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Chapter 4  

Post-processor 
 

4.1 System Overview 
 Because the number of multi-event rules in Snort has grown, the original 

Detection Engine cannot handle its role efficiently. In this thesis, a novel architecture 

is proposed to solve this problem. A SoC-based system is a better solution because it 

incorporates both programmable software and application-specific logic circuit 

hardware. Figure 4-1 shows a system overview diagram of a SoC-based 

post-processor [30, 31]. 

 

 

Figure 4-1. The proposed novel NIDS architecture 
 

Two special components are introduced below: 

Pre-processor: The pre-processor is responsible for handling content match, 
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URL filter and regular expression. The pre-processor sends 

information (EvnetID, EventAddr) when a match condition 

appears. 

Post-processor: Like the original Snort detection engine, the CRME 

(correlation match engine) is a post-processor which outputs 

the Snort payload rule ID to the logging and alerting system 

when it finds an appropriate correlation from pre-processor 

information. 
 

4.2 Relation between pre / post-processor 
Figure 4-2 shows the relationship between the pre-processor and the 

post-processor. The pre-processor sends information (EventID, EventAddr) when the 

conditions are matched to the input buffer of the SoC system. The input buffer 

consists of FIFO (first in first out) memory, which records all events that are triggered 

by the same packet. The post-processor reads data from the input buffer to execute 

correlation matching. The rule ID is sent out if the post-processor detects any 

matches. 

 
Figure 4-2. The relationship between pre-processor and post-processor 

 

4.3 Post-processor overview 
Incorporating the above features, the post-processor system diagram is shown in 

Figure 4-3 [31], where: 

Micro-Processor: The micro-processor is the control center of the 

post-processor, and is used to maintain the data path and 
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the control path on the SoC system. The main functions are 

as follows: 

1. Read (EventID, EventAddr) from input buffer 

2. Filter out unnecessary and write necessary data to the 

specific EventTable. 

3. Receive information from the UART interface to control 

the system. 

    4. Read RuleID from the RuleResultBuffer. 

EventTable: Stores several memory device records (EventID, EventOffset). 

The micro-processor will write these to each EventTable 

systematically.   

RuleTable: Records Snort rules. 

Match Engine: A user-defined logic circuit. In this thesis, we will design an 

effective algorithm and implement the algorithm on such a 

logic circuit. 

RuleResultBuffer: Memory device that records the RuleID which is detected by 

the ME. 

UART: Universal Asynchronous Receiver/Transmitter. 

This interface in used to control the SoC system. 

Other IOs: Flash memory, LCD lights and buttons. 
 

 
Figure 4-3. The architecture of SoC-based post-processor 
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4.4 EGF algorithm (event group filter algorithm) 
Based on the Snort rule characteristic of interdependence, events following the 

first event, and in the same group as the first event, only need take action when the 

first event occurs. A simple algorithm, below, is designed to determine if an extended 

event needs to be processed by the post-processor.  

First, a first event list (FEL) array is defined to record the first event when it 

appears. Table 4-1 presents the format for an FEL entry, where: 

fel_gid: GroupID of the first event. 

fel_addr: Address of the first event. 

fel_count: Number of extended events which are in the same GroupID 

as events which have already occurred. 
 

Table 4-1. The form of FEL entry 
field fel_gid fel_addr fel_count 

length 10 16 6 
 

We devise a simple algorithm to filter out unnecessary events quickly and output 

the values (FEL#, count, offset) which will determine the event table address where 

the information will be recorded (Table 4-2). 

 

Table 4-2. The input and output form of EGF algorithm 
input/outp

ut 
field Descript 

EventID EventID is ID number for this event. 
Input EventAdd

r 
Location of which event appears. 

FEL# Serial number of FEL entry is inserted by the first event. 
count All zero 

Output 
(input is 

first) offset All zero 
FEL# Serial number of FEL entry belongs to extend event. 
count Amount of extend event already appeared. 

Output 
(input is 

extended ) offset 
The difference between EventAddr of input and the address 
of the entry which input event belong to. 
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The “offset” value returned is the relative address of the first event. Because 

correlation matching detects the relationship between two events, the relative distance 

between the two events is more important than their individual absolute address in the 

payload. The flowchart of the EGF algorithm is shown in Figure 4-4. 

 

 
Figure 4-4. The flowchart of EGF algorithm 

 

Table 4-3 (a) to Table 4-3 (c) is a step by step example of the EFG algorithm for 

the six (EventID, EventAddr) pairs. 

