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Chapter 4  

FNP: A Pattern Matching Algorithm for Network 

Processor Platforms 

4.1 Introductions on NIDSes and NPUs 

Typically, firewalls are employed to increase network security by restricting access 

to designated points on the network. However, a firewall is unable to detect or prevent 

malicious activities originating from within the network. Network Intrusion Detection 

Systems (NIDS) have been designed to complement firewalls, and are designed to 

identify attacks against networks or a host that are invisible to firewalls, thus 

providing an additional layer of security. Rapid growth of network traffic has 

increased the importance of NIDS performance. Generally two main methods are used 

for intrusion detection, namely Pattern Matching and Statistical Analysis. The former 

method applies a static set of patterns and alerts to traffic sequences with known 

signatures. Meanwhile, the latter method detects anomalous events statistically by 

gathering protocol header information and comparing this traffic to known attacks, as 

well as by sensing anomalies. Pattern matching tools are excellent at detecting known 

attacks, but perform poorly when facing a fresh assault or a modification of an old 

assault. NIDSes that use statistical analysis perform worse at sensing known problems, 

but much better at reporting unknown assaults. Improved implementation of a NIDS 

should combine these two methods to improve network protection. Either way, 

NIDSes relies on exact string matching from network packet payloads against 

thousands of intrusion signatures. The performance of signature-based NIDSes has 

been shown to be dominated by the speed of the string matching algorithms used to 
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compare packets with signatures [13]. Implementing a different algorithm achieves an 

up to 500 percent increase in performance for snort 2.0. A NIDS must employ an 

efficient string matching algorithm since an under-performing passive system drops 

many packets and may miss many attacks, while an under-performing inline system 

creates a bottleneck for network performance [13]. 

The rulesets are basically souls of a NIDS. This work analyzes and experiments 

with the popular Snort [48] ruleset. Snort is an open-source NIDS and probably 

contains more signatures than any commercial and open-source competitors. 

Numerous NIDS manufacturers convert Snort signatures into their own rulesets [56]. 

This work uses the Snort ruleset owing to its popularity and complexity. Since this 

work mainly focuses on the string matching algorithm, the processing complexity 

increases with number of patterns in the ruleset. Notably, string matching in NIDS is 

domain-specific in numerous ways. First, rule patterns occur in various sizes and each 

rule may specify multiple string patterns. Second, strings may have case sensitivity 

requirements. A rule simultaneously may involve both case-sensitive patterns and 

non-case sensitive patterns. Third, most rule patterns are ASCII characters and not fair 

distributions of characters, while the network traffic mostly involves binary data. 

Fourth, priorities among signatures and a matched signature with the highest priority 

are selected during multiple matches. All these differences increase the importance of 

designing an efficient and domain-specific string matching algorithm for NIDSes. 

Network Processors deliver significant improvements in networking device (e.g. 

switches and routers) time-to-market, product lifetime, and system capabilities [38]. 

Initially networking devices were built with general purpose CPUs, and the 

software-based nature of these devices was the key to adapting to new protocol 

standards and additional network functionality requirements. Over time, to 

accommodate increasing network traffic, simpler and fixed-function devices that 
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could be built with ASICs (Application Specific Integrated Circuits) were developed. 

These devices traded-off the programmability of software-based designs for speed 

derived from hardware. Network Processors, currently on the market, deliver 

hardware-level performance to software programmable systems. Network Processors 

retain the system development flexibility of software-based devices while also 

meeting high-speed requirements. A network processor is a highly integrated structure 

comprising micro-coded or hardwired accelerated engines, memory sub-systems, and 

high-speed interconnect and media interfaces for rapid packet processing. Network 

processors generally use pipelining, parallelism, and multi-threading to hide latency. 

Network processors also employ hardware accelerators for hashing function, tree 

searches, frame forwarding, filtering, and alteration [38, 52]. The increase in network 

utilization and the weekly expansion in number of critical application layer exploits 

means NIDSes designers must develop ways to accelerate their attack analysis 

techniques when monitoring a fully-saturated network, and moreover must maintain a 

good false positive to false negative ratio. Besides developing an ASIC specifically 

for NIDS, this work also considers adapting Network Processors to implement NIDS, 

an approach that combines flexibility with good performance. 

The design presented here employs multi-thread for parallel processing and 

hardware accelerated hashing engine to identify matching entries via a linked list in 

the event of hash collision to save processor power. Hashing engine checks the linked 

entries individually from a given starting address until it identifies a matched entry or 

reaches the end of the linked list. As previously described, searching entries by 

hashing engine hides latency and improves performance owing to context switching 

before a search result is returned. 
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4.2 Previous Pattern Matching Algorithms in NIDS 

Extensive research exists on general pattern matching algorithms. The 

Boyer-Moore [5] algorithm is widely used because of its efficiency in single-pattern 

matching problems. This algorithm uses two heuristics to reduce the number of 

character comparisons required for pattern matching. Both heuristics are triggered by 

mismatches. The first heuristic, commonly referred to as the bad character heuristic, 

works as follows: if the search pattern contains the mismatching character, the pattern 

is shifted so that the mismatching character is aligned with the rightmost position at 

which it appears in the pattern. Meanwhile, if the mismatching character does not 

appear in the search pattern, the pattern is shifted so that the first character in the 

pattern is one position later than that of the mismatching character in the given text. 

