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 I 

摘 要 
 

  隨著網路速度不斷地增快，單一處理器已無法滿足高速網路設備的需求，網

路處理器的出現解決了此一問題。然而，對於大部份需要檢視封包內容的網路設

備來說－如入侵偵測系統，如何對封包做更有效率的比對，將成為影響網路設備

效能的重要因素。 

  以目前知名的入侵侵測系統Snort為例，其對於封包比對所用最新的方法為

Sun Wu及Udi Manber於1994年所提出的A Fast Algorithm For Multi-Pattern 

Searching演算法(簡稱為 WuM)。此演算法可以同時快速比對 Multi-Pattern，

但前題是Pattern的最小長度必需大於1，若Pattern的最小長度為1，則將只

能使用最原始的 Single-Pattern比對方法(Boyer R.S., and J.S. Moore 1977

－簡稱為 BM)，一個個比對完所有的 Pattern，如此將使得封包的處理皆被限制

在Pattern的比對上，大大降低其效能。 

  本論文的主要目的，在於改良 Sun Wu及 Udi Manber的演算法(快速 WuM，

簡稱為FWM)，有效增加Pattern Search的速度，並使得其可以處理最短Pattern

長度(Length of Shortest Pattern)為1的情形。如此，便不用因為LSP=1，而

使得比對的方式需改用 Single Pattern的比對方式逐一比對了。同時針對

Network Processor提出增進效能的方法，增加設備的Throughput。 

  為了驗證FWM演算法的效能，我們利用Snort裡所定義的Signatures當做

Pattern，同時由DEFCON取得攻擊封包做為Input，與傳統的Multi-Pattern 

Searching演算法WuM、E2xB比較，得到了15%到25%的效能提升。FWM主要貢獻

有三：(1)解決當LSP=1時，便無法做Multi-Pattern的Search問題。(2)提升

WuM演算法的效能。(3)適合用於Network Processor平台上。 
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ABSTRACT 

  With the development of high-speed network, uni-processor 

incapable of affording a large number of traffic can not satisfy what is 

required by high performance network equipments. It can help improve 

the performances. However, most network equipments such as network 

intrusion detection or protection systems need to inspect the packet 

content and compare with its own signatures, and react appropriately. 

Thus, the need for a faster algorithm for multi-pattern searching becomes 

more and more urgent. It is the most crucial factor concerned with the 

network performance. 

  Take Snort [18], a popular open-source network intrusion detection 

system as an example, it uses the algorithm called “A fast Algorithm For 

Multi-Pattern Searching” proposed by Sun Wu, and Udi Manber 

1994(denoted as WuM) [6]. The WuM algorithm can compare the input 

text with the whole patterns concurrently, but the length of the shortest 

pattern (denoted as LSP) can not be less than the block-size usually equal 

to 2. If LSP is less than the block-size, in snort, it compares the input text 

with its own signatures sequentially using the BM algorithm which is 

proposed by Boyer R. S., and J. S. Moore 1977 [1]. Consequently, the 

throughput is limited by matching patterns, and has the poor performance. 

  The purpose of the thesis is to improve the performance of WuM 

algorithm, and to handle the length of the shortest pattern less than the 

block size. Therefore, we can use the only one algorithm to perform 

multi-pattern searching even the LSP is equal to 1. We concentrate on 

typical searches rather than on worst-case behavior. It makes sense in 

most network devices which need to compare incoming packets to its 

own patterns. Malicious packets in network are always less than legal 

packets. 
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  To verify the performance of FWM, we use the signatures defined 

by snort as the patterns, and use the packets downloaded from DEFCON 

[17] as the input to run the simulation. Finally, we got 15% - 25% 

performance improvement. 
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1. INTRODUCTION 

1.1 The Use of Multi-Pattern Searching 

  Typically, many of the network devices such as network intrusion 

detection system (NIDS) try to detect anomalous behavior by inspecting 

the incoming packets. Rapid growth of network traffic has made NIDS 

become more important. In general, there are two main techniques used 

for detecting the intrusion – one based on statistical analysis and the other 

on signature. The statistical analysis based technique usually determines 

whether an incoming packet is anomalous by gathering protocol header 

information and comparing it with the known attacks such as SYN 

Flooding. The signature-based technique usually has its own rules or 

signatures which are defined in advance to represent known intrusive 

attacks such as MS.Blaster.Worm virus. When a packet comes, NIDS has  

to compare it with all the signatures and determine whether or not it is an 

intrusion. Unfortunately, successful detection is increasingly difficult due 

to more and more fresh viruses and the modification of an old virus 

detection. The performance of signature-based NIDS is seriously 

constrained by the speed of pattern matching algorithms. For example, as 

mentioned in abstract, Snort uses the WuM algorithm [6] to compare 

incoming packets with its signatures while the length of shortest pattern is 

greater than or equal to 2. If there exists one signature whose length is 

equal to 1, Snort will use only BM algorithm [1] to compare the incoming 

packet with its all signatures sequentially. Thus, the number of signatures 

is the critical determinant of system performances. Only by implementing 

an algorithm which can search pattern concurrently, unconstrained by 

pattern number or length can upgrade the effectiveness of the NIDS 

system. 
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1.2 Effect of Pattern Matching Algorithm 

  As mentioned in 1.1, the performance of pattern matching algorithm 

affects the throughput of network device basing on incoming packets 

examination such as Network Intrusion Detect System. A certain set of 

signatures defines how a Network Intrusion Detect System functions. It 

examines incoming packets and determines whether it is an intrusion. 

