

34

Chapter 4

FNP: A Pattern Matching Algorithm for Network

Processor Platforms

4.1 Introductions on NIDSes and NPUs

Typically, firewalls are employed to increase network security by restricting access

to designated points on the network. However, a firewall is unable to detect or prevent

malicious activities originating from within the network. Network Intrusion Detection

Systems (NIDS) have been designed to complement firewalls, and are designed to

identify attacks against networks or a host that are invisible to firewalls, thus

providing an additional layer of security. Rapid growth of network traffic has

increased the importance of NIDS performance. Generally two main methods are used

for intrusion detection, namely Pattern Matching and Statistical Analysis. The former

method applies a static set of patterns and alerts to traffic sequences with known

signatures. Meanwhile, the latter method detects anomalous events statistically by

gathering protocol header information and comparing this traffic to known attacks, as

well as by sensing anomalies. Pattern matching tools are excellent at detecting known

attacks, but perform poorly when facing a fresh assault or a modification of an old

assault. NIDSes that use statistical analysis perform worse at sensing known problems,

but much better at reporting unknown assaults. Improved implementation of a NIDS

should combine these two methods to improve network protection. Either way,

NIDSes relies on exact string matching from network packet payloads against

thousands of intrusion signatures. The performance of signature-based NIDSes has

been shown to be dominated by the speed of the string matching algorithms used to

35

compare packets with signatures [13]. Implementing a different algorithm achieves an

up to 500 percent increase in performance for snort 2.0. A NIDS must employ an

efficient string matching algorithm since an under-performing passive system drops

many packets and may miss many attacks, while an under-performing inline system

creates a bottleneck for network performance [13].

The rulesets are basically souls of a NIDS. This work analyzes and experiments

with the popular Snort [48] ruleset. Snort is an open-source NIDS and probably

contains more signatures than any commercial and open-source competitors.

Numerous NIDS manufacturers convert Snort signatures into their own rulesets [56].

This work uses the Snort ruleset owing to its popularity and complexity. Since this

work mainly focuses on the string matching algorithm, the processing complexity

increases with number of patterns in the ruleset. Notably, string matching in NIDS is

domain-specific in numerous ways. First, rule patterns occur in various sizes and each

rule may specify multiple string patterns. Second, strings may have case sensitivity

requirements. A rule simultaneously may involve both case-sensitive patterns and

non-case sensitive patterns. Third, most rule patterns are ASCII characters and not fair

distributions of characters, while the network traffic mostly involves binary data.

Fourth, priorities among signatures and a matched signature with the highest priority

are selected during multiple matches. All these differences increase the importance of

designing an efficient and domain-specific string matching algorithm for NIDSes.

Network Processors deliver significant improvements in networking device (e.g.

switches and routers) time-to-market, product lifetime, and system capabilities [38].

Initially networking devices were built with general purpose CPUs, and the

software-based nature of these devices was the key to adapting to new protocol

standards and additional network functionality requirements. Over time, to

accommodate increasing network traffic, simpler and fixed-function devices that

36

could be built with ASICs (Application Specific Integrated Circuits) were developed.

These devices traded-off the programmability of software-based designs for speed

derived from hardware. Network Processors, currently on the market, deliver

hardware-level performance to software programmable systems. Network Processors

retain the system development flexibility of software-based devices while also

meeting high-speed requirements. A network processor is a highly integrated structure

comprising micro-coded or hardwired accelerated engines, memory sub-systems, and

high-speed interconnect and media interfaces for rapid packet processing. Network

processors generally use pipelining, parallelism, and multi-threading to hide latency.

Network processors also employ hardware accelerators for hashing function, tree

searches, frame forwarding, filtering, and alteration [38, 52]. The increase in network

utilization and the weekly expansion in number of critical application layer exploits

means NIDSes designers must develop ways to accelerate their attack analysis

techniques when monitoring a fully-saturated network, and moreover must maintain a

good false positive to false negative ratio. Besides developing an ASIC specifically

for NIDS, this work also considers adapting Network Processors to implement NIDS,

an approach that combines flexibility with good performance.

The design presented here employs multi-thread for parallel processing and

hardware accelerated hashing engine to identify matching entries via a linked list in

the event of hash collision to save processor power. Hashing engine checks the linked

entries individually from a given starting address until it identifies a matched entry or

reaches the end of the linked list. As previously described, searching entries by

hashing engine hides latency and improves performance owing to context switching

before a search result is returned.

37

4.2 Previous Pattern Matching Algorithms in NIDS

Extensive research exists on general pattern matching algorithms. The

Boyer-Moore [5] algorithm is widely used because of its efficiency in single-pattern

matching problems. This algorithm uses two heuristics to reduce the number of

character comparisons required for pattern matching. Both heuristics are triggered by

mismatches. The first heuristic, commonly referred to as the bad character heuristic,

works as follows: if the search pattern contains the mismatching character, the pattern

is shifted so that the mismatching character is aligned with the rightmost position at

which it appears in the pattern. Meanwhile, if the mismatching character does not

appear in the search pattern, the pattern is shifted so that the first character in the

pattern is one position later than that of the mismatching character in the given text.

The second heuristic, commonly referred to as the good suffixes heuristic, works as

follows: if a mismatch is found in the middle of the pattern, the search pattern is

shifted to the next occurrence of the suffix in the pattern. The Boyer-Moore algorithm

was designed for searching for a single pattern from a given text and performs well in

this role. However, the current implementation of Boyer-Moore in Snort is not

efficient in seeking multiple patterns from given payloads [3, 13].