The second heuristic, commonly referred to as the good suffixes heuristic, works as 

follows: if a mismatch is found in the middle of the pattern, the search pattern is 

shifted to the next occurrence of the suffix in the pattern. The Boyer-Moore algorithm 

was designed for searching for a single pattern from a given text and performs well in 

this role. However, the current implementation of Boyer-Moore in Snort is not 

efficient in seeking multiple patterns from given payloads [3, 13]. 

Aho and Corasick [1] proposed an algorithm for concurrently matching multiple 

strings. Aho-Corasick (AC) algorithm used the structure of a finite automation that 

accepts all strings in the set. The automation processes the input characters 

individually and tracks partially matching patterns. The AC algorithm has proven 

linear performance, making it suitable for searching a large set of rule signatures [13]. 

Two different implementations exist for Snort, implemented by Mike Fisk and Marc 

Norton, respectively. This work tested both implementations and employed the latter 

in the present experiments because of its superior performance. However, the Norton 
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implementation requires considerably more memory than the Fisk implementation 

(1024 versus 260 bytes per pattern character). By tracing the source codes, this work 

found ultimately that the Fisk implementation is based on the so-called 

failure-function AC algorithm while the Norton implementation is based on the 

so-called optimized AC algorithm. The running time of the optimized AC algorithm is 

independent of the pattern set, and depends on the length of the longest pattern in the 

ruleset [54] for the failure-function AC algorithm. 

Coit, Stainford, and McAlerney implemented Gusfield’s version of the 

Commentz-Walter algorithm called AC_BM [7] which uses suffix trees for the good 

suffix heuristic. The algorithm is a Boyer-Moore like algorithm applied to a set of 

keywords held in an Aho-Corasick like keyword tree overlaying the common prefixes 

of the keywords. AC_BM searches multiple-pattern simultaneously and operates from 

1.02 to 3.32 times as fast as the Boyer-Moore implementation on Snort. However, 

several unresolved issues have hampered their works with the full Snort ruleset. First, 

AC_BM reorders the rules despite the implicit ordering of Snort rules, meaning rules 

are not supported by priorities. Second, AC_BM requires additional structures to 

search non-case sensitive patterns. Third, AC_BM can only be applied to rules with a 

single content string to be matched. Furthermore, the efficiency of AC_BM depends 

heavily on the length of the shortest pattern being searched for, since the maximum 

number of shifts is bound to this value. Several Snort rules have a content length of 

just one (For example, sid 614, BACKDOOR hack-a-tack attempt [48]), which 

strongly affects AC_BM performance. 

Concurrently with Coit’s work, Fisk and Varghese designed a set-wise 

Boyer-Moore-Horspool (SBMH) algorithm [13], adapting the Boyer-Moore-Horspool 

[17] algorithm to simultaneously match a rule set. The set of patterns can be 

compared to any position in the text quickly by storing the reversed patterns in a trie. 
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Their experiments showed that this algorithm is faster than both the Aho-Corasick and 

Boyer-Moore algorithms for medium-size pattern sets. However, like AC_BM, the 

maximum number of shifts also is bounded by the length of the shortest pattern 

(denoted as LSP) in the pattern set. 

Markatos, Antonatos, Polychronakis, and Anagnostakis have designed an 

exclusion-based signature matching algorithm known as ExB [33]. ExB is based on a 

simple logic, namely: If pattern P contains at least one character not in text T, then P 

is not in T. Every time a new payload arrives, the payload is preprocessed to construct 

an occurrence bitmap to record the occurrence of distinct characters within the 

payload. ExB then identifies the patterns individually to check whether any characters 

appear in the pattern but not the payload. If such characters do exist then the pattern is 

skipped since matching is impossible. Otherwise, the Boyer-Moore algorithm is 

invoked to search the pattern in the given payload. The basic concept of E2xB is the 

same as that of ExB, with the two methods differing only in the method used to 

denote a match [3]. The effectiveness of both ExB and E2xB decreases significantly as 

the number of rules exceeds 1000, a phenomenon possibly caused by the effect of 

increasing false-match rates. ExB and E2xB, essentially linear matching algorithms, 

were designed when Snort used the linear Boyer-Moore algorithm as its default search 

engine. The Snort 2.0 has given up such linear matching algorithms and uses the 

well-known MWM [57] and AC algorithms as its default search engine. Additionally, 

[3] demonstrated that the implementation performance of these algorithms is better 

using a Pentium-3 1 GHz processor with 512KB L2 cache than a Pentium-4 1.7 GHz 

processor with 256KB L2 cache. Their experimental results demonstrated that ExB 

performance depends significantly on the cache size. Accordingly, when these 

algorithms are implemented over the network-processor platform, performance suffers 

due to large memory access latency, since generally internal memory size is extremely 
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small when the cache memory is absent. 

The MWM algorithm is another widely used multi-pattern matching algorithm 

designed by Wu and Manber [57]. The current implementation of Snort uses this 

algorithm as the default engine if the search-set size exceeds ten. The MWM 

algorithm uses the Boyer Moore algorithm with a two-byte shift table established by 

pre-processing all patterns. This algorithm performs a hash on the two-byte prefix into 

a group of patterns, which then are checked beginning from the final character when 

partially matching occurs. The MWM algorithm is used in agrep [57] and has been 

shown to deal with large amounts of patterns efficiently. However, like AC_BM and 

SBMH, the performance of the MWM algorithm also depends considerably on the 

LSP, because the maximum number of shifts equals this value minus one. 

