

 10

Chapter 3
Custom automata system for Snort rules

General automata may process Snort rules slowly because those automata take

only one alphabet in transition action when matching. Another problem is common

automata couldn’t handle pattern-relationships. It is not a good idea in performance to

handle all pattern relationships and PCRE patterns with CPU computing after

finishing pattern-matching. It may cost extra overheads while processing pattern

relationships and PCRE patterns because general pattern-matching automata couldn’t

handle them and CPU has to do extra computing for them. Thus an automata system

is designed in this thesis which is suitable not only to process Snort rules and pattern

relationships but also to be implemented in hardware.

We put PCRE data structure into AC algorithm to process Perl Compatible

Regular Expression. Then common exactly pattern-matching and pattern-relationship

matching are handled by AC and PCRE pattern-matching is processed by PCRE data

structure.

 At first, translate and divide every Snort rule into our specific header and content

rules. According to those specific rules, construct our header and content automata.

Then put header and content automata into on-chip memory in hardware as our

hardware design and finally it could only spend O (L) to check all rules in those two

automata with parallel matching-engine in hardware.

 11

3.1 Advantages in custom automata system
 There are three advantages in this automata system.

1. Scalability: With Regular Expression and custom automata, it could handle

numbers of header types and content patterns in Snort rules for packet

classification or intrusion detection.

2. Flexibility and Specification: It supports almost all Snort rules descriptions,

including header types, content patterns, pattern-relationships and PCRE patterns,

even specific types of rules.

3. Less Storage Space and Better Performance: Our automata are different from

normal one for general purpose of pattern-matching because we may optimize it

for Snort rule-matching to save space and raise speed in hardware design.

3.2 The architecture in custom automata system
 The architecture of our custom automata system is divided into header and

content automata. Both of those two automata have two phases: Compiling and

Matching.

Compiling:

While input Snort rules, two parser programs written in Perl first process them

and translate rules into header simple rules and content simple rules in the specific

format. Then our header program and content program could handle those simple

rules and create our custom header and content automata, as shown in Figure 3-1.

 12

 Figure 3-1 Overview of custom automata system for Snort rules when compiling

Matching:

After finishing compiling, we have already created our header and content

automata. When a packet entered our system, pre-processor first divides this packet

into header specific data, which are those necessary header fields that we need when

doing matching in header automata, and payload. Then header and content automata

do matching and output matched rule IDs. Finally matched header and content rule

IDs enter AND result unit to get whole matched rule IDs, as shown in Figure 3-2.

Snort Rules

Content ParserHeader Parser

Content Simple Rules Header Simple Rules

Content ProgramHeader Program

Content AutomataHeader Automata

 13

Figure 3-2 Overview of custom automata system for Snort rules when matching

The header and content parser could handle those types in Snort rules.

 Header Parser:

• Supported keywords:

– IP: tos, dsize, id, ttl, ip_proto

– TCP: seq, ack, window

– Icmp: itype, icode, icmp_id, icmp_seq

– Source_ip, Destination_ip, Source_port, Destination_port, protocol

Then header parser translates Snort rules into header simple rules.

• Header simple rule format:

– Sid: tos dsize id ttl ip_proto….option:(seq ack window) (itype icode

icmp_id icmp_seq)

All the header fields in header simple rules may be a constant value, not equal to

a constant value, larger than a constant value, less than a constant value, a range of

values, and any values expressed in “.”

Input Packet

Pre-Processor Content Data Header Data

Content Automata Header Automata

Matched Rule ID

Header Matched Rule ID And Result Content Matched Rule ID

 14

 Content Parser:

• Supported keyword: Sid, content:, content:!, nocase, depth, offset, distance,

within, pcre:, pcre:!

Then content parser translates Snort rules into content simple rules.

• Content simple rule format:

• Sid: # pattern# # pattern# ….

All the patterns in content simple rules may be a content string, a PCRE string,

or a pattern-relationship.

3.3 Supporting Regular Expression
In Regular Expression, there are lots of operations we have to support in EGREP

and PCRE. The operations that our automata supports are listed below.

 Beginning of Line(^), End of Line($)

Example: “^abc” means the first three characters in the beginning of this line are

“abc”.

 Any(.), Any Of ([]), Any But ([^])

Example: “.[abc][^123]” means the first character could be anything, the second

one must be the one of “a”, “b”, or “c”, and the third one should not be any of

“1”, “2”, or “3”.

 Branch(|)

Example: “ab|c” means the first character is “a” and the second one could be “b”

or “c”.

 Star(*), Plus(+), Question Mark(?)

Example: “a*b+c?” means we could match nothing or more than one time of “a”,

match more than one time of “b”, and match nothing or one “c”.

 15

 Range(-)

Example: “[2-6][d-f]” means the first character should be the number in the

range of “2” to “6” and the second one should be the “d”, “e”, or “f”.

 Exactly Match

Those are the basic operations in Regular Expression, but if we want to solve

some relationships between patterns, we still need some solutions to these

operations.

 Times((Num))

Example: “a(2,4)” means the times that we have to match “a” is between 2 and 4

3.4 Implement header and content custom automata
Header Automata:

Unlike traditional AC automata, the header automata uses tree structure [15].

Each level has the unique header field to handle (eg: level 2 handles tos, level 3

handles dsize). If there exists a node with ‘.’, that means this rule has no header

pattern in this header field, equivalent to “don’t care”. This custom header could

handle Snort header rules with performance while doing multi-pattern matching.

If there are these rules, header automata is constructed as shown in Figure 3-3.

R1: tos = 2, dsize != 3, id = 567

R2: tos = 2, dsize = 1

R3: dsize > 4

R4: dsize < 5

 16

 Figure 3-3 An example of custom header automata.