 
Step0: 
 Initial FEL. 
Step1: input (0x 9006, 0x0006) 

0x 9006 is first event  insert to FEL#0, return (0x0, 0x0, 0x0) 
 

Table 4-3(a). The content of FEL (step 1) 
FEL (first event list) 

Field fel_gid fel_addr fel_count 
0 0x6 0x6 0x0 

 
Step2: input (0x 1406, 0x000c) 

0x 1406 is extended event and Group ID match FEL#0  offset=0xc-0x6=0x6;  
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FEL#0 count one; return (0x0, 0x1, 0x0006) 
 

Table 4-3(b). The content of FEL (step 2) 
FEL (first event list) 

Field fel_gid fel_addr fel_count 
0 0x6 0x6 0x1 

 
Step3: input (0x 2707, 0x 0013) 

0x 2707 is extend event and group ID not match any FEL  drop 
Step4: input (0x A007, 0x 0032)  

0x A007 is first event  insert to FEL#1, return (0x1, 0x0, 0x0) 
Step5: input (0x C008, 0x 0036) 

0x C008 is first event; tag =1 and Event_Addr > 32  drop 
Step6: input ( 0x 2707, 0x 0040 ) 

0x 2707 is extended event and Group ID match FEL#1   
offset =0x0040-0x0032=0x0008; count FEL#1, return (0x1, 0x1, 0x8) 

 
Table 4-3(c). The content of FEL (step 6) 

FEL (first event list) 
field fel_gid fel_addr fel_count 

0 0x6 0x6 0x1 
1 0x7 0x0032 0x1 

 

4.5 Event Table: 
Definition 3:  

Let EventBlock [i] be the set of all events when GroupID is i. 

The relationship among input buffer, EGF and micro-processor is depicted in 

Figure 4-5. After the EGF operation is executed, the (EventID, EventAddr) pair is in 

the input buffer, and the EGF sends (fel#, count, offset) to the micro-processor to 

access the corresponding (EventID, Offset) EventTable entry. 
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Figure 4-5. Relationship between input buffer, EGF and micro-processor 
 

According to the Snort rule character-group, it is unnecessary to match contents 

that belong to different groups. The search domain of the original Snort Detection 

Dngine contains all the events involved in the rule set. After dividing using the first 

event, each EventBlock only needs to search the RuleGroup which is in the same 

group (Figure 4-6). This method greatly reduces the amount of effort needed to match 

and search all the rules in the Rule Group.  
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Figure 4-6. Group-based post-processor search domain 

 
Collection: 

In order to allocate the group event to the continuous space, the EventTable is 

partitioned into several blocks. Each FEL entry maps directly to each block. This is 

depicted in Figure 4-7. 
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Figure 4-7. The relationship between FEL entry and EventBlock 

 
 

4.6 Rule Table: 
Each rule in the same RuleGroup can have a decision tree to correlate to each 

event. Like the AC algorithm, the subsequent state depends on the present state and 

the specific input. Each state has two types: accept state and non-accept state. Accept 

state means a rule has been matched. 

To construct a unique decision tree, we regulate the longer entries of the sub-tree 

on the left side. Figure 4-8 is an example based on the rule set shown in Table 4-4. 

 

Table 4-4. The example rule set 

Rule ID Event 1 Event 2 Event 3 Event 4 
Rule 1 Pa Pb; offset:12 Pc Pd 
Rule 2 Pa Pe; depth:32 Pf  
Rule 3 Pa Pg; offset:8; depth:32   

 

 

non-accept state accept statenon-accept state accept state
 

Figure 4-8. The decision tree of the rule set in Table 4-4 
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Definition 4: 

For each state, parameters are defined as follows: 

1. StatePrefix:   A subset of the input traverses this state. 

2. NextRuleState: The accept state on the right-side of the present 

state. 

3. NextRulePrefix:  The StatePrefix of the NextRuleState. 

4. CommonPrefix:  (StatePrefix) ∩ (NextRulePrefix). 

5. StatePrefixSize:  The size of the StatePrefix. 

6. CommonPrefixSize:  The size of the CommonPrefix 

7. pop:     StatePrefixSize - CommonPrefixSize. 

8. level:     All conditions for each state have the same level 

value. 
 

In order to thoroughly check all rules with non-continuous input, the decision 

tree must add an extra degree “drop”. This means dropping the present input and 

traversing the present state again. For the same reason, an internal stack is also needed 

to record the state prefix. When all inputs are traversed, popping several prefixes 

allows backtracking to the next probable situation. The popping value is determined 

by subtracting the CommonPrefixSize from the StatePrefixSize. A value less than or 

equal to zero means that traversing the next probable situation is not required, and the 

pop value is set to null. 