4.3 Design and Implementation of FNP 

This work addresses the string matching problem formally before introducing the 

proposed FNP algorithm. 

Given an input text T = t0, t1, …, tn, and a finite set of strings P = {P1, P2, …, Pr}, the 

string matching problem involves locating and identifying the substring of T which is 

identical to Pj = j
m

jj aaa 110 ,...,, − , 1≤ j≤ r, where  

 ts+i = j
ia , 0≤ i≤ m-1. And this equation can be also denoted as 

ts…ts+m-1 = j
m

j aa 10 ... −  

4.3.1 FNP Algorithm  

The proposed FNP algorithm is exclusion-based and its implementation is 

extremely straightforward. FNP is based on the following simple reasoning: For an 
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arbitrary pattern Pj = j
m

jj aaa 110 ,...,, −  if w sequential bytes of T can be found from 

location s, where 

ts+i...ts+w-1 ≠ j
iw

j aa −−10 ...  , i = 0, 1, 2, … , w-1 

Then, the w sequential bytes do not contain any i-bytes prefix of Pj as its suffix, where 

1 ≤ i ≤ w. Therefore, the w sequential bytes can be skipped during searching. On the 

other hand, if w sequential bytes can be found in T that also is a prefix of Pj, then 

comparing the remaining (m – w) bytes from this position is worthwhile. 

To clarify this point, this study uses a Prefix Sliding Window (denoted as PSW) with 

length w which shifts from the leftmost byte to the rightmost byte of T. Every time the 

PSW shifts, an attempt is made to determine whether S, the w sequential bytes covered 

by PSW, contains j
k

j aa 10 ... −  of pattern Pj, where 1 ≤ k ≤ w. If no such pattern exists 

whose first k sequential bytes are contained by S, then the PSW can be shifted w bytes 

to the right. On the other hand, if a pattern Pj exists, where  

Sw-k…Sw-1 = j
k

j aa 10 ... −  

then the PSW is shifted right by w – k bytes. Even if w sequential bytes in T are found 

that also is a prefix of Pj, false matches certainly will still exist (even if the first w 

bytes match, the remaining m – w bytes still may fail to match). However, later this 

work shows the numerous unnecessary comparisons that this approach can eliminate, 

making the loss of false matches affordable. The remaining problem is how to 

determine whether S contains the prefix of a pattern Pj. If w is sufficiently small, for 

example three, a table named the Skip Distance Table (denoted as SDT) can list all 

possibilities of three sequential bytes. This approach is quite intuitive and also 
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effective. For example, if a rule signature exists with the content string ‘abcd’, 

identical to {0x61, 0x62, 0x63, 0x64} in ASCII code, then the table entry of address 

0x000061 to 0xFFFF61 (last byte remains unchanged) is set to two. Accordingly, 

when S falls into this range, it should shift right by two bytes so that the first byte of 

its new location will be aligned with ‘a’. Table entries of address 0x006162 to 

0xFF6162 (last two bytes remain unchanged) then are set to 1.  

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

Get skip distance with address
0x040506 in SDT, then shift
PSW right by 2 bytes.

Get skip distance with address 0x030405
in SDT, then shift PSW right by 1 byte.

Get skip distance with address 0x000102 in
SDT, then shift PSW right by 3 bytes.

Find a 3-sequential-bytes match.

 Prefix Sliding Window (PSW)

C
om

pa
ri

so
n 

Fl
ow

Skip Distance Table (SDT)

Address Value

0x000102 3

0x030405 1

0x040506 2

0x060708 0

 
Figure 14. PSW Movement 

Accordingly, when S falls into this range, it should shift right by one byte so that 

the first two sequential bytes of its new location will be aligned with ‘ab’. 

Subsequently, the table entries of address 0x616263 are set to zero. When S is 

identical to 0x616263, it matches the first three sequential bytes of the content string 

‘abcd’. Other table entries are set to 3. If S falls into this category, it can be shifted 

three bytes to the right safely. Figure 14 illustrates how PSW moves with the entry 

values in SDT. 

The following details the design of the FNP algorithm. This work first explains 

the table structures adapted in the present design, and then divides the algorithm into 

off-line pre-processing and runtime processing. The off-line pre-processing constructs 

necessary rule tables and lookup tables while the runtime processing processes the 
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payload and identifies the matches. For simplicity this work assumes w = 3. 

4.3.2 Table Definitions 

The Skip Distance Table (SDT) is used to lookup the number of bytes that PSW 

should shift right, and also to check whether S matches the pattern prefix. The size of 

SDT is 2w*8, namely 16M if w = 3. During comparison the instant integer value of S is 

taken as the entry address for looking up the skip distance. For example, if S is 

0x006162, then the value stored in address 0x006162 is returned as the skip distance. 

If the returned value is zero then three bytes are matched, otherwise PSW shifts right 

by the returned-value bytes. 

The Rule Hashing Table (denoted as RHT) preserves the signature content strings. 

The FNP is designed to perform multiple-pattern matching simultaneously, and 

hashing is used to distribute pattern content strings. The RHT is a one-dimension 

hashing table which stores the link pointers to collision entries, the hashing key for 

matching, content string length, Rule-ID, and the remainder of the content string. The 

hashing key is the first four sequential bytes ( jj aa 30 ... ,1 ≤ j ≤ r) of the content string. If 

multiple rules have the same hashing value and a collision occurs, a linked list is 

maintained to preserve the collision entries, and here the lookup coprocessor is used 

to accelerate the search. As previously described, the lookup coprocessor traverses the 

linked list from the given starting address to identify an entry with a matched hashing 

key without compromising CPU power owing to the occurrence of a context switch. If 

a match is identified then this work begins to compare the remaining m – 4 bytes. 