Aho and Corasick [1] proposed an algorithm for concurrently matching multiple

strings. Aho-Corasick (AC) algorithm used the structure of a finite automation that

accepts all strings in the set. The automation processes the input characters

individually and tracks partially matching patterns. The AC algorithm has proven

linear performance, making it suitable for searching a large set of rule signatures [13].

Two different implementations exist for Snort, implemented by Mike Fisk and Marc

Norton, respectively. This work tested both implementations and employed the latter

in the present experiments because of its superior performance. However, the Norton

38

implementation requires considerably more memory than the Fisk implementation

(1024 versus 260 bytes per pattern character). By tracing the source codes, this work

found ultimately that the Fisk implementation is based on the so-called

failure-function AC algorithm while the Norton implementation is based on the

so-called optimized AC algorithm. The running time of the optimized AC algorithm is

independent of the pattern set, and depends on the length of the longest pattern in the

ruleset [54] for the failure-function AC algorithm.

Coit, Stainford, and McAlerney implemented Gusfield’s version of the

Commentz-Walter algorithm called AC_BM [7] which uses suffix trees for the good

suffix heuristic. The algorithm is a Boyer-Moore like algorithm applied to a set of

keywords held in an Aho-Corasick like keyword tree overlaying the common prefixes

of the keywords. AC_BM searches multiple-pattern simultaneously and operates from

1.02 to 3.32 times as fast as the Boyer-Moore implementation on Snort. However,

several unresolved issues have hampered their works with the full Snort ruleset. First,

AC_BM reorders the rules despite the implicit ordering of Snort rules, meaning rules

are not supported by priorities. Second, AC_BM requires additional structures to

search non-case sensitive patterns. Third, AC_BM can only be applied to rules with a

single content string to be matched. Furthermore, the efficiency of AC_BM depends

heavily on the length of the shortest pattern being searched for, since the maximum

number of shifts is bound to this value. Several Snort rules have a content length of

just one (For example, sid 614, BACKDOOR hack-a-tack attempt [48]), which

strongly affects AC_BM performance.

Concurrently with Coit’s work, Fisk and Varghese designed a set-wise

Boyer-Moore-Horspool (SBMH) algorithm [13], adapting the Boyer-Moore-Horspool

[17] algorithm to simultaneously match a rule set. The set of patterns can be

compared to any position in the text quickly by storing the reversed patterns in a trie.

39

Their experiments showed that this algorithm is faster than both the Aho-Corasick and

Boyer-Moore algorithms for medium-size pattern sets. However, like AC_BM, the

maximum number of shifts also is bounded by the length of the shortest pattern

(denoted as LSP) in the pattern set.

Markatos, Antonatos, Polychronakis, and Anagnostakis have designed an

exclusion-based signature matching algorithm known as ExB [33]. ExB is based on a

simple logic, namely: If pattern P contains at least one character not in text T, then P

is not in T. Every time a new payload arrives, the payload is preprocessed to construct

an occurrence bitmap to record the occurrence of distinct characters within the

payload. ExB then identifies the patterns individually to check whether any characters

appear in the pattern but not the payload. If such characters do exist then the pattern is

skipped since matching is impossible. Otherwise, the Boyer-Moore algorithm is

invoked to search the pattern in the given payload. The basic concept of E2xB is the

same as that of ExB, with the two methods differing only in the method used to

denote a match [3]. The effectiveness of both ExB and E2xB decreases significantly as

the number of rules exceeds 1000, a phenomenon possibly caused by the effect of

increasing false-match rates. ExB and E2xB, essentially linear matching algorithms,

were designed when Snort used the linear Boyer-Moore algorithm as its default search

engine. The Snort 2.0 has given up such linear matching algorithms and uses the

well-known MWM [57] and AC algorithms as its default search engine. Additionally,

[3] demonstrated that the implementation performance of these algorithms is better

using a Pentium-3 1 GHz processor with 512KB L2 cache than a Pentium-4 1.7 GHz

processor with 256KB L2 cache. Their experimental results demonstrated that ExB

performance depends significantly on the cache size. Accordingly, when these

algorithms are implemented over the network-processor platform, performance suffers

due to large memory access latency, since generally internal memory size is extremely

40

small when the cache memory is absent.

The MWM algorithm is another widely used multi-pattern matching algorithm

designed by Wu and Manber [57]. The current implementation of Snort uses this

algorithm as the default engine if the search-set size exceeds ten. The MWM

algorithm uses the Boyer Moore algorithm with a two-byte shift table established by

pre-processing all patterns. This algorithm performs a hash on the two-byte prefix into

a group of patterns, which then are checked beginning from the final character when

partially matching occurs. The MWM algorithm is used in agrep [57] and has been

shown to deal with large amounts of patterns efficiently. However, like AC_BM and

SBMH, the performance of the MWM algorithm also depends considerably on the

LSP, because the maximum number of shifts equals this value minus one.

4.3 Design and Implementation of FNP

This work addresses the string matching problem formally before introducing the

proposed FNP algorithm.

