
Operating System:
Chap4 Multithreaded
Programming
National Tsing-Hua University
2016, Fall Semester

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 2

Overview
 Thread Introduction
 Multithreading Models
 Threaded Case Study
 Threading Issues

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 3 Operating System Concepts – NTHU LSA Lab 3

Threads
 A.k.a lightweight process:

basic unit of CPU utilization

 All threads belonging to the
same process share
code section, data section,

and OS resources (e.g. open
files and signals)

 But each thread has its own
(thread control block)
 thread ID, program counter,

register set, and a stack

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 4

Motivation
 Example: a web browser

 One thread displays contents while the other thread
receives data from network

 Example: a web server
 One request / process: poor performance
 One request / thread: better performance as code and

resource sharing
 Example: RPC server

 One RPC request / thread

When a request is issued,
creates (or notifies) a thread
to serve the request.

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 5

Benefits of Multithreading
 Responsiveness: allow a program to continue running

even if part of it is blocked or is performing a lengthy
operation

 Resource sharing: several different threads of activity
all within the same address space

 Utilization of MP arch.: Several thread may be running
in parallel on different processors

 Economy: Allocating memory and resources for process
creation is costly. In Solaris, creating a process is about
30 times slower than is creating a thread, and context
switching is about five times slower. A register set
switch is still required, but no memory-management
related work is needed

Chapter4 Multithreaded

Why Thread?
 Lower creation/management cost vs. Process

 Faster inter-process communication vs. MPI

Parallel Programming – NTHU LSA Lab

platform fork() pthread_create() speedup
AMD 2.4 GHz Opteron 17.6 1.4 15.6x
IBM 1.5 GHz POWER4 104.5 2.1 49.8x
INTEL 2.4 GHz Xeon 54.9 1.6 34.3x
INTEL 1.4 GHz Itanium2 54.5 2.0 27.3x

platform MPI Shared
Memory

BW (GB/sec)

Pthreads Worst Case
Memory-to-CPU

BW (GB/sec)

speedup

AMD 2.4 GHz Opteron 1.2 5.3 4.4x
IBM 1.5 GHz POWER4 2.1 4 1.9x
INTEL 2.4 GHz Xeon 0.3 4.3 14.3x
INTEL 1.4 GHz Itanium2 1.8 6.4 3.6x

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 7

Multithcore Programming
 Multithreaded programming provides a mechanism

for more efficient use of multiple cores and
improved concurrency (threads can run in parallel)

 Multicore systems putting pressure on system
designers and application programmers
 OS designers: scheduling algorithms use cores to allow the

parallel execution

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 8

Challenges in Multicore Programming
 Dividing activities: divide program into

concurrent tasks

 Balance: evenly distribute tasks to cores

 Data splitting: divide data accessed and
manipulated by the tasks

 Data dependency: synchronize data access

 Testing and debugging

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 9

User vs. Kernel Threads

 User threads – thread management done by user-
level threads library
 POSIX Pthreads
 Win32 threads
 Java threads

 Kernel threads – supported by the kernel (OS)
directly
 Windows 2000 (NT)
 Solaris
 Linux
 Tru64 UNIX

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 10

User vs. Kernel Threads

 User threads
 Thread library provides support for thread creation,

scheduling, and deletion
 Generally fast to create and manage
 If the kernel is single-threaded, a user-thread blocks 

entire process blocks even if other threads are ready to
run

 Kernel threads
 The kernel performs thread creation, scheduling, etc.
 Generally slower to create and manage
 If a thread is blocked, the kernel can schedule another

thread for execution

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 11

Multithreading Models
 Many-to-One
 One-to-One
 Many-to-Many

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 12

Many-to-One
 Many user-level threads mapped to single

kernel thread
 Used on systems that do not support kernel

threads
 Thread management is done in user space, so

it is efficient

 The entire process will block if a thread
makes a blocking system call
 Only one thread can access the kernel at a

time, multiple threads are unable to run in
parallel on multiprocessors

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 13

One-to-one
 Each user-level thread maps to a kernel thread

 There could be a limit on number of kernel threads

More concurrency

Overhead: Creating a thread requires creating the
corresponding kernel thread

 Examples
 - Windows XP/NT/2000
 - Linux
 - Solaris 9 and later

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 14

Many-to-Many
 Multiplexes many user-level threads to a

smaller or equal number of kernel threads
 Allows the developer to create as many user

threads as wished

The corresponding kernel threads can run in parallel
on a multiprocessor

When a thread performs a blocking call, the kernel
can schedule another thread for execution.

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 15

Review Slides (I)

 Process context swap? Thread context swap?
 Benefit of multithreading?

 Responsive, Economy, resource utilization, resource sharing

 Challenges of multithreading programming?
 User threads & kernel threads? Differences?
 Threading model?