Rule Status Table (denoted as RST) is designed for multiple purposes: to record 

whether a pattern has been matched previously, to accommodate multiple-content 

patterns, and to maintain rule priorities. RST is exactly the same size as the number of 
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content string entries in RHT, and the order of RST entries is exactly the same as the 

Rule-ID in RHT. Rule priority increases with decreasing Rule-ID. An RST entry 

comprises a MATCH flag, a HEAD flag, and several link pointers to other entries. 

Multiple-content strings are taken apart so that every content string occupies an entry 

in RHT. The longest string then is selected as HEAD from a multiple-content rule, and 

the HEAD entry preserves links to NON-HEAD entries belonging to the same rule. 

Single-content strings individually are marked as HEADs. The RST actually is a 

linked list on which every entry is connected individually, and thus the lookup 

coprocessor can be employed again to seek the highest priority entry. 

4.3.3 Off-line Pre-Processing 

This stage involves constructing SDT, RHT, and RST. 

During initialization, all entries in SDT are set to 3. For patterns with length of 4 or 

greater, the corresponding entries of their first three sequential bytes ( jj aa 20 ... ) and 

second three sequential bytes ( jj aa 31 ... ) in SDT are set to zero. Every table entry whose 

last (rightmost) 8-bits of address is identical to any one-byte prefix of the patterns and 

whose entry value is not zero is set to 2, and every table entry whose last (rightmost) 

16-bits of address is identical to any two-byte prefix of the patterns and whose entry 

value is not zero is set to 1. Notably, for patterns with length of 3 or below the 

corresponding entries can be marked with a special flag (say, its Rule-ID) to denote a 

match. For example, for patterns containing only ‘0x7B’ as their content string, then 

the entries whose first, second, or last 8-bits of addresses are 0x7B are marked. This 

method can identify matching patterns with length of 3 or below and only one 

memory access. 

The next step is to insert rules into RHT. The multiple-content signatures are 
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taken apart so that every content string has its own entry. The first four sequential 

bytes of every content string are used to derive the hashing value of that string. In the 

event of a collision, a linked list is maintained to preserve the collision entries. Other 

fields like pattern length, content strings, and rule ID also are filled in the RHT. 

The MATCH flag of all RST entries is set to false, and entries corresponding to 

single-content rules are marked as HEADs. For multiple-content rules only the 

longest content entries are marked as HEADs. When several entries belong to the 

same multiple-content rule then the HEAD entry will contain pointers to other entries. 

During comparison, if a pattern is found in T, the MATCH flag of the corresponding 

entry is set to true so that compare this entry again is unnecessary for the remainder of 

T. Once T has been screened out entirely, hash coprocessor is used again to search for 

the HEAD entry with MATCH flag set so that there is no need to perform a linear 

search to identify the highest priority matched entry. After finding such an entry, 

whether or not that entry points to other entries is checked. A multiple-content rule is 

matched if every content matches T. Figure 15 illustrates an example of inserting a 

multiple-content rule into RST and RHT. This multiple-content rule contains three 

content strings: “abcdefgh”, “123456”, and “123400”. The hashing results of keys 

abcd and 1234 are assumed to be 1 and 3, respectively. In RST, string “abcdefgh” is 

chosen as the HEAD entry, with pointers linked to “123456” and “123400”. 

Meanwhile, “123456” and “123400” are linked in the same linked list because their 

keys (1234) are identical in RHT. 
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Rule ID: 123
MATCH: FALSE
HEAD: TRUE

Rule ID: 124
MATCH: FALSE
HEAD: FALSE

Rule ID: 125
MATCH: FALSE
HEAD: FALSE

Rule Status Table (RST)

Pointers to entries belong to the same rule

Pointers for hashing engine to traverse

 Content1:
    abcdefgh
 Content2:
    123456
 Content3:
    123400

Rule

3

2

1

N

0

Rule ID: 123
Length: 4
Key: abcd
Pattern: efgh

Rule ID: 124
Length: 2
Key: 1234
Pattern: 56

Rule ID: 125
Length: 2
Key: 1234
Pattern: 00

Rule Hashing Table (RHT)

Hash 
Index 
Values

Hash Chains

Pointers for  hashing engine to traverse

 
Figure 15. An Example of the RST and RHT. 

4.3.4 Runtime Processing 

The matching procedure of the proposed FNP algorithm is quite simple. Initially 

PSW is aligned with the first byte of the incoming payload. The string within the PSW 

S (t0…t2) then is fetched, and its skip distance is looked up in the SDT. If skip distance 

N does not equal to zero, then PSW is shifted right by N bytes in the next round. If N 

is zero, an attempt is made to fetch the next three sequential bytes (t1…t3) and lookup 

its skip distance. If the skip distance for the second three sequential bytes, M, is not 

zero, PSW is shifted right by M+1 bytes for the next round. If M is zero, then two 

consecutive 3-sequential-bytes both appear in the signature content. From the present 

experiment, checking the 2nd three sequential bytes reduces false matches by over 

80%. These two 3-sequential-bytes then are combined to one word and thrown to the 

Hashing Lookup Engine for further searching. Notably, Network Processor, like most 