Given an input text T = t0, t1, …, tn, and a finite set of strings P = {P1, P2, …, Pr}, the

string matching problem involves locating and identifying the substring of T which is

identical to Pj = j
m

jj aaa 110 ,...,, − , 1≤ j≤ r, where

 ts+i = j
ia , 0≤ i≤ m-1. And this equation can be also denoted as

ts…ts+m-1 = j
m

j aa 10 ... −

4.3.1 FNP Algorithm

The proposed FNP algorithm is exclusion-based and its implementation is

extremely straightforward. FNP is based on the following simple reasoning: For an

41

arbitrary pattern Pj = j
m

jj aaa 110 ,...,, − if w sequential bytes of T can be found from

location s, where

ts+i...ts+w-1 ≠ j
iw

j aa −−10 ... , i = 0, 1, 2, … , w-1

Then, the w sequential bytes do not contain any i-bytes prefix of Pj as its suffix, where

1 ≤ i ≤ w. Therefore, the w sequential bytes can be skipped during searching. On the

other hand, if w sequential bytes can be found in T that also is a prefix of Pj, then

comparing the remaining (m – w) bytes from this position is worthwhile.

To clarify this point, this study uses a Prefix Sliding Window (denoted as PSW) with

length w which shifts from the leftmost byte to the rightmost byte of T. Every time the

PSW shifts, an attempt is made to determine whether S, the w sequential bytes covered

by PSW, contains j
k

j aa 10 ... − of pattern Pj, where 1 ≤ k ≤ w. If no such pattern exists

whose first k sequential bytes are contained by S, then the PSW can be shifted w bytes

to the right. On the other hand, if a pattern Pj exists, where

Sw-k…Sw-1 = j
k

j aa 10 ... −

then the PSW is shifted right by w – k bytes. Even if w sequential bytes in T are found

that also is a prefix of Pj, false matches certainly will still exist (even if the first w

bytes match, the remaining m – w bytes still may fail to match). However, later this

work shows the numerous unnecessary comparisons that this approach can eliminate,

making the loss of false matches affordable. The remaining problem is how to

determine whether S contains the prefix of a pattern Pj. If w is sufficiently small, for

example three, a table named the Skip Distance Table (denoted as SDT) can list all

possibilities of three sequential bytes. This approach is quite intuitive and also

42

effective. For example, if a rule signature exists with the content string ‘abcd’,

identical to {0x61, 0x62, 0x63, 0x64} in ASCII code, then the table entry of address

0x000061 to 0xFFFF61 (last byte remains unchanged) is set to two. Accordingly,

when S falls into this range, it should shift right by two bytes so that the first byte of

its new location will be aligned with ‘a’. Table entries of address 0x006162 to

0xFF6162 (last two bytes remain unchanged) then are set to 1.

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09

Get skip distance with address
0x040506 in SDT, then shift
PSW right by 2 bytes.

Get skip distance with address 0x030405
in SDT, then shift PSW right by 1 byte.

Get skip distance with address 0x000102 in
SDT, then shift PSW right by 3 bytes.

Find a 3-sequential-bytes match.

 Prefix Sliding Window (PSW)

C
om

pa
ri

so
n

Fl
ow

Skip Distance Table (SDT)

Address Value

0x000102 3

0x030405 1

0x040506 2

0x060708 0

Figure 14. PSW Movement

Accordingly, when S falls into this range, it should shift right by one byte so that

the first two sequential bytes of its new location will be aligned with ‘ab’.

Subsequently, the table entries of address 0x616263 are set to zero. When S is

identical to 0x616263, it matches the first three sequential bytes of the content string

‘abcd’. Other table entries are set to 3. If S falls into this category, it can be shifted

three bytes to the right safely. Figure 14 illustrates how PSW moves with the entry

values in SDT.

The following details the design of the FNP algorithm. This work first explains

the table structures adapted in the present design, and then divides the algorithm into

off-line pre-processing and runtime processing. The off-line pre-processing constructs

necessary rule tables and lookup tables while the runtime processing processes the

43

payload and identifies the matches. For simplicity this work assumes w = 3.

4.3.2 Table Definitions

The Skip Distance Table (SDT) is used to lookup the number of bytes that PSW

should shift right, and also to check whether S matches the pattern prefix. The size of

SDT is 2w*8, namely 16M if w = 3. During comparison the instant integer value of S is

taken as the entry address for looking up the skip distance. For example, if S is

0x006162, then the value stored in address 0x006162 is returned as the skip distance.

If the returned value is zero then three bytes are matched, otherwise PSW shifts right

by the returned-value bytes.

The Rule Hashing Table (denoted as RHT) preserves the signature content strings.

The FNP is designed to perform multiple-pattern matching simultaneously, and

hashing is used to distribute pattern content strings. The RHT is a one-dimension

hashing table which stores the link pointers to collision entries, the hashing key for

matching, content string length, Rule-ID, and the remainder of the content string. The

hashing key is the first four sequential bytes (jj aa 30 ... ,1 ≤ j ≤ r) of the content string. If

multiple rules have the same hashing value and a collision occurs, a linked list is

maintained to preserve the collision entries, and here the lookup coprocessor is used

to accelerate the search. As previously described, the lookup coprocessor traverses the

linked list from the given starting address to identify an entry with a matched hashing

key without compromising CPU power owing to the occurrence of a context switch. If

a match is identified then this work begins to compare the remaining m – 4 bytes.