  Recent measurements of the snort NIDS show that as much as 31% 

of total processing is used for pattern matching, as shown in Table 1. 

Thus, without better efficiency, it is hard for the NIDS system to keep up 

with soaring linking speed. In other words, more effective pattern 

matching results in an increased throughput for the NIDS. 

 

Prupose Routine Portion 

String Match mSearch 31% 

Packet Classification EvalHeader 8.5% 

Packet Classification CheckSrcIPNotEq 6.7% 

Other Matching EvalOpts 5.8% 

 

Table 1.1 Profile of Snort 

 

1.3 Additional Applications 

  In fact, pattern matching technique has extended its applications 

beyond network intrusion detection system. Web site and advertisement 

e-mail filtering device are only two examples where pattern matching 

technique is employed to prevent users receiving. The web site filtering 

device parses the URL and compares with its own pattern by some 

user-defined keywords usually found in a pornographic site. And the 
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advertisement e-mil filtering device parses the sender or subject to filter 

the garbage or advertisement e-mail. 

Grep [8] is a well-known tool in UNIX capable of searching the 

whole file quichly and reporting the lines once a pattern is matched. It can 

not only input the single pattern but also assign the multi-pattern from a 

file with the parameter ‘f’. 

  Match-and-replace utility is used in many editors. Each pattern is 

associated with a replacement pattern. When a pattern is matched, it is 

replaced. But how long we must shift to avoid overlapping replacements, 

it is also a multi-pattern searching problem. 

  Another application is search engine in World Wide Web such as 

Google, Openfind. Users may input some key words and the search 

engine must find all the possible pages which contains the key words. 
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2. Previous Work 

  Aho and Corasick presented a linear-time algorithm (AC) [2] for 

matching multiple strings. The algorithm is based on an automata 

approach that accepts all strings in the set. It processes the input 

characters, and follows the state transition diagram. If it reaches the final 

state, the input text makes a match. So, the performance depends on the 

length of the input text rather than pattern length. The AC algorithm has 

proven linear-time performance, and it’s optimal in the worst case. 

  Boyer-Moore is another powerful algorithm (BM) in single-pattern 

searching. It can skip a large portion of the input text while searching. At 

first, it builds a table called bad character shift table, and then compares 

the string with the input text starting from the right most character of the 

string. If the mismatching character is in the search string, the search 

string can be shifted to align with the rightmost position at which it 

appears in the search string. If the mismatching character is not in the 

search string, we can safely shift the maximum distance – the pattern 

length. In average case, the BM algorithm is faster than linear algorithm. 

  Among the single pattern searching algorithm mentioned above, BM 

algorithm is the fastest, but its worst case is slower than AC algorithm in 

some worst cases. In sum, BM and AC algorithm are two best methods in 

single pattern search. 

  K. G. Anagnostakis, M. Polychronakis, E. P. Markatos, and S. 

Antonatos have designed an informal algorithm called exclusion-based 

string matching denoted as ExB [10]. ExB is based on a simple logic. If 

the input text ‘I’ contains a string ‘S’, then, if there is at least one 

character which is in the string ‘S’ and is not in input text ‘I’. Then ‘S’ is 

not in ‘I’. Moreover, if every character of ‘S’ belongs to ‘I’, it still needs 

another algorithm such as BM to confirm whether ‘S’ is a substring of ‘I’. 
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  XBE 2  [9] is based on ExB algorithm. The difference between ExB 

and XBE 2  is the method used to denote a match. So the performance of 

both ExB and XBE 2  decrease rapidly because of the increasing false 

matching rates.   

  Wu-Manber is another widely used multi-pattern algorithm. In Unix, 

the words searching tools such as grep [8], agrep using WuM algorithm to 

reach the goal. The WuM algorithm is also based on bad character 

heuristic similar to Boyer-Moore. But the WuM algorithm covers a 

concept called block. It uses one or two-byte bad shift table by 

pre-processing the all patterns, and performs a hash on the two-character 

prefix of the input text to compute an index which is the location on the 

bad shift table, as in Boyer-Moore. The performance of the WuM 

algorithm also depends on the shortest length of the pattern (LSP). Its 

maximum shift number equals to LSP minus one. 
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3. The Algorithm 

3.1 Background 

3.1.1 Network Processor 

  Network processor is a programmable device that has been designed 

and highly optimized to perform networking functions. Because network 

processors implement all packets processing in software, they are more 

flexible. An NP based platform can be used a variety of packet 

processing function, such as table lookup, parsing, classification, 

modification, and forwarding. Network processors use multiple 

execution engines, each of which contains multiple contexts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Network Processor Architecture 

RAM Memory Controller RDRAM 

Host Interface Standard 
CPU 

O
rder M

anager 

C
lassification E

ngines 

P
acket Input 

Input stream
ing B

us 

Process 
Engine 
Process 
Engine 
Process 
Engine 
Process 
Engine 

O
utput stream

ing B
us 

Q
ueue M

anagem
ent 

P
acket O

utput 

Lookup Bus 



 7 

For example, Vitesse IQ2000 [19] contains four packet processing 

engines (PPE), each of which runs at 200MHz, and is RISC architecture. 

Each packet processing engine contains DMA co-processors, five stage 

pipelines, lookup co-processors, header buffers, and so on. 