CPUs, accesses memory on a word (32-bits) basis, so that two consecutive 



 

 

47

3-sequential-bytes can be obtained via a single memory access. When the returned 

skip distance is zero or one, fetching the next 3-sequential-bytes from memory is 

unnecessary since they are already stored in the register. If a word needs to be 

searched in RHT, this job is left to the lookup co-processor, after which context 

switching is performed. After this thread wakes up again, the lookup co-processor 

either returns the address of the matching entry or sets a bit indicating the failure of 

matching. If lookup fails, PSW is shifted one byte right to continue. If lookup 

succeeds, then whether the MATCH flag of this entry has been set in RST is checked, 

because this avoids the need to waste time on rechecking matching entries. If the 

entry found previously has not been matched then an exact matching is conducted 

between the payload and the remaining content. If the remaining content matches the 

payload, then the MATCH flag of the corresponding RST entry is set to TRUE to 

indicate a match. Meanwhile, if no match exists the following entries are searched 

again using a lookup coprocessor until all of the collision entries have been checked. 

The primary payload matching procedure of the FNP algorithm is as follows: 

 

FNP Algorithm 

Input: A text string T = t1, t2, .., tn. SDT, RHT, and RST. 

Output: RST with matched entries. 

 begin 

  i ← 0 

  while (i < (n – 2)) do 

   begin      

    s ← SDT[t i…t i+2]  

    d ← s >> 8 {upper byte is the Rule-ID of the short pattern} 

    if (d > 0) then 
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     RST[d].Matched ← true 

    N ← s & 0xff  {the lower byte is the skip distance} 

    if (N > 0) then 

      i ← i + N 

    else 

     begin 

      M ← SDT[ti+1…ti+3] & 0xff 

      if (M > 0) then 

        i ← i + M + 1 

      else 

        Search in RHT with key ti…ti+3 

     end 

   end 

 end 

 

After going through the entire payload, a matching entry with the highest priority 

is selected from RST. If no matching entry exists, then the payload is clean. Notably, 

the work of searching in RST can be performed by the lookup co-processor. 

Consequently, the whole table does not need to be traversed to select the entry with 

the highest priority by CPU.  

If the ruleset contains non-case sensitive rules, the keys in SDT and RHT are 

converted into lower case during the pre-processing time and a flag is used to denote 

the case attribute. During comparison S is converted into lower case to lookup in SDT 

and RHT. If the lookup succeeds then the case attribute is checked to confirm whether 

or not the payload needs to be compared. 



 

 

49

4.4 Analysis of FNP 

Interestingly, matches are rare in multiple-pattern searching of NIDSes. From our 

observations, the distribution of characters in the current Snort signature content is not 

uniform. Among 256 possible characters, only 149 distinct characters appeared in the 

Snort full ruleset released on Aug 10, 2003. Regarding occurrence frequency, 95% of 

characters in the Snort ruleset are 7-bit ASCII codes. The fact of that most signatures 

comprise ASCII characters while most real network traffic comprises uniform 

distribution characters indicates that matches are unlikely to be frequent. A linear-time 

algorithm like AC is optimal in the worst case, but in the typical case it is more 

desirable to keep the algorithm simple [17] and skip a large portion of the text during 

searching [9, 24]. Since matches are infrequent, algorithms that skip as much of 

payloads as possible perform better than others. Both SBMH, AC_BM are designed to 

compare from right to left and thus maximize skip number. However, their maximum 

numbers of shifts are bound to LSP. Figure 16 illustrates the distribution of content 

length in the full Snort ruleset, and surprisingly the figure contains 69 signatures 

(multiple-content signatures included) with a content length of one. Consequently, 

algorithms whose performance depends on LSP are inefficient if the LSP of search set 

is small. As for the MWM algorithm, the maximum number of shift bytes equals the 

value of LSP minus 1 [57], which also reduces the desirability of the MWM if the 

LSP is very small.  
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Figure 16. Distribution of pattern length in the current Snort ruleset 

Since FNP is designed mainly for network processors, the key to evaluating a pattern 

matching algorithm is the number of memory accesses during searching. Memory 

accesses are very expensive on Network Processors, since memory access latency 

influences implementation speed markedly. Multi-threading is the most common 

approach to hiding latency [44]. However, in a computationally intensive application 

like multi-pattern matching, all contexts tend to access the memory simultaneously. 

The following aims to show that the algorithm presented here can reduce the number 

of memory accesses and thus improve overall performance significantly. 

 This work applies a probabilistic model to examine the average performance of 

this FNP algorithm. Let Nk denote the number of k occurring in SDT, k = 0, 1, 2, 3. 

Additionally, let A denote alphabetical space size, which is 224 when w = 3. The 

expected value of skip distance for each move thus is: 

E = ((N1 + (2 * N2) + (3 * N3)) / A) + ((N0 / A) * (((2 * N1) + (3 * N2) + (4 * N3)) / A)) 

In the current Snort full ruleset, when A is 224, N0 = 1796, N1 = 138503, N2 = 6742046 

and N3 = 9894871, then E is 2.58. If no match exists, only two memory accesses are 

required for shift execution, one for payload fetching and another for lookup in SDT. 
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Thus if no two consecutive 3-sequential-bytes are matched in a 750 bytes packet, less 

than 581 memory accesses are required, better than the 1,500 memory accesses 

required using AC algorithm.  