Rule Status Table (denoted as RST) is designed for multiple purposes: to record

whether a pattern has been matched previously, to accommodate multiple-content

patterns, and to maintain rule priorities. RST is exactly the same size as the number of

44

content string entries in RHT, and the order of RST entries is exactly the same as the

Rule-ID in RHT. Rule priority increases with decreasing Rule-ID. An RST entry

comprises a MATCH flag, a HEAD flag, and several link pointers to other entries.

Multiple-content strings are taken apart so that every content string occupies an entry

in RHT. The longest string then is selected as HEAD from a multiple-content rule, and

the HEAD entry preserves links to NON-HEAD entries belonging to the same rule.

Single-content strings individually are marked as HEADs. The RST actually is a

linked list on which every entry is connected individually, and thus the lookup

coprocessor can be employed again to seek the highest priority entry.

4.3.3 Off-line Pre-Processing

This stage involves constructing SDT, RHT, and RST.

During initialization, all entries in SDT are set to 3. For patterns with length of 4 or

greater, the corresponding entries of their first three sequential bytes (jj aa 20 ...) and

second three sequential bytes (jj aa 31 ...) in SDT are set to zero. Every table entry whose

last (rightmost) 8-bits of address is identical to any one-byte prefix of the patterns and

whose entry value is not zero is set to 2, and every table entry whose last (rightmost)

16-bits of address is identical to any two-byte prefix of the patterns and whose entry

value is not zero is set to 1. Notably, for patterns with length of 3 or below the

corresponding entries can be marked with a special flag (say, its Rule-ID) to denote a

match. For example, for patterns containing only ‘0x7B’ as their content string, then

the entries whose first, second, or last 8-bits of addresses are 0x7B are marked. This

method can identify matching patterns with length of 3 or below and only one

memory access.

The next step is to insert rules into RHT. The multiple-content signatures are

45

taken apart so that every content string has its own entry. The first four sequential

bytes of every content string are used to derive the hashing value of that string. In the

event of a collision, a linked list is maintained to preserve the collision entries. Other

fields like pattern length, content strings, and rule ID also are filled in the RHT.

The MATCH flag of all RST entries is set to false, and entries corresponding to

single-content rules are marked as HEADs. For multiple-content rules only the

longest content entries are marked as HEADs. When several entries belong to the

same multiple-content rule then the HEAD entry will contain pointers to other entries.

During comparison, if a pattern is found in T, the MATCH flag of the corresponding

entry is set to true so that compare this entry again is unnecessary for the remainder of

T. Once T has been screened out entirely, hash coprocessor is used again to search for

the HEAD entry with MATCH flag set so that there is no need to perform a linear

search to identify the highest priority matched entry. After finding such an entry,

whether or not that entry points to other entries is checked. A multiple-content rule is

matched if every content matches T. Figure 15 illustrates an example of inserting a

multiple-content rule into RST and RHT. This multiple-content rule contains three

content strings: “abcdefgh”, “123456”, and “123400”. The hashing results of keys

abcd and 1234 are assumed to be 1 and 3, respectively. In RST, string “abcdefgh” is

chosen as the HEAD entry, with pointers linked to “123456” and “123400”.

Meanwhile, “123456” and “123400” are linked in the same linked list because their

keys (1234) are identical in RHT.

46

Rule ID: 123
MATCH: FALSE
HEAD: TRUE

Rule ID: 124
MATCH: FALSE
HEAD: FALSE

Rule ID: 125
MATCH: FALSE
HEAD: FALSE

Rule Status Table (RST)

Pointers to entries belong to the same rule

Pointers for hashing engine to traverse

 Content1:
 abcdefgh
 Content2:
 123456
 Content3:
 123400

Rule

3

2

1

N

0

Rule ID: 123
Length: 4
Key: abcd
Pattern: efgh

Rule ID: 124
Length: 2
Key: 1234
Pattern: 56

Rule ID: 125
Length: 2
Key: 1234
Pattern: 00

Rule Hashing Table (RHT)

Hash
Index
Values

Hash Chains

Pointers for hashing engine to traverse

Figure 15. An Example of the RST and RHT.

4.3.4 Runtime Processing

The matching procedure of the proposed FNP algorithm is quite simple. Initially

PSW is aligned with the first byte of the incoming payload. The string within the PSW

S (t0…t2) then is fetched, and its skip distance is looked up in the SDT. If skip distance

N does not equal to zero, then PSW is shifted right by N bytes in the next round. If N

is zero, an attempt is made to fetch the next three sequential bytes (t1…t3) and lookup

its skip distance. If the skip distance for the second three sequential bytes, M, is not

zero, PSW is shifted right by M+1 bytes for the next round. If M is zero, then two

consecutive 3-sequential-bytes both appear in the signature content. From the present

experiment, checking the 2nd three sequential bytes reduces false matches by over

80%. These two 3-sequential-bytes then are combined to one word and thrown to the

Hashing Lookup Engine for further searching. Notably, Network Processor, like most

CPUs, accesses memory on a word (32-bits) basis, so that two consecutive

47

3-sequential-bytes can be obtained via a single memory access. When the returned

skip distance is zero or one, fetching the next 3-sequential-bytes from memory is

unnecessary since they are already stored in the register. If a word needs to be

searched in RHT, this job is left to the lookup co-processor, after which context

switching is performed. After this thread wakes up again, the lookup co-processor

either returns the address of the matching entry or sets a bit indicating the failure of

matching. If lookup fails, PSW is shifted one byte right to continue. If lookup

succeeds, then whether the MATCH flag of this entry has been set in RST is checked,

because this avoids the need to waste time on rechecking matching entries. If the

entry found previously has not been matched then an exact matching is conducted

between the payload and the remaining content. If the remaining content matches the

payload, then the MATCH flag of the corresponding RST entry is set to TRUE to

indicate a match. Meanwhile, if no match exists the following entries are searched

again using a lookup coprocessor until all of the collision entries have been checked.

