34.3x
INTEL 1.4 GHz Itanium2 54.5 2.0 27.3x

platform MPI Shared
Memory

BW (GB/sec)

Pthreads Worst Case
Memory-to-CPU

BW (GB/sec)

speedup

AMD 2.4 GHz Opteron 1.2 5.3 4.4x
IBM 1.5 GHz POWER4 2.1 4 1.9x
INTEL 2.4 GHz Xeon 0.3 4.3 14.3x
INTEL 1.4 GHz Itanium2 1.8 6.4 3.6x

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 7

Multithcore Programming
 Multithreaded programming provides a mechanism

for more efficient use of multiple cores and
improved concurrency (threads can run in parallel)

 Multicore systems putting pressure on system
designers and application programmers
 OS designers: scheduling algorithms use cores to allow the

parallel execution

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 8

Challenges in Multicore Programming
 Dividing activities: divide program into

concurrent tasks

 Balance: evenly distribute tasks to cores

 Data splitting: divide data accessed and
manipulated by the tasks

 Data dependency: synchronize data access

 Testing and debugging

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 9

User vs. Kernel Threads

 User threads – thread management done by user-
level threads library
 POSIX Pthreads
 Win32 threads
 Java threads

 Kernel threads – supported by the kernel (OS)
directly
 Windows 2000 (NT)
 Solaris
 Linux
 Tru64 UNIX

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 10

User vs. Kernel Threads

 User threads
 Thread library provides support for thread creation,

scheduling, and deletion
 Generally fast to create and manage
 If the kernel is single-threaded, a user-thread blocks

entire process blocks even if other threads are ready to
run

 Kernel threads
 The kernel performs thread creation, scheduling, etc.
 Generally slower to create and manage
 If a thread is blocked, the kernel can schedule another

thread for execution

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 11

Multithreading Models
 Many-to-One
 One-to-One
 Many-to-Many

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 12

Many-to-One
 Many user-level threads mapped to single

kernel thread
 Used on systems that do not support kernel

threads
 Thread management is done in user space, so

it is efficient

 The entire process will block if a thread
makes a blocking system call
 Only one thread can access the kernel at a

time, multiple threads are unable to run in
parallel on multiprocessors

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 13

One-to-one
 Each user-level thread maps to a kernel thread

 There could be a limit on number of kernel threads

More concurrency

Overhead: Creating a thread requires creating the
corresponding kernel thread

 Examples
 - Windows XP/NT/2000
 - Linux
 - Solaris 9 and later

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 14

Many-to-Many
 Multiplexes many user-level threads to a

smaller or equal number of kernel threads
 Allows the developer to create as many user

threads as wished

The corresponding kernel threads can run in parallel
on a multiprocessor

When a thread performs a blocking call, the kernel
can schedule another thread for execution.

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 15

Review Slides (I)

 Process context swap? Thread context swap?
 Benefit of multithreading?

 Responsive, Economy, resource utilization, resource sharing

 Challenges of multithreading programming?
 User threads & kernel threads? Differences?
 Threading model?

 Many-to-one
 One-to-one
 Many-to-many

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 16

Case Study

Thread libraries
Pthreads
Java threads

OS examples
WinXP
Linux

Chapter4 Multithreaded

Shared-Memory Programming
 Definition: Processes communicate or work together

with each other through a shared memory space
which can be accessed by all processes
 Faster & more efficient than message passing

 Many issues as well:
 Synchronization
 Deadlock
 Cache coherence

 Programming techniques:
 Parallelizing compiler
 Unix processes
 Threads (Pthread, Java)

Operating System Concepts – NTHU LSA Lab 17

Chapter4 Multithreaded

What is Pthread?
 Historically, hardware vendors have implemented

their own proprietary versions of threads
 POSIX (Potable Operating System Interface)

standard is specified for portability across Unix-like
systems
 Similar concept as MPI for message passing libraries

 Pthread is the implementation of POSIX standard
for thread

Operating System Concepts – NTHU LSA Lab 18

Chapter4 Multithreaded

Pthread Creation
 pthread_create(thread,attr,routine,arg)

 thread: An unique identifier (token) for the new thread
 attr: It is used to set thread attributes. NULL for the default values
 routine: The routine that the thread will execute once it is created
 arg: A single argument that may be passed to routine

Operating System Concepts – NTHU LSA Lab

main program

pthread_create(&thread1, NULL, func1, &arg);

pthread_join(thread1, *status);