  Network processors usually use pipelining, parallelism and 

multi-context to reduce latency. Network processors also exploit 

hardware accelerators for hashing, table lookup and forwarding. But the 

most important the network processor differs greatly from general 

purpose CPU in L1, L2 cache. We all know that general purpose CPU 

architecture usually exploits both the data and program locality, and has 

cache architecture called L1, L2 cache. It makes the program run 

smoothly. But in network processor architecture, it  is not really true. 

Network processors usually have no L1, L2 cache. It just exploits other 

techniques such as mentioned above to increase its performance. We also 

use the special characteristic to increase the performance for pattern 

matching on network processor.  

 

3.1.2 Wu Manber Algorithm 

  Sun Wu and Udi Manber proposed a fast algorithm for multi-pattern 

searching on May 1994. We refer to it as WuM algorithm.  

  WuM algorithm also uses the ideas developed Boyer-Moore and are 

summarized as followed. Suppose that the pattern length is m, we can 

compare the last character of the pattern against mt  which is the m’th 

character of the input text. If there is a mismatch, then we can shift 

according to the rightmost occurrence of mt . For example, if mt  matches 

the 1th character of the pattern, we can shift m-1. If mt  matches the 2th 

character of the pattern, we can shift m-2. If there is no any match of the 

pattern, we can safely shift the maximum m characters and so on. 
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Because BM algorithm can shift greater than one character, it can perform 

well than linear time algorithm. 

 

3.1.2.1 The Preprocessing Stage 

  BM algorithm just can handle the single pattern. WuM algorithm 

designs to handle multi-pattern searching. Suppose Let 

},...,,,{ 321 kppppP =  be a set of patterns and Let nttttT ...,,, 321=  be an 

input text. The first step by WuM method is to compute the minimum 

length of a pattern (denoted as m). For each pattern we just consider only 

the fist m characters and assume that all patterns have the same length m. 

Thus, in case of there exists a very short pattern, say of length 2. We can 

not shift more than 2. Therefore, WuM algorithm can not handle the case 

in which m is equal to 1.  

Secondly, WuM algorithm is characterized by the idea called blocks 

of size B, and usually uses B=2 or B=3. Moreover, WuM algorithm also 

includes a shift table which plays the same role as that in BM algorithm. 

The only difference between WuM and BM is that WuM determines the 

shift based on the last B characters rather than just one character. Thus, 

the maximum shift character is equal to m-B+1. We can say that BM is a 

special case of WuM algorithm. 

Thirdly, we need to determine the shift table. If the shift table 

contains all the possible string of size B, it needs to allocate B⋅82  bytes to 

store shift values. WuM actually uses a compressed table with several 

strings mapped into the same entry (hash) to save space. To speed up the 

performance, we hope that the hash value which is computed from the 

characters in blocks can also be taken as an index of shift table. The 

values in the shift table determine how far we can shift while we scan the 

input text. Suppose let nttttT ,...,,, 321=  be the input text, 
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mpppP ,...,, 21= be the pattern whose length is equal to m. We just consider 

the first B characters },...,,{ 21 Bttt  in the block. There are two cases: 

1. },...,,{ 21 Bttt  appears in some patterns: 

In this case, if we find the rightmost occurrence of T in any of the 

patterns, and it ends at position q of jP . We may have a lot of q, 

but we can just store the minimum q in the corresponding entry to 

avoid false matching. 

2. },...,,{ 21 Bttt  doesn’t appear in any patterns: 

In this case, we can store m-B+1 in the corresponding entry. 

Let’s take an example as follows: 

Assume that 
}{

}{
}{

3

2

1

uxyvP
xyabzP
abcdefP

=
=
=

, and B = 2 

Considering 1P : In case of ‘cd’, we can shift 0 

     In case of ‘bc’, we can shift 1 

     In case of ‘ab’, we can shift 2 

     Others, we can shift 3 

Considering 2P : In case of ‘ab’, we can shift 0 

     In case of ‘ya’, we can shift 1 

     In case of ‘xy’, we can shift 2 

     Others, we can shift 3 

Considering 3P : In case of ‘yv’, we can shift 0 

     In case of ‘xy’, we can shift 1 

     In case of ‘ux’, we can shift 2 

     Others, we can shift 3 

In this case, if we find ‘ab’, we can shift 2 according to 1P , but we just 

can shift 0 according to 2P . Thus, we must shift the smaller one – ‘0’ to 

avoid false matching. 2P  and 3P  belong to the same case. If we find 
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‘xy’, we can shift 2 according to 2P , but we should shift 1 according to 

3P . If we find any string which is not a substring in any pattern, we can 

shift 3 that is m-B+1⇔ 4-2+1=3. 

  As long as the shift value is greater than 0, we can shift and continue 

the scan while we start to scan the input text. In general case, it happens 

most of time, especially in NIDS. Illegal packets are usually less than 

legal packets. If the shift value is 0, it is possible that the current text 

contains a substring in perfect match with some pattern in pattern list. 

Thus, we need to compare the substring to suspected patterns. In WuM 

algorithm , it uses hash function to classify all the patterns. As mentioned 

above, WuM uses a key which is computed with the substring in the 

block to be an index of shift table. Thus, if the value is equal to 0, we use 

the same key to be a hash value for patterns classification. Patterns whose 

suffixes are the same will have the same key. And they will be 

accommodated to the same list. 