The primary payload matching procedure of the FNP algorithm is as follows:

FNP Algorithm

Input: A text string T = t1, t2, .., tn. SDT, RHT, and RST.

Output: RST with matched entries.

 begin

 i ← 0

 while (i < (n – 2)) do

 begin

 s ← SDT[t i…t i+2]

 d ← s >> 8 {upper byte is the Rule-ID of the short pattern}

 if (d > 0) then

48

 RST[d].Matched ← true

 N ← s & 0xff {the lower byte is the skip distance}

 if (N > 0) then

 i ← i + N

 else

 begin

 M ← SDT[ti+1…ti+3] & 0xff

 if (M > 0) then

 i ← i + M + 1

 else

 Search in RHT with key ti…ti+3

 end

 end

 end

After going through the entire payload, a matching entry with the highest priority

is selected from RST. If no matching entry exists, then the payload is clean. Notably,

the work of searching in RST can be performed by the lookup co-processor.

Consequently, the whole table does not need to be traversed to select the entry with

the highest priority by CPU.

If the ruleset contains non-case sensitive rules, the keys in SDT and RHT are

converted into lower case during the pre-processing time and a flag is used to denote

the case attribute. During comparison S is converted into lower case to lookup in SDT

and RHT. If the lookup succeeds then the case attribute is checked to confirm whether

or not the payload needs to be compared.

49

4.4 Analysis of FNP

Interestingly, matches are rare in multiple-pattern searching of NIDSes. From our

observations, the distribution of characters in the current Snort signature content is not

uniform. Among 256 possible characters, only 149 distinct characters appeared in the

Snort full ruleset released on Aug 10, 2003. Regarding occurrence frequency, 95% of

characters in the Snort ruleset are 7-bit ASCII codes. The fact of that most signatures

comprise ASCII characters while most real network traffic comprises uniform

distribution characters indicates that matches are unlikely to be frequent. A linear-time

algorithm like AC is optimal in the worst case, but in the typical case it is more

desirable to keep the algorithm simple [17] and skip a large portion of the text during

searching [9, 24]. Since matches are infrequent, algorithms that skip as much of

payloads as possible perform better than others. Both SBMH, AC_BM are designed to

compare from right to left and thus maximize skip number. However, their maximum

numbers of shifts are bound to LSP. Figure 16 illustrates the distribution of content

length in the full Snort ruleset, and surprisingly the figure contains 69 signatures

(multiple-content signatures included) with a content length of one. Consequently,

algorithms whose performance depends on LSP are inefficient if the LSP of search set

is small. As for the MWM algorithm, the maximum number of shift bytes equals the

value of LSP minus 1 [57], which also reduces the desirability of the MWM if the

LSP is very small.

50

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Length (Bytes)

N
um

be
r

of
 P

at
te

rn
s

Figure 16. Distribution of pattern length in the current Snort ruleset

Since FNP is designed mainly for network processors, the key to evaluating a pattern

matching algorithm is the number of memory accesses during searching. Memory

accesses are very expensive on Network Processors, since memory access latency

influences implementation speed markedly. Multi-threading is the most common

approach to hiding latency [44]. However, in a computationally intensive application

like multi-pattern matching, all contexts tend to access the memory simultaneously.

The following aims to show that the algorithm presented here can reduce the number

of memory accesses and thus improve overall performance significantly.

 This work applies a probabilistic model to examine the average performance of

this FNP algorithm. Let Nk denote the number of k occurring in SDT, k = 0, 1, 2, 3.

Additionally, let A denote alphabetical space size, which is 224 when w = 3. The

expected value of skip distance for each move thus is:

E = ((N1 + (2 * N2) + (3 * N3)) / A) + ((N0 / A) * (((2 * N1) + (3 * N2) + (4 * N3)) / A))

In the current Snort full ruleset, when A is 224, N0 = 1796, N1 = 138503, N2 = 6742046

and N3 = 9894871, then E is 2.58. If no match exists, only two memory accesses are

required for shift execution, one for payload fetching and another for lookup in SDT.

51

Thus if no two consecutive 3-sequential-bytes are matched in a 750 bytes packet, less

than 581 memory accesses are required, better than the 1,500 memory accesses

required using AC algorithm.

 If a match occurs, since the hashing engine of the Network Processor is used to

identify entries with matching keys, this work only counts memory access for exact

string comparison, as follows

 (AVERAGE_PATTERN_LENGTH/4) * 2

Figure 16 reveals that over 95% of patterns have a length of below 32, while

over 75% patterns have a length of below 16. Assuming an average pattern length of

16 bytes, and comparing 4 bytes at a time, eight memory accesses are required for

string matching. If a 750 bytes payload contains p matches, then the total number of

memory accesses is less than 581 + (8 * p). Since matching is rare, the average

number of memory accesses of FNP is better than the 1,500 of AC algorithm.