 If a match occurs, since the hashing engine of the Network Processor is used to 

identify entries with matching keys, this work only counts memory access for exact 

string comparison, as follows 

 (AVERAGE_PATTERN_LENGTH/4) * 2 

Figure 16 reveals that over 95% of patterns have a length of below 32, while 

over 75% patterns have a length of below 16. Assuming an average pattern length of 

16 bytes, and comparing 4 bytes at a time, eight memory accesses are required for 

string matching. If a 750 bytes payload contains p matches, then the total number of 

memory accesses is less than 581 + (8 * p). Since matching is rare, the average 

number of memory accesses of FNP is better than the 1,500 of AC algorithm. 

4.5 Experiments over FNP 

To verify the effectiveness of the proposed FNP algorithm, its performance was 

evaluated against the previously mentioned SBMH, AC, and MWM algorithms. 

Because of the difficulty of implementing all these four algorithms with Network 

Processor micro codes, some experiments were implemented on general PCs to 

simulate the network-processor environment. Nevertheless, the FNP was 

implemented using the Vitesse IQ2000 [52] Network Processor. The relations 

between the program performance and the number of memory accesses during 

execution also were assessed. Combining the results of simulations and 

network-processor experiments substantiates the efficiency and practicability of the 

FNP algorithm. Additionally, this work demonstrated that the LSP influences 
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multi-pattern matching algorithm performance significantly, and moreover that the 

FNP algorithm is more efficient and faster than the other three algorithms provided 

LSP ≤ 4. 

The current Snort ruleset, containing 1,942 rules with 2,475 patterns, was 

employed as the default searching pattern. The full-packet traces can be derived from 

the “Capture the Capture The Flag” (CCTF) project held in DEFCON [10] annually. 

The DEFCON9 packet traces used in the present experiments were the most 

up-to-date available. 

4.5.1 Evaluation of the number of memory accesses 

As previously described, the proposed FNP algorithm requires fewer memory 

accesses given small LSP. The four algorithms are evaluated using different search set 

sizes and LSPs by counting number of memory accesses. The packet trace (900MB) 

defcon_eth0.dump2 [10] was employed to generate the test traffic more realistically. 

Trace defcon_eth0.dump2 was selected because of its low compression rate compared 

to other packet traces, and because the content of this trace is considerably more 

complicated, thus increasing test fairness. Figure 17 illustrates the results of these four 

algorithms for different search set sizes and LSPs, where FNPw3 denotes PSW size of 

3. The case involving the MWM algorithm with LSP = 1 was not assessed because the 

MWM algorithm does not support this situation. The FNP algorithm clearly 

outperformed the other three algorithms for LSP ≤ 4. Notably, 35% of the patterns in 

the latest Snort ruleset fall into this category. In this experiment, approximately 740M 

memory accesses are required for FNP to process 900M data. This experimental 

result is quite close to previous analyses in which two memory accesses were required 

for processing 2.58-bytes data. On the other hand, the FNP algorithm markedly 

reduces the number of false checks, which generally increases with search-set size, 
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because lookup in RHT is invoked only if two consecutive 3-sequential-bytes matches 

occur. 

 
Figure 17. Number of memory accesses during pattern matching processing 

Notably, two major influences affect the performance of multi-pattern matching 

algorithms in the NIDS, namely: LSP value and the pattern ruleset size. Interestingly, 

previous works focused on the latter factor only, while neglecting the former factor. 

Figure 17 reveals that search-set size does not influence the number of memory 

accesses required for the MWM algorithm to complete the multi-pattern matching, but 

for LSP = 2,3,4 the required number of memory accesses is approximately 1800M, 

950M, 800M, respectively. The SBMH algorithm displays the same phenomenon. 

This phenomenon indicates that value of LSP is even a major influence on the 

performance of multi-pattern matching algorithms.  

4.5.2 Performance Evaluation on a general PC with disabled cache memory 

Most Network Processors lack cache memory and internal memory size is 

usually small. To simulate this condition the present experiments were run on a 

general PC with the L1/L2 cache memory turned off. A Pentium-4 processor PC 

LSP = 1

0

1000

2000

3000

4000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y 

A
cc

es
s 

N
um

be
r 

(M
) FNPw3 AC SBMH

LSP = 2

0

500

1000

1500

2000

2500

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y 

A
cc

es
s 

N
um

be
r 

(M
) FNPw3 AC SBMH MWM

LSP = 3

0

500

1000

1500

2000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y 

A
cc

es
s 

N
um

be
r 

(M
) FNPw3 AC SBMH MWM

LSP = 4

0

500

1000

1500

2000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y 

A
cc

es
s 

N
um

be
r 

(M
) FNPw3 AC SBMH MWM



 

 

54

running at 1.7 GHz with 512 MB of DDR memory was employed for the experiments. 

The host operating system was Windows XP, and the packet trace was 

defcon_eth0.dump2 in DEFCON9. Figure 18 shows the total processing time required 

for these four algorithms to search the defcon_eth0.dump2 with different search-set 

sizes and LSPs. The timer counts the pattern matching procedure only and excludes 

the file-loading time and other operations. 

 
Figure 18. Completion time comparison using a cache-disabled PC 

Figure 18 reveals that the processing time of the FNP algorithm is less than that 

of the other three algorithms given LSP ≤ 4. This phenomenon again highlights the 

importance of LSP to the performance of multi-pattern matching algorithms, such as 

MWM and SBMH. The MWM algorithm should outperform FNP when LSP ≥ 5. 