  We use shift table and hash table to speed up the matching. And we 

use the suffix matching to represent a matching. But it is not random in 

natural language texts. The suffixes such as ‘tive’, ‘tion’ or ‘ing’ are very 

common. They also cause collisions in the hash table and increase the 

number of patterns which we need to compare the text against the pattern 

directly and the performance is thus unfavorably affected.  

  To avoid collisions, WuM algorithm uses another table called prefix 

table to reduce the probability of collisions. After scanning the text, 

computing the index and looking up the shift table, if the shift value is 

equal to zero (An indication that the text has the same suffix as some 

pattern), we need to traverse pattern list to determine whether there is a 

matching. Before traversing, we can check the prefix table. If there is still 

a matching (Indicating that the text has the same prefix as some pattern), 

then we compare the text against the pattern directly. 
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Figure 3.2 WuM pseudo code 

3.1.2.2 The Scanning Stage 

  In scanning stage, we first compute a hash value h based on the 

current B characters from the input text. (B is the block-size here). 

Secondly, check the value of SHIFT[h]. If SHIFT[h] > 0, shift the text 

and repeat scanning. Otherwise, we need to compute the hash value of the 

prefix of the text. Thirdly, if there is a matching in prefix, we can traverse 

the pattern list which has the same hash value to determine whether 

matching or not. WuM algorithm pseudo code is shown in the Figure 3.2. 

Initially: ptr ß text start + block-size 
 end ßtext end 

While ptr < end 
Begin 

hash_value ß (*ptr << hash_bit) + (*(ptr-1)) 
if block-size == 3 then 
hash value ß (hash_value << hash_bit) + (*(ptr-2)) 
shift_value ß SHIFT[hash_value] 
if shift_value == 0 
Begin 

prefix_hash ß (*(ptr-m+1)<<8) + (*(ptr-m+2)) 
/* we shift 8 bits to avoid collision in prefix table */ 

     pat_ptr ß Hash[hash_value] 
while pat_ptr != NULL 
Begin 

   if PREFIX[prefix_hash] != text_prefix continue 
   p ß pat_ptr[0] 
   p ß text-m+1 
   while *(p++) == *(q++) 
   if *(p-1) == 0  /* C-String */ à Match 
   pat_ptr ß pat_ptr->next 
  End 

shift_value ß 1 
End 
ptr ß ptr + shift_value 

End 
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3.2 FWM algorithm 

3.2.1 The Principle 

  This work addresses the string matching problem: Let 

{ }kppppP ,...,,, 210=  be a set of patterns, which are strings of characters. 

Let nttttT ,...,,, 210=  be an input text. Patterns and text consists of either 

ascii or binary strings. The string matching problem identifies the 

substring of T which is identical to jP . 

  As mentioned in section 3.1.2.1, we know that the WuM algorithm 

runs faster than linear time algorithm by skipping a large portion of the 

text while searching, and the maximum distance which it can skip is 

equal to m-B+1. In other words, it equals to the length of the shortest 

pattern minus block-size and plus one. For example, if the length of the 

shortest pattern is equal to 3 and the block-size is equal to 2. Thus, the 

maximum distance that we can skip is equal to 3-2+1 = 2. 

  For the above reason, we know that WuM algorithm is sensitive to 

the pattern length. If the length of the shortest pattern ‘m’ is larger, then 

we can have the larger shift value. In other words, if there exists a pattern 

whose length is equal to 2, we just can have the maximum shift value 1 in 

spite of the rest of patterns whose length are very long. 

  As long as an algorithm can shift larger distance than other 

algorithms, equally, it can run faster than others. According to maximum 

shift distance of the WuM algorithm, there may be two method to 

improve the shift distance. Clearly, we can increase the length of the 

shortest pattern ‘m’ or use a smaller block size ‘B’. 

  In WuM algorithm, suppose that M be the total size of all patterns 

and c be the size of the alphabet. A good value of B is in the order of 

Mc 2log . In fact, the implementation of WuM algorithm in agrep [8] uses 
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only B=2 and B=3. If we decrease the B value, in other words, we set 

B=1, there must be a number of collisions in shift table, and we must 

more often check the text against the pattern directly, and reduce the 

performance. Thus, decreasing B value is impossible. 

  A possible solution is increasing the length of the shortest pattern 

‘m’. Of course, we can eliminate the pattern whose length is short. But 

we need to keep two algorithms at hand to search patterns. Here we 

propose a technique called look ahead to increase the length of the 

shortest pattern. Example 1: 

Assume that 
}{

}{
}{

3

2

1

uxyvP
xyabzP
abcdefP

=
=
=

and B=2 

We can shift maximum distance 4-2+1=3, and have the shift table 

shown as table 3.1 

2ab

1bc

0cd

Shift 
valueCase

2ab

1bc

0cd

Shift 
valueCase

1ya

0ab

2xy

1bc

0cd

Shift 
valueCase

1ya

0ab

2xy

1bc

0cd

Shift 
valueCase

0yv

1xy

1ya

0ab

2ux

1bc

0cd

Shift 
valueCase

0yv

1xy

1ya

0ab

2ux

1bc

0cd

Shift 
valueCase

 

Table 3.1 Shift Table of Example 1 
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  Now, we use example 1 and consider it with a look-ahead character. 