4.5 Experiments over FNP

To verify the effectiveness of the proposed FNP algorithm, its performance was

evaluated against the previously mentioned SBMH, AC, and MWM algorithms.

Because of the difficulty of implementing all these four algorithms with Network

Processor micro codes, some experiments were implemented on general PCs to

simulate the network-processor environment. Nevertheless, the FNP was

implemented using the Vitesse IQ2000 [52] Network Processor. The relations

between the program performance and the number of memory accesses during

execution also were assessed. Combining the results of simulations and

network-processor experiments substantiates the efficiency and practicability of the

FNP algorithm. Additionally, this work demonstrated that the LSP influences

52

multi-pattern matching algorithm performance significantly, and moreover that the

FNP algorithm is more efficient and faster than the other three algorithms provided

LSP ≤ 4.

The current Snort ruleset, containing 1,942 rules with 2,475 patterns, was

employed as the default searching pattern. The full-packet traces can be derived from

the “Capture the Capture The Flag” (CCTF) project held in DEFCON [10] annually.

The DEFCON9 packet traces used in the present experiments were the most

up-to-date available.

4.5.1 Evaluation of the number of memory accesses

As previously described, the proposed FNP algorithm requires fewer memory

accesses given small LSP. The four algorithms are evaluated using different search set

sizes and LSPs by counting number of memory accesses. The packet trace (900MB)

defcon_eth0.dump2 [10] was employed to generate the test traffic more realistically.

Trace defcon_eth0.dump2 was selected because of its low compression rate compared

to other packet traces, and because the content of this trace is considerably more

complicated, thus increasing test fairness. Figure 17 illustrates the results of these four

algorithms for different search set sizes and LSPs, where FNPw3 denotes PSW size of

3. The case involving the MWM algorithm with LSP = 1 was not assessed because the

MWM algorithm does not support this situation. The FNP algorithm clearly

outperformed the other three algorithms for LSP ≤ 4. Notably, 35% of the patterns in

the latest Snort ruleset fall into this category. In this experiment, approximately 740M

memory accesses are required for FNP to process 900M data. This experimental

result is quite close to previous analyses in which two memory accesses were required

for processing 2.58-bytes data. On the other hand, the FNP algorithm markedly

reduces the number of false checks, which generally increases with search-set size,

53

because lookup in RHT is invoked only if two consecutive 3-sequential-bytes matches

occur.

Figure 17. Number of memory accesses during pattern matching processing

Notably, two major influences affect the performance of multi-pattern matching

algorithms in the NIDS, namely: LSP value and the pattern ruleset size. Interestingly,

previous works focused on the latter factor only, while neglecting the former factor.

Figure 17 reveals that search-set size does not influence the number of memory

accesses required for the MWM algorithm to complete the multi-pattern matching, but

for LSP = 2,3,4 the required number of memory accesses is approximately 1800M,

950M, 800M, respectively. The SBMH algorithm displays the same phenomenon.

This phenomenon indicates that value of LSP is even a major influence on the

performance of multi-pattern matching algorithms.

4.5.2 Performance Evaluation on a general PC with disabled cache memory

Most Network Processors lack cache memory and internal memory size is

usually small. To simulate this condition the present experiments were run on a

general PC with the L1/L2 cache memory turned off. A Pentium-4 processor PC

LSP = 1

0

1000

2000

3000

4000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y

A
cc

es
s

N
um

be
r

(M
) FNPw3 AC SBMH

LSP = 2

0

500

1000

1500

2000

2500

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y

A
cc

es
s

N
um

be
r

(M
) FNPw3 AC SBMH MWM

LSP = 3

0

500

1000

1500

2000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y

A
cc

es
s

N
um

be
r

(M
) FNPw3 AC SBMH MWM

LSP = 4

0

500

1000

1500

2000

32 64 128 256 512 1024 1536 2048

Search Set Size

M
em

or
y

A
cc

es
s

N
um

be
r

(M
) FNPw3 AC SBMH MWM

54

running at 1.7 GHz with 512 MB of DDR memory was employed for the experiments.

The host operating system was Windows XP, and the packet trace was

defcon_eth0.dump2 in DEFCON9. Figure 18 shows the total processing time required

for these four algorithms to search the defcon_eth0.dump2 with different search-set

sizes and LSPs. The timer counts the pattern matching procedure only and excludes

the file-loading time and other operations.

Figure 18. Completion time comparison using a cache-disabled PC

Figure 18 reveals that the processing time of the FNP algorithm is less than that

of the other three algorithms given LSP ≤ 4. This phenomenon again highlights the

importance of LSP to the performance of multi-pattern matching algorithms, such as

MWM and SBMH. The MWM algorithm should outperform FNP when LSP ≥ 5.

However, given that 35% of the patterns in the current Snort ruleset have lengths of 1,

2, 3, or 4. Although the NIDS signatures are usually partitioned into groups by L3/L4

header fields (for example IP pairs and port pairs), most likely the LSP ≤ 4 for each of

the groups. Moreover, most NIDSes accept user-defined signatures and these

signatures may lower the LSP further. Such a fact implies that the FNP performs

better than other multi-pattern matching algorithms in most cases. Actually, a hybrid

LSP = 1

0

2000

4000

6000

8000

10000

12000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw3 AC SBMH

LSP = 2

0

2000

4000

6000

8000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw3 AC SBMH MWM

LSP = 3

0

1000

2000

3000

4000

5000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw3 AC SBMH MWM

LSP = 4

0

1000

2000

3000

4000

5000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw3 AC SBMH MWM

55

algorithm can be employed where FNP is applied for groups with LSP ≤ 4, and

another algorithms (such as MWM) can be employed for groups with LSP ≥ 5.

