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Chapter 1 

Introduction 

As the Internet grows at a very rapid pace, so does the incidence of attack events 

and documented unlawful intrusions. Recipes for these attacks are readily available, 

often in a ready-to-run format, and recent incidents with global dimensions are clear 

evidence that the average computer criminal is much less sophisticated than once was 

believed. Security personnel must respond quickly and proactively to the increasing 

number and severity of threats from viruses, worms and intrusion attacks. The 

Network Intrusion Detection Systems (NIDSes) are designed to identify attacks 

against networks or a host that are invisible to firewalls, thus providing an additional 

layer of security. From 2002, the most important feature of an NIDS is to work in 

inline mode, where all packets must pass through the device. The problem with 

working inline is that there is always the potential to affect the performance and 

reliability of the rest of the network. Another issue is broad and accurate attack 

coverage. False positive alarms result in senseless waste in human resource while 

false negative makes the network be compromised. 

Generally two main methods are used for intrusion detection, namely Pattern 

Matching and Statistical Analysis [39]. The former method applies a static set of 

patterns and alerts to traffic sequences with known signatures. Meanwhile, the latter 

method detects anomalous events statistically by gathering protocol header 

information and comparing this traffic to known attacks, as well as by sensing 

anomalies. Modern NIDSes usually supports both methods. However, the 

performance of the NIDSes has been shown to be dominated by the speed of the 

string matching algorithms used to compare packets with signatures. An NIDS must 

employ an efficient string matching algorithm since an under-performing passive 
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system drops many packets and may miss many attacks, while an under-performing 

inline system creates a bottleneck for network performance [11].  

This dissertation presents three pattern search algorithms that conduct matching 

sets of patterns in parallel. Generally speaking, most signatures in NIDSes are ASCII 

codes while network traffic is composed in binary data and signature matches rarely 

happen in real-world traffic. The more bytes we can skip during searching signatures 

in packets, the more performance we gain. The first pattern search algorithm, FNP 

[28], is a Network Processor-based algorithm and utilizes the hash engine of the 

Network Processor to achieve high performance. The rule memory in this design is 

too large to fit into local cache so that this algorithm is quite suitable for Network 

Processors. Network Processors usually lack of cache memory so that accessing main 

memory are quite expensive in this environment. Unfortunately, pattern matching 

algorithms usually need to access memory quite frequently. For example, the 

Aho-Corasick algorithm [1] needs to access main memory for every single byte in 

packet payload. The proposed FNP [28] algorithm outperforms other alternatives in 

this way so that its performance is quite good in our test. 

The second algorithm we proposed is the FNP2 [30] algorithm. This algorithm is 

not for Network Processor platform specifically but a general software-based solution. 

The FNP2 algorithm is modified from Wu-Manber algorithm (MWM) [57] and needs 

less memory access than MWM, especially when the size of shortest pattern is small. 

According to current snort ruleset, there’re a lot of patterns whose size is less then 

three, therefore FNP2 is quite suitable to be implemented into a software-based NIDS. 

We implement FNP2 into a Network Processor platform also, and its performance is 

better than other competitors according to our experiments. 

Except to these two software-based pattern matching algorithm, we also proposed a 

FNP-like TCAM-based searching algorithm named FTSE. With an ASIC/FPGA 
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running with our algorithm, a 2.25Mbit TCAM, and a DDR SDRAM which cost less 

than fifty US dollars in total, we can achieve very high throughput in multiple gigabit. 

The FTSE can process multiple packets in the same time and by this way the TCAM 

latency could be hidden also. These characteristics make FTSE preferable to high-end 

Network Processors to implement gigabit-level NIDS. 

On the other hand, a sophisticated TCP processing engine is a prerequisite since the 

attackers can use ambiguities in network protocol specifications to deceive network 

security systems [16, 31, 39, 40]. This engine makes sure the NIDS sees the same 

thing as the end system and prevents from ambiguities. In this TCP scrubbing engine, 

we check the integrity of the TCP headers, tracks the TCP state transitions, and 

reassembles TCP segments into meaningful data stream with a minimum cost. We 

implement this engine and test this engine with the same methodologies as in the 

evasion test of the most two reputable NIDS certificate (NSS [45] and OSEC [46]).  

However, such a TCP processing engine itself might be vulnerable to Denial of 

Service (DoS) attacks, more specifically, the SYN Flood attacks. Since the TCP 

processing engine needs to allocate memory spaces for monitoring the whole lifetime 

of TCP connections, it could be exhausted in memory resources under SYN Flood 

attack. It has been shown that many security systems are vulnerable to SYN Flood 

attacks themselves [40], and over 90% DoS attacks are SYN Flooding [53]. This 

dissertation also presents an efficient mechanism, FSS filter, which can significantly 

mitigate the damage and it can work in conjunction with other methods also. The FSS 

filter can block and mitigate SYN Flood attacks, and it can co-work with other 

methods like Semi-Transparent [25] method as well. In our experiments, we collected 

18 famous SYN Flood attacks and FSS filter can block they attacks successfully and 

immediately. 

The rest of this dissertation is organized as follows, Chapter 2 introduces the SYN 
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Flood problem and several defending mechanisms and FSS filter as well. Next, 

Chapter 3 explains why a sophisticated TCP processing engine is necessary, and 

presents several mechanisms. Chapter 4 and Chapter 5 discuss two pattern matching 

algorithms for Network Processor platforms, respectively. Chapter 6 presents a novel 

hardware architecture to match patterns in multiple gigabit speed. Finally some 

conclusions are given in Chapter 7. 