Firstly, when we process 1P , substring ‘ab’ is the maximum shift value if 

the substring in block is identical to ‘ab’ originally. In other words, we 

can safely shift 2 characters, and continue checking the next substring in 

block. While considering a look-ahead character, we need to add an entry 

‘*a’ to shift table where * is a wild card. Similarly, we process 2P  and 

3P  in the same way. Therefore, while using a look-ahead character, we 

can change the pattern length of the shortest pattern from 3 into 4. The 

newest shift table with a look-ahead character is shown in Table 3.2 

2ab

3*a

1bc

0cd

Shift 
valueCase

2ab

3*a

1bc

0cd

Shift 
valueCase

3*a

2xy

1ya

0ab

3*x

1bc

0cd

Shift 
valueCase

3*a

2xy

1ya

0ab

3*x

1bc

0cd

Shift 
valueCase

3*x

3*a

2ux

0yv

1xy

1ya

0ab

3*u

1bc

0cd

Shift 
valueCase

3*x

3*a

2ux

0yv

1xy

1ya

0ab

3*u

1bc

0cd

Shift 
valueCase

 

Table 3.2 Shift Table of Example 1 with a look-ahead character 

 

  Comparing Table 3.2 to Table 3.1, we can find that the maximum 

value is 2 in Table 3.1, but is 3 in Table 3.2. Moreover, the wild card ‘*’ 
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means that we must enumerate all the possible ones in the character set. 

For example, we have a look-ahead character on 1P , then we must fill all 

the entries whose suffix are ‘a’ with the value 3. When we process 2P , 

there is a collision on ‘ya’. Similiarly, we must choose the smaller one to 

avoid false-matching. Thus, we fill the entry of ‘ya’ with the value 1. 

  When the length of the shortest pattern is very small, it would be 

more advantageous with a look-ahead. If the length of the shortest pattern 

is equal to 2, then the rate of performance improvement is equal to 

%100
1
1

122
)122()123(

==
+−

+−−+− . If the LSP is equal to 3, the rate of the 

performance improvement is equal to %50
2
1

123
)123()124(

==
+−

+−−+− , and 

%33.33
3
1

124
)124()125(

==
+−

+−−+−  with LSP = 4. Thus, we know that the 

performance improvement is inverse proportion to the LSP. 

  How about increasing the block-size? Originally, we can shift the 

maximum distance (m-B+1). If we fix the block-size to 2, then we can 

shift the maximum distance (m-1). If including a look-ahead character, 

we can shift the maximum distance ‘m’. Now, let’s increase the 

block-size to 3 and take two look-ahead characters. We will have the 

same maximum distance ‘m’ as the block-size fixed to 2. 

  We need another technique to raise the performance that makes it 

insensitive to LSP. Thus, we build a table called occurrence table to 

handle patterns whose length are less than block-size. Occurrence table is 

extremely intuitive. We merge the shift table with the occurrence table. In 

scanning stage, we compute a hash value based on the current B 

characters from the text, and check the value of shift table. We can 

determine whether we match some pattern whose length is less than 

block-size with the shift value for some pattern whose length is greater 

than block-size in the same time. 
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  On general purpose CPU architecture such as x86, the size of 

occurrence table will affect the performance. If we use the block-size is 

equal to 2, we need K322 2*8 = bytes to store the table. But when the 

block-size increases to 3, we will need M162 8*3 = bytes to store the table. 

We all know that CPU uses cache architecture to store the most important 

data to avoid the access to external memory and make the performance 

better. The capacity of cache is usually less than 1M bytes. If we use a 

very large table like 16M bytes, we may probably have inferior 

performance. Fortunately, as mentioned in section 3.1.1, network 

processors usually don’t have cache system, and the cost of memory is 

much cheaper than others on the platform of network processor. Thus, we 

can use masses of spaces to reduce the searching time. 

 

3.2.2 Design 

3.2.2.1 Shift Table 

  We use the shift table to determine shift value and whether matching 

the short pattern while scanning the text. In order to reduce the access 

time to memory, and use an occurrence table, we use a straightforward 

hash function. For example, suppose let abcdePj = , and block-size be 2. 

We can store the shift value of ‘ab’ in entry ( ) ba +<< 8 , and store the shift 

value of ‘bc’ in entry ( ) cb +<< 8  to avoid collisions. Thus, we can get the 

shift value in one memory access. Again, we must emphasize that the 

trick is only work on network processor platform. 
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  We use the straightforward hash function to avoid collisions. 

Another purpose is to point out whether it is matched or not for the small 

patterns. Therefore, we split one byte into two parts. One is the shift value, 

and the other is matching-flag as shown in Figure 3.3.  

 

   
   

 

Figure 3.3 Shift value configurations 

 

  Figure 3.3 are two kinds of configurations of the shift value. We can 

split several bits for other purposes. For example 

Assume that 
{ }
{ }
{ }qP

pP
pqrsP

=
=
=

3

2

1

, and B=2 

We will have the shift entry shown as Figure 3.4. 
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Figure 3.4 Examples of shift value configuration 

 

  Figure 3.4 shows two configurations of the entry ‘pq’. In some 

NIDS, we can even split several bits to indicate the rule id. 

 

3.2.2.2 Prefix Table 

  As mentioned in section 3.2.1, we use a prefix table to avoid too 

many collisions. BM, WuM, and FWM all use shift table to avoid 

checking the text against the pattern directly. In fact, these algorithms 

work because the text matching only the prefix and suffix of some pattern 

at the same time instead of matching the whole pattern has lower 

probability. If this case does happen, we just can play no tricks to check 

the text against the pattern directly.  