Figure 18 also demonstrates the scalability of the FNP algorithm. Search set size

clearly does not significantly influence FNP algorithm performance. Surprisingly, AC

algorithm performance is not independent of search-set size. The reason for this

phenomenon appears to be the large memory consumption of the AC algorithm (1024

bytes per pattern character). For larger search sets the state automation structure may

exceed the size of a memory page within a DRAM cell, meaning that extra

row-precharging time is required.

4.5.3 Performance Assessment with a Randomly Generated Ruleset

To evaluate the scalability of FNP algorithm, a test by searching the

defcon_eth0.dump2 packet trace with randomly generated rulesets is also conducted

on the PC with turned-off cache. The length of the ruleset patterns varies between 1 to

128 bytes. Table IV lists the relationship between searching time, search-set sizes, and

expected values of skip distance (E). The searching time increases very slowly with

search-set size. This phenomenon shows that the FNP algorithm is very efficient and

can accommodate a large set of rules. Notably, the searching time in Table IV is

longer than in Figure 18. This phenomenon occurs because the rulesets adapted in

Table IV are generated randomly, while the Snort ruleset mainly comprises ASCII

codes, so that the expected skip distance values in Table IV are smaller than those in

Figure 18.

Table IV. Scalability test for the FNP algorithm with randomly generated rulesets

Ruleset Time (s) N0 N1 N2 N3 E

56

Size

1024 1573 1962 257740 16193787 323727 2.003934

2048 1590 3902 509269 16133127 130918 1.977443

4096 1602 7696 990620 15648039 130861 1.94873

8192 1638 15276 1898969 14732145 130826 1.894513

16384 1741 30351 3526308 13089739 130818 1.79724

32768 1873 60453 6249190 10336756 130817 1.633977

4.5.5 Implementing FNP on a Network Processor Platform

To further evaluate the practical performance of the FNP algorithm, this work

implements it on the Vitesse IQ2000 Network Processor platform. The IQ2000 has

four 200 MHz RISC Packet Processing Engines (PPEs), each containing five sets of

32-bit registers, allowing up to four separate contexts to be active simultaneously.

Each PPE also contains a lookup co-processor used to search for a given key in a

specified linked-list. This facility can be used to search both the RST and RHT. Each

PPE contains 2K-byte internal memory, and 512 bytes are assigned to each context.

The system also has 512MB Direct Rambus DRAMs (RDRAMs) as the main

memory.

To write the micro-code program efficiently, the IQ2000 technical documents

suggest reducing the number of direct RDRAM accesses and trying to move data into

the internal memory instead. In the present case, since the other tables such as SDT

are too large to fit into the 2K-byte local memory, manipulating the packet payloads is

the only way to reduce the number of direct RDRAM accesses. To confirm the impact

of memory access number on performance, this work implements the FNP algorithm

using two different methods. The first method (Exp1) is to access the packet payloads

from RDRAM directly eight bytes at a time, with the next eight bytes being fetched

57

each time PSW moves beyond the boundary of the current 8-byte payload. Meanwhile,

the second method (Exp2) involves first fetching the payloads via DMA into internal

memory 384 bytes a time, then fetching the next 384-byte of data through DMA if the

PSW exceeds the boundary of 256 bytes. As the lookup co-processor, the context

switch occurs during data transfer using DMA co-processor to hide the latency.

Notably, the reason the boundary is set in the 256th byte is a heuristic for handling the

situation in which a match occurs near the boundary, and this heuristic guarantees that

the matched payload must already have existed in embedded local memory.

The network processor platform is designed to handle traffic of several hundreds

Mbps and it is difficult to replay the Defcon9 traces in such high speed. Therefore, the

SmartBits 6000B [51] and SmartApplication [51] are employed to generate the UDP

traffic in Gigabit rate. Figure 19 illustrates the throughput of both experiments.

Notably, the performance measurement results presented here are inline forwarding

rates, not passive processing rates. The SmartApplication generates UDP packets in

different sizes, and obviously the performance of the FNP program is better for small

packets than for large packets. This phenomenon appears related to the fact that the

program presented here ignores the header parts (MAC header, IP header, and UDP

header) of a packet, and the proportion of the payload in a small-size packet is smaller

than that in a large-size packet. Figure 19 illustrates that the program in Exp 2 is more

efficient than that in Exp1. The only difference between the programs in Exp 1 and

Exp 2 is the method of moving packet payloads. Take the 1514-byte UDP packet in

our test for example; the program in Exp 2 eliminates 365 RDRAM accesses by using

a six times DMA transfer, the latency of which can be hidden to achieve an

approximately 30% improvement in performance. The testing results demonstrate the

point that reducing the number of memory accesses during processing significantly

improves program performance.

58

0

100

200

300

400

128 256 512 1024 1514

Packet Length (bytes)

P
er

fo
rm

an
ce

 (
M

bp
s)

Exp1 Exp2

Figure 19. The performance of the FNP algorithm with different packet lengths

Coding in micro-code language is not easy because of its poor readability and its

dependency on hardware characteristics. For example, the 8-byte data in Exp1 could

be moved either through DMA or through two Load-Word (LW) instructions. This

work demonstrates that moving data through DMA is more efficient if the data length

exceeds 24 bytes, however in the present case it is faster to use the 2-LW instructions.