 Many-to-one
 One-to-one
 Many-to-many

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 16

Case Study

Thread libraries
Pthreads
Java threads

OS examples
WinXP
Linux

Chapter4 Multithreaded

Shared-Memory Programming
 Definition: Processes communicate or work together

with each other through a shared memory space
which can be accessed by all processes
 Faster & more efficient than message passing

 Many issues as well:
 Synchronization
 Deadlock
 Cache coherence

 Programming techniques:
 Parallelizing compiler
 Unix processes
 Threads (Pthread, Java)

Operating System Concepts – NTHU LSA Lab 17

Chapter4 Multithreaded

What is Pthread?
 Historically, hardware vendors have implemented

their own proprietary versions of threads
 POSIX (Potable Operating System Interface)

standard is specified for portability across Unix-like
systems
 Similar concept as MPI for message passing libraries

 Pthread is the implementation of POSIX standard
for thread

Operating System Concepts – NTHU LSA Lab 18

Chapter4 Multithreaded

Pthread Creation
 pthread_create(thread,attr,routine,arg)

 thread: An unique identifier (token) for the new thread
 attr: It is used to set thread attributes. NULL for the default values
 routine: The routine that the thread will execute once it is created
 arg: A single argument that may be passed to routine

Operating System Concepts – NTHU LSA Lab

main program

pthread_create(&thread1, NULL, func1, &arg);

pthread_join(thread1, *status);

…

…
…

…

…

thread1

func(&arg) {

 return(*status)
}

…
…

19

Chapter4 Multithreaded

Example
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadId) {
 long* data = static_cast <long*> threadId;
 printf("Hello World! It's me, thread #%ld!\n", *data);
 pthread_exit(NULL);
}
int main (int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 for(long tid=0; tid<NUM_THREADS; tid++){
 pthread_create(&threads[tid], NULL, PrintHello, (void *)&tid);
 }
 /* Last thing that main() should do */
 pthread_exit(NULL);
}

Operating System Concepts – NTHU LSA Lab 20

Chapter4 Multithreaded

Pthread Joining & Detaching
 pthread_join(threadId, status)

 Blocks until the specified threadId thread terminates
 One way to accomplish synchronization between threads
 Example: to create a pthread barrier

 pthread_detach(threadId)
 Once a thread is detached, it can never be joined
 Detach a thread could free some system resources

Operating System Concepts – NTHU LSA Lab

for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

21

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 22

Java Threads
 Thread is created by

 Extending Thread class

 Implementing the Runnable interface
 Java threads are implemented using a thread library

on the host system
 Win32 threads on Windows
 Pthreads on UNIX-like system

 Thread mapping depends on implementation of the
JVM
 Windows 98/NT: one-on-one model
 Solaris 2: many-to-many model

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 23

Linux Threads
 Linux does not support multithreading
 Vrious Pthreads implementation are available for

user-level
 The fork system call – create a new process and a

copy of the associated data of the parent process
 The clone system call – create a new process and

a link that points to the associated data of the
parent process

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 24

Linux Threads
 A set of flags is used in the clone call for

indication of the level of the sharing
None of the flags is set  clone = fork
All flags are set  parent and child share everything

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 25

Threading Issues
 Semantics of fork() and exec() system calls.

Duplicate all the threads or not?

 Thread cancellation: Asynchronous or deferred

 Signal handling: Where then should a signal be
delivered?

 Thread pools: Create a number of threads at
process startup.

 Thread specific data: Each thread might need its
own copy of certain data.

 Scheduler activations

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 26

Semantics of fork() and exec()
 Does fork() duplicate only the calling thread

or all threads?
 Some UNIX system support two versions of fork()

 execlp() works the same; replace the entire
process
 If exec() is called immediately after forking, then

duplicating all threads is unnecessary

…
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 ...
...

fork()

T2
P0 P0 P0 P1 P1

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 27

Thread Cancellation
 What happen if a thread determinates before it has

completed?
 E.g, terminate web page loading

 Target thread: a thread that is to be cancelled
 Two general approaches:

 Asynchronous cancellation
One thread terminates the target thread immediately

 Deferred cancellation (default option)
The target thread periodically checks whether it should
be terminated, allowing it an opportunity to terminate
itself in an orderly fashion (canceled safely).
Check at Cancellation points

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 28

 Signal Handling
 Signals (synchronous or asynchronous) are used in UNIX

systems to notify a process that an event has occurred
 Synchronous: illegal memory access
 Asynchronous: <control-C>

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 29

Thread Pools
 Create a number of threads in a pool where

they await work
 Advantages
Usually slightly faster to service a request with an

existing thread than create a new thread
Allows the number of threads in the application(s)

to be bound to the size of the pool

 # of threads: # of CPUs, expected # of
requests, amount of physical memory

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 30

Reading Material & HW
 Chap 4
 Problems
 4.2, 4.3, 4.10, 4.12, 4.13

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 31

Backup

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 32

Windows XP Threads
 Implement the one-to-one mapping
 Each thread contains

 A thread ID
 Register set
 Separate user and kernel stacks
 Private data storage area

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

 Also provide support for a fiber library, that provides
the functionality of the many-to-many model

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 33

Windows XP Threads

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 34

Thread Specific Data
 Allows each thread to have its own copy of

data
 Each transaction assigned a unique number in the

transaction-processing system

 Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 35

Scheduler Activations
 Both M:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

 This communication allows an application to
maintain the correct number kernel threads

	Operating System:�Chap4 Multithreaded Programming
	Overview
	Threads
	Motivation
	Benefits of Multithreading
	Why Thread?
	Multithcore Programming
	Challenges in Multicore Programming
	User vs. Kernel Threads
	User vs. Kernel Threads
	Multithreading Models
	Many-to-One
	One-to-one
	Many-to-Many
	Review Slides (I)
	Case Study
	Shared-Memory Programming
	What is Pthread?
	Pthread Creation
	Example
	Pthread Joining & Detaching
	Java Threads
	Linux Threads
	Linux Threads
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	 Signal Handling
	Thread Pools
	Reading Material & HW
	Backup
	Windows XP Threads
	Windows XP Threads
	Thread Specific Data
	Scheduler Activations