  To save the number of memory accesses, we design a prefix table 

whose index is identical to the index of the shift table. The prefix table is 

shown as Figure 3.5 
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Figure 3.5 Prefix table overview 

 

  As Figure 3.5, there are four patterns: ‘abcding’, ‘pqrsing’, ‘xyztion’, 

and ‘uvwtion’. The first and second patterns have the same suffix – ‘ing’. 

And the third and fourth patterns also have the same suffix – ‘tion’. Thus, 

pattern ‘abcding’ and ‘pqrsing’ have the same index ( ) gn +<< 8  to the 

shift table. We use the same key ( ) gn +<< 8  to be the hash key of the 

prefix table and classify patterns whose suffixes are the same to the same 

list. 

 

3.2.2.3 Pattern Table 

  Pattern table is straightforward to store patterns. We also use the 

hash value which is computed by the suffix to classify patterns. 
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3.2.3 Implementation 

  During initialization, we must acquire the length of the shortest 

pattern, and use it to compute the maximum shift value. If the block-size 

is equal to 2, we will build a 32K bytes shift table, and hash table. 

Similarly, if the block-size is equal to 3, we will build a 16M bytes shift 

table, and hash table. All entries are set to the maximum shift value 

‘m-B+1’ in the shift table and set to zero in the hash table. Initialization 

pseudo code is shown as Figure 3.6. 

 
  Figure 3.6 FWM Initialization 

 

After initializing, we only handle the patterns whose lengths are greater 

than block-size and fill the corresponding entry with individual shift 

value. If a look-ahead character is considered, we need to compute the 

Initialization: 
if(FLAG_LOOK_AHEAD) 

LSP += (BlockSize == 3) ? 2 : 1; 
if(BlockSize == 2) { 

MAXSHIFT = MAXHASH = 0x10000; 
    HASH = (uchar*)malloc(MAXHASH*sizeof(char)); 
    SHIFT = (uchar*)malloc(MAXSHIFT*sizeof(char)); 
} 
else 
{ 

MAXSHIFT = MAXHASH = 0x1000000; 
    HASH = (uchar*)malloc(MAXHASH*sizeof(char)); 
    SHIFT = (uchar*)malloc(MAXSHIFT*sizeof(char)); 
} 
for(i=0; i< MAXSHIFT; i++) SHIFT[i] = LSP - BlockSize + 1; 
for(i=0; i< MAXHASH; i++) HASH[i] = 0; 
for(i=1; i<=PatNum; i++) prep_hash_shift(&Pattern[i][1]); 
accumulate(); 
for(i=1; i<=PatNum; i++) prep_hash_shift2(i, Pattern[i][0], 
&Pattern[i][1]); 
for(i=1; i<=PatNumFNP; i++) prep_enumerate(i, PatFNP[i][0], 
&PatFNP[i][1]); 
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hash key with any characters and the prefix of a pattern. When a collision 

happens, we always fill the smaller one to avoid false matching. Then, we 

start to handle the patterns whose lengths are less than block-size. For 

these patterns, we need to enumerate all the possible. If the block-size is 

equal to 2 and we have a pattern ‘a’, we need to turn on the bit indicating 

the match as long as the index of the entry is corresponding to ‘*a’ or ‘a*’. 

Preprocessing pseudo code is shown in Figure 3.7. 

 
  Figure 3.7 FWM Preprocessing 

 

After preprocessing, we start to scan the text. While scanning, we 

compute the index and get the shift value. Concurrently, we check the 

Preprocess: 
if(FLAG_LOOK_AHEAD) m = (BlockSize == 3) ? LSP-2 : LSP-1; 
else m = LSP; 
for(i=m-1; i>=BlockSize-1; i--) { 

hash = (int)pat[i]; 
 hash = (hash << Hbits) + (int)pat[i-1]; 
 if( BlockSize == 3 ) hash = (hash << Hbits) + (int)pat[i-2]; 
 if(SHIFT[hash] > m-i-1) SHIFT[hash] = m-i-1; 
} 
if (FLAG_LOOK_AHEAD) { 

if(BlockSize == 2) 
  for(i=0; i<=255; i++) { 
   hash = (int)pat[0]; 
   hash = (hash << Hbits) + i; 
   if(SHIFT[hash] > m-1) SHIFT[hash] = m-1; 
  } 
 else /* BlockSize == 3 */ { 
  same as BlockSize == 2, expand the * and fill the table 
 } 
} 
i = m - 1; 
hash = (int)pat[i]; 
hash = (hash << Hbits) + (int)pat[i-1]; 
if( BlockSize == 3 ) hash = (hash << Hbits) + (int)pat[i-2]; 
HASH[hash]++; 
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matching bit to determine whether a matching occurs. If the shift value is 