However, given that 35% of the patterns in the current Snort ruleset have lengths of 1, 

2, 3, or 4. Although the NIDS signatures are usually partitioned into groups by L3/L4 

header fields (for example IP pairs and port pairs), most likely the LSP ≤ 4 for each of 

the groups. Moreover, most NIDSes accept user-defined signatures and these 

signatures may lower the LSP further. Such a fact implies that the FNP performs 

better than other multi-pattern matching algorithms in most cases. Actually, a hybrid 
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algorithm can be employed where FNP is applied for groups with LSP ≤ 4, and 

another algorithms (such as MWM) can be employed for groups with LSP ≥ 5.  

Figure 18 also demonstrates the scalability of the FNP algorithm. Search set size 

clearly does not significantly influence FNP algorithm performance. Surprisingly, AC 

algorithm performance is not independent of search-set size. The reason for this 

phenomenon appears to be the large memory consumption of the AC algorithm (1024 

bytes per pattern character). For larger search sets the state automation structure may 

exceed the size of a memory page within a DRAM cell, meaning that extra 

row-precharging time is required. 

4.5.3 Performance Assessment with a Randomly Generated Ruleset 

To evaluate the scalability of FNP algorithm, a test by searching the 

defcon_eth0.dump2 packet trace with randomly generated rulesets is also conducted 

on the PC with turned-off cache. The length of the ruleset patterns varies between 1 to 

128 bytes. Table IV lists the relationship between searching time, search-set sizes, and 

expected values of skip distance (E). The searching time increases very slowly with 

search-set size. This phenomenon shows that the FNP algorithm is very efficient and 

can accommodate a large set of rules. Notably, the searching time in Table IV is 

longer than in Figure 18. This phenomenon occurs because the rulesets adapted in 

Table IV are generated randomly, while the Snort ruleset mainly comprises ASCII 

codes, so that the expected skip distance values in Table IV are smaller than those in 

Figure 18. 

 

Table IV. Scalability test for the FNP algorithm with randomly generated rulesets 

Ruleset Time (s) N0 N1 N2 N3 E 
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Size 

1024 1573 1962 257740 16193787 323727 2.003934 

2048 1590 3902 509269 16133127 130918 1.977443 

4096 1602 7696 990620 15648039 130861 1.94873 

8192 1638 15276 1898969 14732145 130826 1.894513 

16384 1741 30351 3526308 13089739 130818 1.79724 

32768 1873 60453 6249190 10336756 130817 1.633977 

4.5.5 Implementing FNP on a Network Processor Platform 

To further evaluate the practical performance of the FNP algorithm, this work 

implements it on the Vitesse IQ2000 Network Processor platform. The IQ2000 has 

four 200 MHz RISC Packet Processing Engines (PPEs), each containing five sets of 

32-bit registers, allowing up to four separate contexts to be active simultaneously. 

Each PPE also contains a lookup co-processor used to search for a given key in a 

specified linked-list. This facility can be used to search both the RST and RHT. Each 

PPE contains 2K-byte internal memory, and 512 bytes are assigned to each context. 

The system also has 512MB Direct Rambus DRAMs (RDRAMs) as the main 

memory. 

To write the micro-code program efficiently, the IQ2000 technical documents 

suggest reducing the number of direct RDRAM accesses and trying to move data into 

the internal memory instead. In the present case, since the other tables such as SDT 

are too large to fit into the 2K-byte local memory, manipulating the packet payloads is 

the only way to reduce the number of direct RDRAM accesses. To confirm the impact 

of memory access number on performance, this work implements the FNP algorithm 

using two different methods. The first method (Exp1) is to access the packet payloads 

from RDRAM directly eight bytes at a time, with the next eight bytes being fetched 
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each time PSW moves beyond the boundary of the current 8-byte payload. Meanwhile, 

the second method (Exp2) involves first fetching the payloads via DMA into internal 

memory 384 bytes a time, then fetching the next 384-byte of data through DMA if the 

PSW exceeds the boundary of 256 bytes. As the lookup co-processor, the context 

switch occurs during data transfer using DMA co-processor to hide the latency. 

Notably, the reason the boundary is set in the 256th byte is a heuristic for handling the 

situation in which a match occurs near the boundary, and this heuristic guarantees that 

the matched payload must already have existed in embedded local memory. 

The network processor platform is designed to handle traffic of several hundreds 

Mbps and it is difficult to replay the Defcon9 traces in such high speed. Therefore, the 

SmartBits 6000B [51] and SmartApplication [51] are employed to generate the UDP 

traffic in Gigabit rate. Figure 19 illustrates the throughput of both experiments. 

Notably, the performance measurement results presented here are inline forwarding 

rates, not passive processing rates. The SmartApplication generates UDP packets in 

different sizes, and obviously the performance of the FNP program is better for small 

packets than for large packets. This phenomenon appears related to the fact that the 

program presented here ignores the header parts (MAC header, IP header, and UDP 

header) of a packet, and the proportion of the payload in a small-size packet is smaller 

than that in a large-size packet. Figure 19 illustrates that the program in Exp 2 is more 

efficient than that in Exp1. The only difference between the programs in Exp 1 and 

Exp 2 is the method of moving packet payloads. Take the 1514-byte UDP packet in 

our test for example; the program in Exp 2 eliminates 365 RDRAM accesses by using 

a six times DMA transfer, the latency of which can be hidden to achieve an 

approximately 30% improvement in performance. The testing results demonstrate the 

point that reducing the number of memory accesses during processing significantly 

improves program performance.  
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Figure 19. The performance of the FNP algorithm with different packet lengths 

Coding in micro-code language is not easy because of its poor readability and its 

dependency on hardware characteristics. For example, the 8-byte data in Exp1 could 

be moved either through DMA or through two Load-Word (LW) instructions. This 

work demonstrates that moving data through DMA is more efficient if the data length 

exceeds 24 bytes, however in the present case it is faster to use the 2-LW instructions. 

