
Operating System:
Chap7 Deadlocks

National Tsing-Hua University
2016, Fall Semester

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 2

Overview
 System Model
 Deadlock Characterization
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 3

Deadlock Problem
 A set of blocked processes each holding some

resources and waiting to acquire a resource held by
another process in the set

 Ex1: 2 processes and 2 tape drivers
 Each process holds a tape drive
 Each process requests another tape drive

 Ex2: 2 processes, and semaphores A & B
 P1 (hold B, wait A): wait(A), signal(B)
 P2 (hold A, wait B): wait(B) , signal(A)

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 4

Necessary Conditions
 Mutual exclusion:

 only 1 process at a time can use a resource
 Hold & Wait:

 a process holding some resources and is waiting
 for another resource

 No preemption:
 a resource can be only
 released by a process voluntarily

 Circular wait:
 there exists a set {P0, P1, …, Pn}
 of waiting processes such that
 P0 → P1 → P2 → ... → Pn → P0

All four conditions must hold for possible deadlock!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 5

System Model
 Resources types R1, R2, …, Rm
 E.g. CPU, memory pages, I/O devices

 Each resource type Ri has Wi instances
 E.g. a computer has 2 CPUs

 Each process utilizes a resource as follows:
 Request  use  release

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 6

Resource-Allocation Graph
• 3 processes, P1 ~ P3
• 4 resources, R1 ~ R4

• R1 and R3 each has one instance
• R2 has two instances
• R4 has three instances

• Request edges:
• P1R1: P1 requests R1

• Assignment edges:
• R2P1: One instance of R2
 is allocated to P1

P1 is hold on an instance of R2
and waiting for an instance of R1

P1 P2 P3

R2
R4

R1 R3

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 7

Resource-Allocation Graph w/ Deadlock

 If the graph contains a cycle, a deadlock may exist
 In the example:
 P1 is waiting for P2
 P2 is waiting for P3
 P1 is also waiting for P3
 Since P3 is waiting for P1 or P2,
 and they both waiting for P3
 deadlock!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 8

RA Graph w/ Cycle but NO Deadlock
 If the graph contains a cycle, a deadlock may exist
 In the example:
 P1 is waiting for P2 or P3
 P3 is waiting for P1 or P4
 Since P2 and P4 wait no one
 no deadlock
 between P1 & P3!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 9

Deadlock Detection
 If graph contains no cycle  no deadlock
 Circular wait cannot be held

 If graph contains a cycle:
 if one instance per resource type  deadlock
 if multiple instances per resource type 

possibility of deadlock

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 10

Handling Deadlocks
 Ensure the system will never enter a deadlock state
 deadlock prevention: ensure that at least one of the 4

necessary conditions cannot hold
 deadlock avoidance: dynamically examines the

resource-allocation state before allocation

 Allow to enter a deadlock state and then recover
 deadlock detection
 deadlock recovery

 Ignore the problem and pretend that deadlocks
never occur in the system
 used by most operating systems, including UNIX.

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 11

Review Slides (I)
 deadlock necessary conditions?

 mutual exclusion
 hold & wait
 no preemption
 circular wait

 resource-allocation graph?
 cycle in RAG  deadlock?

 deadlock handling types?
 deadlock prevention
 deadlock avoidance
 deadlock recovery
 ignore the problem

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 12

Deadlock Prevention &
Deadlock Avoidance

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 13

Deadlock Prevention
 Mutual exclusion (ME): do not require ME on

sharable resources
 e.g. there is no need to ensure ME on read-only files
 Some resources are not shareable, however (e.g.

printer)

 Hold & Wait:
When a process requests a resource, it does not hold

any resource
 Pre-allocate all resources before executing

 resource utilization is low; starvation is possible

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 14

Deadlock Prevention (con’t)
 No preemption
When a process is waiting on a resource, all its

holding resources are preempted
e.g. P1 request R1, which is allocated to P2, which in
turn is waiting on R2. (P1 → R1 → P2 → R2)
R1 can be preempted and reallocated to P1

Applied to resources whose states can be easily
saved and restored later

e.g. CPU registers & memory

 It cannot easily be applied to other resources
e.g. printers & tape drives

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 15

Deadlock Prevention (con’t)
 Circular wait
 impose a total ordering of all resources types
 a process requests resources in an increasing order

Let R={R0, R1, …, RN} be the set of resource types
When request Rk, should release all Ri, i ≥ k

 Example:
F(tape drive) = 1, F(disk drive) = 5, F(printer) = 12
A process must request tape and disk drive before printer

 proof: counter-example does not exist
P0 (R0)  R1, P1 (R1)  R2, …, PN(RN)  R0
Conflict: R0 < R1 < R2 < … < RN < R0

PN hold RN, wait R0

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 16

Avoidance Algorithms
 Single instance of a resource type
resource-allocation graph (RAG) algorithm

based on circle detection

 Multiple instances of a resource type
banker’s algorithm based on safe sequence

detection

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 17

Resource-Allocation Graph (RAG) Algorithm
 Request edge: PiRj

 Process Pi is waiting for
 resource Rj

 Assignment edge: RjPi
 Resource Rj is allocated
 and held by process Pi

 Claim edge: PiRj
 process Pi may request Rj
 in the future

 Claim edge converts to request edge
 When a resource is requested by process

 Assignment edge converts to a claim edge
 When a resource is released by a process