not zero, we shift and continue to scan. Otherwise, there may be a match 

to occur. We check the prefix. If there is still a match, we traverse the list 

to match a pattern. Scanning stage pseudo code is shown in Figure 3.8 

 
Figure 3.8 FWM Scanning Stage 

Scanning Stage: 
while(text <= textend) 
{ 
 hash = *text; 
 hash = (hash << Hbits) + *(text-1); 
 if( BlockSize == 3 ) hash = (hash << Hbits) + *(text-2); 
 shift = SHIFT[hash]; 
 if((shift & 0x80) != 0) { 
  num_match++; shift &= 0x7F; 
 } 
 if( shift == 0 ) { 
  hash2 = (*(text-m1) << Hbits) + *(text-m1+1); 
  p = HASH[hash]; 
  p_end = HASH[hash+1]; 
  while(p++ < p_end) { 
   if (prefix is not match) continue; 
   px = PatPtr[p]; 
   qx = text - m1; 
   for(i=0; i<patternlen; i++) { 
    if(*px == *qx) {px++; qx++;} 
    else break; 
   }     
   if(i == plen)  MATCHED++; 
  }/* end of while p++ < p_end */ 
  if(!MATCHED) shift = 1; 
  else { 
   MATCHED = 0; 
   shift = (m1-1) > 0 ? (m1-1) : 1; 
  } 
 }/* end of if shift == 0 */ 
 shift = shift > BlockSize ? BlockSize : shift; 
 text += shift; 
}/* end of while text <= textend */ 
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4. Experiments 

4.1 Environment 

To evaluate the performance of our algorithm, we compare our 

algorithms to XBE 2  on a Linux RedHat 7.3 workstation (Pentium 4 CPU 

2.0GHz) with 512MB memory, 20KB L1 cache, and 512KB L2 cache. 

We perform two different kinds of experiments with the same input. One 

is to simulate the behavior on network processor. The other is to run 

normally. For simulating the behavior on network processor, we turn off 

the L1, L2 cache. 

 Each environment, we evaluate the performance by comparing the 

time which is measured by running the simulation of individual algorithm. 

In our simulations, we get the real traffic from DEFCON [17] to be the 

input, and the signatures from snort [18] to be the patterns. 
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Figure 4.1 Distribution of the signature length 
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Figure 4.2 Accumulation of the pattern length 

 

  Figure 4.1 and Figure 4.2 show the distribution of the patterns. We 

get the snort rules and transform these rules into our own patterns. We 

use 2100 patterns to run the simulation. As Figure 4.1, we find that the 

pattern whose length is equal to 4 is the most frequent. Moreover, there 

are 177 patterns whose lengths are equal to or less than 2. There are 233 

patterns whose lengths are equal to or less than 3. These all affect the 

performance of the algorithm. The text file we used for all experiments 

was a collection of attacking traffic from DEFCON [17]. The file size of 

the traffic is about 900Mbytes, and contains total 575635 packets. 

 

4.2 Performance Evaluation 

4.2.1 Network Processor Simulation 

  To verify the effectiveness of the proposed FWM, we present 

several experiments in which our algorithm is compared to several 

algorithms and the effects of block-size, LSP,  look-ahead and the 
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number of rules on the performance are also evaluated.  
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Figure 4.3 Completion time comparison using LSP=1 

 

  Figure 4.3 reveals that the processing time different processing 

techniques require. FWM algorithm, which is WuM algorithm with 

occurrence table, takes about 1700 seconds. Typical WuM algorithm can’t 

run on LSP=1. The running time of enlarging block-size to 3, labeled 

BlockSize=3, is greater than FWM. Although enlarging block-size 

increases the number of matching to the smaller patterns. But it also 

makes the maximum shift value decrease. As shown in Figure 4.1, most 

patterns whose lengths are greater than 3. Therefore, FWM that use the 

block-size = 2 has better performance than block-size = 3.  

FWM with a look-ahead character, labeled LookAhead, has the 

similar performance to the FWM. Although the LookAhead enlarges the 

LSP, it may probably result in more collisions. It depends on what the 

patterns we have. Another reason having lower performance is occurrence 

table. As mentioned in section 3.2.1, the performance of LookAhead is 

the reverse proportion to the LSP. But patterns whose lengths are smaller 

than block-size are determined by the occurrence table. LookAhead 

works to the patterns whose lengths are greater than 2. So the rate of 
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performance improvement of LookAhead is 

%50
2
1

)123(
)123()124(

==
+−

+−−+− . (Because of the occurrence table, the 

original LSP is equal to 3). 

We combine the BlockSize=3 and LookAhead, labeled Combination, 

and have the best performance. As mentioned in section 3.2.1, when we 

enlarge the block-size, we will have two look-ahead characters. The 

combination of two techniques confer many advantages. It can increase 

the maximum shift value and let more patterns be matched in block-size. 

Having two look-ahead characters runs better than one look-ahead 

character. LookAhead with two look-ahead characters may also have 

collisions. But because of the bigger block-size, it also increases the 

matching probability. Moreover,  it changes the LSP into (LSP+2), then 

the performance improvement will be %100
2
2

)134(
)134()136(

==
+−

+−−+− .  
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Figure 4.4 Completion time comparison using LSP=2 

 

  Figure 4.4 shows the processing time with LSP=2. We have similar 

result to the simulation with LSP=1.  
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Figure 4.5 Completion time comparison using LSP=3, 4 

 

  Figure 4.5 shows the processing time with LSP=3 and LSP=4. In this 

experiment, FWM is equivalent to WuM algorithm. Because we only 

use the occurrence table to match the patterns whose lengths are equal to 

or less than the block-size. And the LSP is equal to 3 in this experiment. 