This change achieves nearly a 20% performance improvement. The experimental 

results and the coding experience suggest that manipulating number of memory 

accesses is sensitive to the success of the program performance. Figure 17 reveals that 

the FNP algorithm is more efficient in number of memory accesses than the other 

three algorithms when LSP ≤ 4. Therefore the FNP algorithm appears more suitable 

and efficient than alternatives in this situation. 

Since the number of memory accesses significantly influences program 

performance, the present design also should benefit greatly from the hashing engine. 

Without the hashing engine, the program must traverse the RHT and RST several 

times when processing a packet by accessing RDRAM directly, and result in 

significantly downgrading performance. The present design not only uses the hashing 

engine to improve throughput, but also maintains rule priority without sacrificing 
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performance. 

Notably, program performance obviously depends on hardware capacity. We 

believe that performance can be improved markedly by using more high-end Network 

Processor Units, like Vitesse IQ2200 [52] (with four 400 MHz PPEs), Intel IXP2400 

[22] (with eight 600 MHz PPEs), or even Intel IXP2800 [22] (with 16 1.4 GHz PPEs). 

4.5.6 FNP on general PCs 

 

Figure 20. Completion time comparison by using general PC with cache turned on 

Current Snort (2.0) takes AC and MWM algorithms as default pattern matching 

engines, and this section aims to demonstrate that the FNP algorithm is more suitable 

than AC algorithm in most cases. To accommodate the cache size of normal PCs, the 

size of PSW was set to 2 in this experiment, and thus the size of SDT was 64K. The 

experiment was run on a general PC with a Pentium 4 processor running at 1.8 GHz, 

with L1 data cache of 8KB, L2 cache of 512 KB, and 512 MB of DDR memory. The 

host operating system was Windows XP. The packet trace in this test was still 

defcon_eth0.dump2 in DEFCON9. This work tests the FNP against the other three 

algorithms with both LSP and search set size the same as in the other experiments. 
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The FNPw2 in Figure 20 indicates that the size of the PSW in this test is 2. With 

LSP < 3, FNP processes packets faster than the other three algorithms when the 

search set size exceeds 64. With LSP = 3, the performance of FNP is almost identical 

to that of the MWM algorithm. Moreover, the FNP algorithm consumes much less 

memory than AC algorithm. For example, the FNP algorithm can accommodate 256 

patterns using 256K, but AC algorithm requires over 2M to accommodate the same 

number of patterns. Furthermore, the FNP algorithm works more like MWM than AC, 

making the structures and tables easier to reuse. Figure 20 also illustrates the 

scalability of FNP. The increment of search-set size has almost no influence on the 

performance of the FNP algorithm when it is below 2048. 

4.6. Summaries of FNP 

This work examined the importance of the pattern matching algorithm for NIDS, 

and designed and implemented a fast and efficient algorithm named FNP for network 

processor platforms. FNP uses the characteristic of NIDS rulesets and the hardware 

facility of Network Processor to maximize performance. 

Owing to the difficulty of implementing other multi-pattern matching algorithms 

(such as AC, SBMH, and MWM) by micro-code simultaneously, only the FNP 

algorithm is implemented on the Vitesse IQ2000 Network Processor platform to 

evaluate the relation between performance and the number of memory accesses for 

processing multi-pattern matching. On the other hand, the FNP algorithm is compared 

with the other three algorithms using general PCs. To simulate the Network Processor 

environment, both the L1/L2 caches are turned-off in this experiment. The 

experimental results reveal that the FNP outperforms the other three algorithms when 

LSP ≤ 4. On a normal PC with the cache turned, the FNP also performs well for LSP 

≤ 3. Since 35% of the patterns in the current Snort ruleset have lengths of 1, 2, 3, or 4, 
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then since NIDS rules are usually partitioned into groups based on L3/L4 header 

fields (for example IP pairs and port pairs) during the matching procedure, it is likely 

that LSP ≤ 4 for many groups. Besides, the user-defined signatures may even make a 

smaller LSP further. Consequently, FNP should perform better than other 

multi-pattern matching algorithms in most cases. 

Pattern and payload characteristics affect the performance of multi-pattern 

matching algorithms in NIDSes, as in other applications. The NIDSes may partition 

the signatures into sub-groups based on L3/L4 header fields. The fastest matching 

algorithms differ among subgroups. From existing research, the assessment should 

depend on search-set size and LSP value. The FNP algorithm has been shown to be 

very efficient for small LSP regardless of search set size. According to our 

experiments, a hybrid multi-pattern matching algorithm comprising both FNP and 

MWM algorithms covers most cases and achieves better performance regardless the 

search-set size and the value of LSP. 

Generally, the NIDS detection engine conducts flow classification, header-field 

comparison, and multi-pattern matching. Although multi-pattern matching is the most 

time-consuming task, a fast packet processing flow is desirable for integrated 

handling of these issues. Using the facilities provided by the Network Processor may 

be a good solution to this problem. This direction is left for future works to pursue. 