This change achieves nearly a 20% performance improvement. The experimental

results and the coding experience suggest that manipulating number of memory

accesses is sensitive to the success of the program performance. Figure 17 reveals that

the FNP algorithm is more efficient in number of memory accesses than the other

three algorithms when LSP ≤ 4. Therefore the FNP algorithm appears more suitable

and efficient than alternatives in this situation.

Since the number of memory accesses significantly influences program

performance, the present design also should benefit greatly from the hashing engine.

Without the hashing engine, the program must traverse the RHT and RST several

times when processing a packet by accessing RDRAM directly, and result in

significantly downgrading performance. The present design not only uses the hashing

engine to improve throughput, but also maintains rule priority without sacrificing

59

performance.

Notably, program performance obviously depends on hardware capacity. We

believe that performance can be improved markedly by using more high-end Network

Processor Units, like Vitesse IQ2200 [52] (with four 400 MHz PPEs), Intel IXP2400

[22] (with eight 600 MHz PPEs), or even Intel IXP2800 [22] (with 16 1.4 GHz PPEs).

4.5.6 FNP on general PCs

Figure 20. Completion time comparison by using general PC with cache turned on

Current Snort (2.0) takes AC and MWM algorithms as default pattern matching

engines, and this section aims to demonstrate that the FNP algorithm is more suitable

than AC algorithm in most cases. To accommodate the cache size of normal PCs, the

size of PSW was set to 2 in this experiment, and thus the size of SDT was 64K. The

experiment was run on a general PC with a Pentium 4 processor running at 1.8 GHz,

with L1 data cache of 8KB, L2 cache of 512 KB, and 512 MB of DDR memory. The

host operating system was Windows XP. The packet trace in this test was still

defcon_eth0.dump2 in DEFCON9. This work tests the FNP against the other three

algorithms with both LSP and search set size the same as in the other experiments.

LSP = 1

0

10

20

30

40

50

60

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw2 AC SBMH

LSP = 2

0

10

20

30

40

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw2 AC SBMH MWM

LSP = 3

0

5

10

15

20

25

30

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw2 AC SBMH MWM

LSP = 4

0

5

10

15

20

25

30

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNPw2 AC SBMH MWM

60

The FNPw2 in Figure 20 indicates that the size of the PSW in this test is 2. With

LSP < 3, FNP processes packets faster than the other three algorithms when the

search set size exceeds 64. With LSP = 3, the performance of FNP is almost identical

to that of the MWM algorithm. Moreover, the FNP algorithm consumes much less

memory than AC algorithm. For example, the FNP algorithm can accommodate 256

patterns using 256K, but AC algorithm requires over 2M to accommodate the same

number of patterns. Furthermore, the FNP algorithm works more like MWM than AC,

making the structures and tables easier to reuse. Figure 20 also illustrates the

scalability of FNP. The increment of search-set size has almost no influence on the

performance of the FNP algorithm when it is below 2048.

4.6. Summaries of FNP

This work examined the importance of the pattern matching algorithm for NIDS,

and designed and implemented a fast and efficient algorithm named FNP for network

processor platforms. FNP uses the characteristic of NIDS rulesets and the hardware

facility of Network Processor to maximize performance.

Owing to the difficulty of implementing other multi-pattern matching algorithms

(such as AC, SBMH, and MWM) by micro-code simultaneously, only the FNP

algorithm is implemented on the Vitesse IQ2000 Network Processor platform to

evaluate the relation between performance and the number of memory accesses for

processing multi-pattern matching. On the other hand, the FNP algorithm is compared

with the other three algorithms using general PCs. To simulate the Network Processor

environment, both the L1/L2 caches are turned-off in this experiment. The

experimental results reveal that the FNP outperforms the other three algorithms when

LSP ≤ 4. On a normal PC with the cache turned, the FNP also performs well for LSP

≤ 3. Since 35% of the patterns in the current Snort ruleset have lengths of 1, 2, 3, or 4,

61

then since NIDS rules are usually partitioned into groups based on L3/L4 header

fields (for example IP pairs and port pairs) during the matching procedure, it is likely

that LSP ≤ 4 for many groups. Besides, the user-defined signatures may even make a

smaller LSP further. Consequently, FNP should perform better than other

multi-pattern matching algorithms in most cases.

Pattern and payload characteristics affect the performance of multi-pattern

matching algorithms in NIDSes, as in other applications. The NIDSes may partition

the signatures into sub-groups based on L3/L4 header fields. The fastest matching

algorithms differ among subgroups. From existing research, the assessment should

depend on search-set size and LSP value. The FNP algorithm has been shown to be

very efficient for small LSP regardless of search set size. According to our

experiments, a hybrid multi-pattern matching algorithm comprising both FNP and

MWM algorithms covers most cases and achieves better performance regardless the

search-set size and the value of LSP.

Generally, the NIDS detection engine conducts flow classification, header-field

comparison, and multi-pattern matching. Although multi-pattern matching is the most

time-consuming task, a fast packet processing flow is desirable for integrated

handling of these issues. Using the facilities provided by the Network Processor may

be a good solution to this problem. This direction is left for future works to pursue.