Therefore, FWM algorithm takes less time while LSP=3 than LSP=2 

because of no collisions. 
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  Figure 4.6 shows the processing time of FWM algorithm under 

different LSP. We find that each of the processing time of FWM 

algorithms seems to be very close. 
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Figure 4.6 Completion time comparison on various LSP 

 

4.2.2 CPU-Based Simulation 

  In section 4.2.1, we run the simulation to simulate the behavior of 

network processor. As mentioned in section 3.2.1, whether FWM 

algorithm improve the performance rely on occurrence table. If the 

character set is too big, we will need mass of memory spaces to store the 

table. In network processor architecture, we can build occurrence table 

directly in external memory because there is no L1-L2 cache in it. But in 

general purpose CPU architecture, if the table size is too big, it may not 

be stored in L1-L2 cache and will have poor performance. We run the 

simulation on x86 architecture and compare it to the simulation based on 

network processor.  
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Figure 4.7 Completion time comparison using LSP=1, 2 with cache 

 

  Figure 4.7 shows the processing time using LSP=1 and LSP=2 with 

cache. Obviously, we can know that if the block-size is equal to 3, it 

must have poor performance. As mentioned in section 4.1, the size of L1 

cache is 20Kbytes, and 512Kbytes to L2 cache. If the block-size is equal 

to 2, the size of shift table is Kbytes6422 1628 ==⋅  and the size is less than 

L2 cache. Thus, it has the better performance. If the block-size is equal 

to 3, the size of shift table is Mbytes162 24 =  and the size is greater than 

512Kbytes. Thus it has poor performance. 
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Figure 4.8 Completion time comparison using LSP=3, 4 with cache 

 

  Figure 4.8 shows the processing time using LSP=3 and LSP=4 with 

cache. The running time of FWM is less than that of others in Figure 4.6. 

FWM algorithm in Figure 4.8 is equivalent to typical WuM algorithm 

because the LSP is greater than block-size. We know WuM algorithm 

have better performance while having bigger LSP. Similarly, if the 

block-size is equal to 3, it must have poor performance. 
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Figure 4.9 Completion time comparison on various LSP with cache 

 

  Figure 4.9 shows the processing time of FWM algorithm under 

different LSP. When LSP=4, it can shift the maximum characters and it 

doesn’t have any collisions by occurrence table, it has the best 

performance. 
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4.2.2 Comparison 

  We compare our algorithm against XBE 2  [9], The paper 

“Performance Analysis of Content Matching Intrusion Detection 

Systems” [11] runs a simulation to compare the performance between 

WuM and XBE 2 . According to the paper, XBE 2  algorithm has better 

performance than does WuM algorithm. We run the simulation shown as 

Figure 4.10. 
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Figure 4.10 Comparing to XBE 2  
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Figure 4.11 Comparing to XBE 2  

 

  According to reference [11], the performance of pattern matching 

algorithm depends on the number of rules. Both WuM and XBE 2  

algorithms, the performance of each is proportion to the number of rules. 

But we get almost constant time in our experiment. According to the 

principle of WuM, all patterns are processed to compute the shift value. 

The size of shift table is insensitive to the number of rules. In other words, 

no matter how many patterns, the size of shift table is fixed. This implies 

the running time is irrelevant to the number of rules. XBE 2  algorithm is 

a searching algorithm for single pattern. If it would like to process 



 34 

multi-pattern, it must compare the text with all patterns sequentially. 

Therefore, XBE 2  algorithm must be sensitive to the number of rules. 

  Moreover, XBE 2  is also sensitive to LSP. Figure 4.10 and Figure 

4.11 show the relation under different LSP. When LSP increasing, the 

running time of XBE 2  decreases. XBE 2  also rely on BM algorithm to 

check whether matching or not. Thus, bigger LSP will increase the 

performance. This is why XBE 2  takes the least time while LSP=4 than 

others. 
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5. Conclusion 

  This work shows how an improved pattern matching algorithm can 

do for network devices based on inspecting incoming packets. We know 

that while some algorithms such as BM, WuM move up the searching 

speed by shifting to reduce the comparison, these algorithms can’t run 

when LSP is equal to 1. We proposed our algorithm that could further 

enhance the performance of WuM algorithm. 

  We exploit the feature of NPU architecture which is no L1-L2 cache. 

Thus, we can use occurrence table to match smaller patterns. Moreover, 

we improve the performance of WuM by increasing the length of the 

shortest pattern and compare the performance with other search routines: 

Big Block-size, LookAhead, and Combination. 

Our experiments so far have led to several observations. First, we 

have found that WuM algorithm is insensitive to the number of rules. 

That’s a marked difference from the finding listed in the reference [11]. 

According to our experiments, WuM algorithm spent almost the same 

time with different LSP and the number of rules. Searching algorithm for 

single pattern may be sensitive to the number of rules because it must 

compare the text to all patterns sequentially.  

Second, the size of occurrence table is limited. We can’t build an 

occurrence table whose size is greater than the size of L1-L2 cache. If the 

character set is large, we may not use occurrence table unless there is no 

L1-L2 cache. 

Third, we can increase the length of the shortest pattern to improve 

the performance by shifting more characters. But using look-ahead may 

result in collisions and make no effect. This is because we need to handle 

* character. When we parse a * character, we need to enumerate all the 

possible once and use a loop to expand * character.  
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Fourth, we set block-size to 3 to let more patterns be matched in 

block-size, and take two look-ahead characters to increase the length of 

the shortest pattern. Thus, we can shift more characters. 

  Fifth, we speed up the performance by 15%-20% in terms of the 

time spent in simulations. As illustrated in Table 1.1, the better 

performance of pattern matching will also improve the throughput in 

NIDS. 
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