For this reason, if we want to pop several prefixes we need extra memory (FIFO) 

to store the StatePrefix. This storage is called “TraverseStack” and it records the 

StatePrefix and state that have been traversed. Results calculated from the rule set in 

Table 4-4 are shown in Table 4-5 and Figure 4-9. 
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Table 4-5. Pop value of each state (CRM) 
State StatePrefix NextRuleState NextRulePrefix CommonPrefix pop

1 Pa 6 Pa, Pe, Pf nil nil 
2 Pa, Pb 6 Pa, Pe, Pf Pa 1 
3 Pa, Pb, Pe 6 Pa, Pe, Pf Pa 2 
4 Pa, Pb, Pc, Pd 6 Pa, Pe, Pf Pa 3 
5 Pa, Pe 7 Pa, Pg Pa 1 
6 Pa, Pe, Pf 7 Pa, Pg Pa 2 
7 Pa, Pg nil nil nil nil 

 

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State
Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State
Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

 

non-accept state accept statenon-accept state accept state
 

Figure 4-9. The correlation match tree of the rule set in Table 4-4 (CRM); where 
(Pb, offset: 12), (Pe, depth:32) and (Pg, offset:8; depth:32) are all at the same level. 

 
This “correlation match tree” comprehensively represents the event relationship. 
 

Construct the binary CRM (BCRM) tree: 

 For efficient hardware design, it is preferable to have a binary CRM search tree. 

This can be accomplished by converting the correlation tree to a binary search tree. 

The conversion steps are as follows: 

 

1. Each state of the binary search tree contains one event which consists of 

an EventID and a relation. 

2. For each state, the left son represents the first event in correlation tree, 

and right son represents the other cases in correlation tree.  

3. Each state which is at the same level of the correlation tree contributes to 
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a circle link list on the binary correlation tree. 

 

This search algorithm is similar to the search correlation tree algorithm. If the 

input event matches the binary correlation match tree, we traverse to the left son and 

take it as the next state, otherwise we drop or go to the right son. When all inputs are 

traversed, the next rule state is traversed by popping the value from the stack. Each 

item from the rule set in Table 4-4 is rearranged in Table 4-6 and Figure 4-10. 

 

Table 4-6. Pop value of each state (BCRM) 
State state prefix next rule state next rule prefix common prefix pop

A nil nil nil nil nil 
B Pa nil nil nil nil 
C Pa, Pb F Pa, Pe Pa 1 
D Pa, Pb, Pc F Pa, Pe Pa 2 
E Pa nil nil nil nil 
F Pa, Pe G Pa Pa 1 
G Pa Nil nil nil nil 
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Figure 4-10. The binary correlation search tree of rule set Table 4-6 (BCRM) 

 

Although Snort rule relations are complicated, three parameters, ID, start, and 

range, are extracted by analysis to cover event order and all of the content keywords 
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(depth, offset, within, distance). These fields are introduced below: 

 
name Description 

ID Present this event’s ID.  
start Present this event must appear how many bytes later after the previous event.

range 

Present event must appear after “start” in how many bytes. 
If range is 0, means the distance between present event and previous event is 
just the “start” value.  
If range is 255, means present event and previous event do not have to 
consider the location. 

 
ex: 
alert tcp $HOME_NET 139 -> $EXTERNAL_NET any  ( 

msg: "NETBIOS SMB repeated logon failure";… 
content: "|ff|SMB"; offset:4; depth:4; content:"|73|"; distance:0; within:1;  
content:"|6d0000c0|"; distance:0; within:4;…sid:2923; rev:1; 

) 
Singular form: 

 header Payload 
Length  4 4 0~1 1 0~4 4 
Data tcp **** |ff|SMB * |73| **** |6D 00 00 C0| 

 

We assume that,  

Ph : |ff|SMB;  Pi: |73|;  Pj: |6d 00 00 C0| 

Ph must occur at the 8th byte of the payload. 

Pi must occur after Ph and the distance between them must be 0 or 1 byte. 

Pj must occur after Pi the distance between them must be 4 to 8 bytes. 

Convert RuleID 2923 to binary correlation tree as follows. 

Event1: ( Ph, 8, 0);  Event2: ( Pi, 0, 1);  Event3: ( Pj, 4, 4) 

 

Table 4-7 is constructed using Table 4-4. Left field is the left state serial number, 

right field is the right state serial number, drop field is the drop value of the state, pop 

field is the pop value of the state and RuleID is the rule ID of the state. 
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Table 4-7. The BCM table from example Table 4-4 

Event ID Start depth true  False drop pop rule ID
Pa 0 255 B A 0 nil 0 
Pb 12 0 C E 0 nil 0 
Pc 0 255 D C 1 1 0 
Pd 0 255 B D 1 2 Rule 1 
Pe 0 32 F G 0 nil 0 
Pf 0 255 B F 1 1 Rule 2 
Pg 8 32 B B 1 nil Rule 3 

 

4.7 Binary Correlation Match Algorithm: 
To implement a binary correlation match (BCM) operation, three pointers are 

needed: prt, pet and pts. Prt points to input into the EventTable; prt points to the 

present binary correlation tree state and pts points to the top of the TraverseStack. 