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 18

Resource-Allocation Graph (RAG) Algorithm

 Resources must be claimed
a priori in the system

 Grant a request only if NO
cycle created

 Check for safety using a
cycle-detection algorithm,
O(n2)

 Example: R2 cannot be
allocated to P2

request assignment

assignment claim

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 19

Avoidance Algorithms
 Single instance of a resource type
resource-allocation graph (RAG) algorithm

based on circle detection

 Multiple instances of a resource type
banker’s algorithm based on safe sequence

detection

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 20

Deadlock Avoidance
 safe state: a system is in a safe state if there exists
 a sequence of allocations to satisfy requests by all

processes
 This sequence of allocations is called safe sequence

 safe state  no deadlock
 unsafe state 
 possibility of deadlock
 deadlock avoidance 
 ensure that a system never
 enters an unsafe state

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 21

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding
 P0 10 5
 P1 4 2
 P2 9 2
  <P1, P0, P2> is a safe sequence

Hint from
processes

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 22

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 5
 P1 4 2 3
 P2 9 2
  <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 23

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 5 5
 P1 4 0
 P2 9 2
  <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources
2. P0 satisfies its allocation with 5 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 24

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 0
 P1 4 0
 P2 9 2 10
  <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources
2. P0 satisfies its allocation with 5 available resources
3. P2 satisfies its allocation with 10 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 25

Un-Safe State w/o Safe Sequence
 Assuming at t1:
 Max Needs Current Holding Available
 P0 10 5
 P1 4 2 2
 P2 9 2 3
 if P2 requests & is allocated 1 more tape drive
 No safe sequence exist…
  this allocation enters the system into an unsafe state
 A request is only granted if the allocation leaves the

system in a safe state

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 26

Banker’s Algorithm
 Use for multiple instances of each resource type
 Banker algorithm:
 Use a general safety algorithm to pre-determine if

any safe sequence exists after allocation
 Only proceed the allocation if safe sequence exists

 Safety algorithm:
1. Assume processes need maximum resources
2. Find a process that can be satisfied by free

resources
3. Free the resource usage of the process
4. Repeat to step 2 until all processes are satisfied

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 27

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:3, B:3, C:2
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 28

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:5, B:3, C:2
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 29

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:7, B:4, C:3
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 30

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:7, B:4, C:5
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4, P2

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 31

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:10, B:4, C:7
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4, P2, P0

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 32

Banker’s Algorithm Example
 Total instances: A:10, B:5, C:7
 Available instances: A:3, B:3, C:2
 Max Allocation Need(Max-Alloc)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 If Request (P1) = (1, 0, 2): P1 allocation  3, 0, 2

 Enter another safe state (Safe sequence: P1, P3, P4, P0, P2)
 If Request (P4) = (3, 3, 0): P4 allocation  3, 3, 2

 enter into an unsafe state (no safe sequence can be found!)

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 33

Review Slides (II)
 deadlock prevention methods?
mutual exclusion
 hold & wait
 no preemption
 circular wait

 deadlock avoidance methods?
 safe state definition?
 safe sequence?
 claim edge?

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 34

Deadlock Detection &
Deadlock Recovery

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 35

Deadlock Detection
 Single instance of each resource type

 convert request/assignment edges into wait-for graph
 deadlock exists if there is a cycle in the wait-for graph

Resource-Allocation Graph Corresponding wait-for graph

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 36

Multiple-Instance for Each Resource Type

 Total instances: A:7, B:2, C:6
 Available instances: A:0, B:0, C:0
 Allocation Request
 A B C A B C
P0 0 1 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2
 The system is in a safe state  <P0, P2, P3, P1, P4>
  no deadlock
 If P2 request = <0, 0, 1>  no safe sequence can be found
 the system is deadlocked

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 37

Deadlock Recovery
 Process termination
 abort all deadlocked processes
 abort 1 process at a time until the deadlock cycle

is eliminated
which process should we abort first?

 Resource preemption
 select a victim: which one to preempt?
 rollback: partial rollback or total rollback?
 starvation: can the same process be preempted

always?

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 38

Reading Material & HW
 Chap 7
 Problem Set
 7.6, 7.7, 7.8, 7.9, 7.12, 7.13

	Operating System:�Chap7 Deadlocks
	Overview
	Deadlock Problem
	Necessary Conditions
	System Model
	Resource-Allocation Graph
	Resource-Allocation Graph w/ Deadlock
	RA Graph w/ Cycle but NO Deadlock
	Deadlock Detection
	Handling Deadlocks
	Review Slides (I)
	Deadlock Prevention & Deadlock Avoidance
	Deadlock Prevention
	Deadlock Prevention (con’t)
	Deadlock Prevention (con’t)
	Avoidance Algorithms
	Resource-Allocation Graph (RAG) Algorithm
	Resource-Allocation Graph (RAG) Algorithm
	Avoidance Algorithms
	Deadlock Avoidance
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Un-Safe State w/o Safe Sequence
	Banker’s Algorithm
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example
	Review Slides (II)
	Deadlock Detection & Deadlock Recovery
	Deadlock Detection
	Multiple-Instance for Each Resource Type
	Deadlock Recovery
	Reading Material & HW