…

…
…

…

…

thread1

func(&arg) {

 return(*status)
}

…
…

19

Chapter4 Multithreaded

Example
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadId) {
 long* data = static_cast <long*> threadId;
 printf("Hello World! It's me, thread #%ld!\n", *data);
 pthread_exit(NULL);
}
int main (int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 for(long tid=0; tid<NUM_THREADS; tid++){
 pthread_create(&threads[tid], NULL, PrintHello, (void *)&tid);
 }
 /* Last thing that main() should do */
 pthread_exit(NULL);
}

Operating System Concepts – NTHU LSA Lab 20

Chapter4 Multithreaded

Pthread Joining & Detaching
 pthread_join(threadId, status)

 Blocks until the specified threadId thread terminates
 One way to accomplish synchronization between threads
 Example: to create a pthread barrier

 pthread_detach(threadId)
 Once a thread is detached, it can never be joined
 Detach a thread could free some system resources

Operating System Concepts – NTHU LSA Lab

for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

21

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 22

Java Threads
 Thread is created by

 Extending Thread class

 Implementing the Runnable interface
 Java threads are implemented using a thread library

on the host system
 Win32 threads on Windows
 Pthreads on UNIX-like system

 Thread mapping depends on implementation of the
JVM
 Windows 98/NT: one-on-one model
 Solaris 2: many-to-many model

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 23

Linux Threads
 Linux does not support multithreading
 Vrious Pthreads implementation are available for

user-level
 The fork system call – create a new process and a

copy of the associated data of the parent process
 The clone system call – create a new process and

a link that points to the associated data of the
parent process

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 24

Linux Threads
 A set of flags is used in the clone call for

indication of the level of the sharing
None of the flags is set clone = fork
All flags are set parent and child share everything

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 25

Threading Issues
 Semantics of fork() and exec() system calls.

Duplicate all the threads or not?

 Thread cancellation: Asynchronous or deferred

 Signal handling: Where then should a signal be
delivered?

 Thread pools: Create a number of threads at
process startup.

 Thread specific data: Each thread might need its
own copy of certain data.

 Scheduler activations

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 26

Semantics of fork() and exec()
 Does fork() duplicate only the calling thread

or all threads?
 Some UNIX system support two versions of fork()

 execlp() works the same; replace the entire
process
 If exec() is called immediately after forking, then

duplicating all threads is unnecessary

…
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 ...
...

fork()

T2
P0 P0 P0 P1 P1

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 27

Thread Cancellation
 What happen if a thread determinates before it has

completed?
 E.g, terminate web page loading

 Target thread: a thread that is to be cancelled
 Two general approaches:

 Asynchronous cancellation
One thread terminates the target thread immediately

 Deferred cancellation (default option)
The target thread periodically checks whether it should
be terminated, allowing it an opportunity to terminate
itself in an orderly fashion (canceled safely).
Check at Cancellation points

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 28

 Signal Handling
 Signals (synchronous or asynchronous) are used in UNIX

systems to notify a process that an event has occurred
 Synchronous: illegal memory access
 Asynchronous: <control-C>

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 29

Thread Pools
 Create a number of threads in a pool where

they await work
 Advantages
Usually slightly faster to service a request with an

existing thread than create a new thread
Allows the number of threads in the application(s)

to be bound to the size of the pool

 # of threads: # of CPUs, expected # of
requests, amount of physical memory

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 30

Reading Material & HW
 Chap 4
 Problems
 4.2, 4.3, 4.10, 4.12, 4.13

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 31

Backup

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 32

Windows XP Threads
 Implement the one-to-one mapping
 Each thread contains

 A thread ID
 Register set
 Separate user and kernel stacks
 Private data storage area

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

 Also provide support for a fiber library, that provides
the functionality of the many-to-many model

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 33

Windows XP Threads

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 34

Thread Specific Data
 Allows each thread to have its own copy of

data
 Each transaction assigned a unique number in the

transaction-processing system

 Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 35

Scheduler Activations
 Both M:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

 This communication allows an application to
maintain the correct number kernel threads

	Operating System:�Chap4 Multithreaded Programming
	Overview
	Threads
	Motivation
	Benefits of Multithreading
	Why Thread?
	Multithcore Programming
	Challenges in Multicore Programming
	User vs. Kernel Threads
	User vs. Kernel Threads
	Multithreading Models
	Many-to-One
	One-to-one
	Many-to-Many
	Review Slides (I)
	Case Study
	Shared-Memory Programming
	What is Pthread?
	Pthread Creation
	Example
	Pthread Joining & Detaching
	Java Threads
	Linux Threads
	Linux Threads
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	 Signal Handling
	Thread Pools
	Reading Material & HW
	Backup
	Windows XP Threads
	Windows XP Threads
	Thread Specific Data
	Scheduler Activations