Figure 4-11 represents the relationship among the EventTable, RuleTable, 

TraverseStack and CRME (correlation match engine). They communicate with each 

other via the shared bus. 

 

 
Figure 4-11. The relationship between CRME and memory device 

 

EventTable, RuleTable and TraverseStack input data to the binary correlation 

match operation. Furthermore, CRME employs prt, pet and pts to control which data 
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will be used in the next state. Figure 4-12 is a flowchart of the binary correlation 

match algorithm. 

 

Figure 4-12. The flowchart of Binary CRM algorithm 
 

Table 4-8 illustrates an example of a binary correlation match algorithm. The 

EventTable is taken from Table 4-9(a),(b). 

 
Table 4-8. The content of EventTable 

# EventID Offset 
0 P a 0x 4 
1 P b 0x 8 
2 P b 0x 10 
3 P c 0x 20 
4 P g 0x 30 
5 P e 0x 34 
6 P f 0x 3c 
7 P d 0x 48 
8 nil nil 
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Table 4-9(a). Binary CRM step-by-step operation 

# 
present 

state 
input 

next 
state 

detection action prefix 

1 A (P a, 0) B match 
prt left son 
pet  pet+1 
push (Pa, 0) 

P a,0 

2 B (P b, 8) E 
address-0<start 

 mismatch 
prt  right son P a, 0 

3 E (P b, 8) G mismatch prt  right son P a, 0 

4 G (P b, 8) B mismatch, drop=1 
prt  right son 

pet pet+1 
P a, 0 

5 B (P b, 16) C match 
pet pet+1 

prt  left son 
P a, 0 

P b, 16 

6 C (P c, 32) D match 
pet pet+1 

prt  left son 

P a, 0 
P b, 16 
P c, 32 

7 D (P g, 48) D 
mismatch 

drop 
prt  right son 

pet pet+1 

P a, 0 
P b, 16 
P c, 32 

8 D (P e, 52) D 
mismatch 

drop 
prt  right son 

pet pet+1 

P a, 0 
P b, 16 
P c, 32 

9 D (P f, 60) D 
mismatch 

drop 
prt  right son 

pet pet+1 

P a, 0 
P b, 16 
P c, 32 

1
0 

D (P d, 72) B match rule 

pop two entries 
prt  go 

pet  last pop pet 
return Rule1 

P a, 0 

1
1 

B (P d,32) E mismatch prt  right son P a, 0 

1
2 

E (P c, 32) G mismatch prt  right son P a, 0 

1
3 

G (P c, 32) B mismatch, drop 
prt  right son 

pet  pet+1 
P a, 0 

1
4 

B (P g, 48) E mismatch prt  right son P a, 0 

1
5 

E (P g, 48) G mismatch prt  right son P a, 0 

1
6 

G (P g, 48) B 
(0x48-0)>(0x32+ 0x8), 

 mismatch, drop 
prt  right son 

pet  pet+1 
P a, 0 



 

 34

 
Table 4-9 (b). Binary CRM step-by-step operation 

1
7 

B (P e, 52) B mismatch, drop 
prt  right son 

pet pet+1 
P a ,0 

1
8 

E (P e, 52) G 
0x52 > 0x32  

mismatch 
prt  right son P a, 0 

1
9 

G (P e, 52) B mismatch, drop 
prt  right son 

pet  pet+1 
P a, 0 

2
0 

B (P f, 60) E mismatch prt  right son P a, 0 

2
1 

E (P f, 60) G mismatch prt  right son P a, 0 

2
2 

G (P f, 60) B mismatch, drop 
prt  right son 

pet pet+1 
P a, 0 

2
3 

B (P d, 72) E mismatch prt failure P a, 0 

2
4 

E (P d, 72) G mismatch prt failure P a, 0 

2
5 

G (P d, 72)  
mismatch, end of input, 
pop==7  end of search

end of search  

 

In this example, all possible rules are perfectly checked in only 25 operations. 

Because each RuleGroup is independent and the EventTable also stands alone, 

binary correlation match operations are partitioned by GroupID. Figure 4-13 is an 

example - the system was partitioned into four independent sub-systems. [23] 

 

 
Figure 4-13. The relationship between each BCRM engine 