Content Automata:

 The custom automata has many differences from common automata. First, in

general automata, like AC, there is only one alphabet of patterns in every node. Now

every node in content custom automata has the whole content string of this pattern.

That means while doing matching, we view every pattern as one unit. This evolution

may make performance better and make it easier to process the relationships between

patterns. Second, cancel the parts of failure path in AC automata and use parallel

matching. In matching phase, add all the nodes that will be checked now into a queue

(now_chain) and wait for parallel matching. After finding one node matched, add

child nodes into waiting-queue (next_chain) for the next step of matching.

Root

. tos=2

dsize<5 dsize>4dsize=1dsize!=2

id=567

 17

 Figure 3-4 An example of custom content automata

For example, consider a content automata is built like the one shown in Figure

3-4. Add P1, P2, and P3 in level 1 into now_chain initially. If P1 and P2 are matched,

add P4, P5 and P6 in level 2 into next_chain. After finishing all the nodes in

now_chain, put all the nodes from next_chain to now_chain for the next matching and

clean next_chain.

This implementation seems make performance worse than the original automata

using AC algorithm with failure path. But it has much smaller size than Snort system

even the software simulation of custom automata system doesn’t doing parallel

matching. The low storage requirements make it possible to put the whole automata

into SRAM. With hardware parallel match engines as our design, it could achieve the

goal to create a nice IDS in hardware with the performance of multi-pattern matching

algorithm and lower storage requirements. Especially, it handles pattern relationships

in the nodes of automata, instead of processing them in another units or using CPU to

compute.

Root

P3 P2 P1

P7 P6 P5 P4

 18

If there is a Snort rule R = ”content: abcd; content: xyz; distance: 4; within: 8;”,

that means while matching “abcd” in position A of payload, we have to found “xyz”

in position A+4~ A+8. Custom content automata record those relationships into the

node of “xyz”. After matching the node of “abcd”, we could know the range of

searching the pattern “xyz” and have ability to process those relationships.

 All the nodes are divided into the following types.

• Pattern node:

– \1:match this normal content pattern

– \2:match this pattern no matter its case(no case)

– \3:don’t match this pattern and no matter its case(no case)

– \4:don’t match this pattern

– \0:match PCRE pattern

– \5:don’t match this PCRE pattern

Also some operation information is added into a node:

• Operations:

– Distance: depend on location of previous matched pattern

– Within: depend on location of previous matched pattern

– Offset: from the beginning of payload

– Depth: from the beginning of the searching range

The flowcharts of our custom content automata while compiling and matching

are illustrated in Figure 3-5 and Figure 3-6, respectively.

 19

 Compiling Steps:

Start

If get EOF or ‘\n’

Handle Regular Expression

with PCRE

Put words into Stack until getting

whole pattern

Parse this line

Position in root node

T F

If get

‘pcre

If get

‘nmc:

If get

‘noc:

If get

‘nor:’

If get

‘nma:

Put words into Stack until getting

whole pattern

T T

F F F F F

T T T

Check if there already exist

correspond node in automata

 20

Figure 3-5 Compiling flowchart of custom content automata.

If node exist

Allocate a node and add

it into automata in the

position

Through the node and

update the position

Already parse this

pattern

Already parse this rule

Build transition path

TF

Already parse all rules and build

transition path

Compiling is done

 21

 Matching Steps:

Start

Now_chain has only root node element

If Now_chain

isn’t empty

If input is not empty

or EOF

T

F

TF

Add all the child node of root into Now_chain

 22

Figure 3-6 Matching flowchart of custom content automata.

If this node is

still in search

range

Matching is done

Check every node

in Now_chain if it

is matched

Add all the child nodes

according transition

path into Next_chain

Check the within and

depth value

Now_chain=Next_chain

T F

T

F

Update some info and add

this node into Next_chain

Already process all

nodes in Now chain

 23

 For example, Figure 3-7 shows a rule and the corresponding constructed content

automata.

Figure 3-7 An example of custom content automata while matching.

 If input string is “He smiles at me every dayyyy”, first add P1 node into

now_chain and search “smile” at location 0. It’s unmatched so add P1 node into

next_chain and search “smile” at location 1 and so on. Now find “smile” at location 3.

Then add P2 into next_chain and search “He” at location 0 repeatedly. Then find “He”

at location 0 and add P3 node into next_chain. Search “at” at location 2 and find it at

location 10. Then add P4 into next_chain and search “every” at location 3. Find it at

location 16 and add P5 into next_chain. Search Regular Expression “day+” at location

0 and find it at location 22.

Root

P1

P3

P2

P4

P5
pcre: “day+”

“every”; depth:
50; offset: 3;

“at”; within:
50; distance: 2;

“smile”

“He”

 24

3.5 Experiments and comparisons between custom

automata system and Snort
 We compare our custom automata system with Snort rules and Snort system.

First we test the executing time in matching phase while input different lengths of

packets. Testing CPU speed is 400 MHz and measurement unit is time tick (1/ CLK

per second). The measure results are shown in Table 2 and Figure 3-8. We can see that

the matching time is O (L) when input packet is length of L. Then we test the

matching tine when input different lengths of packets which consist of normal

alphabets or special strings matched Regular Expression rules. Testing CPU speed is

1.8 GHz and measurement unit is second.

Table 2 Matching time of custom automata system when input different data sizes

Input data size

(bytes)

Executing matching time

(time ticks)

64 741

100 1162

200 2804

300 3395

400 4566

500 5918

600 6870

700 7911

800 9214

900 10064

 25

1000 11266

1100 12398

1200 13529

1300 14721

1400 15743

1500 16975

Executing matching time

741
1162

2804
3395

4566

5918

6870

7911

9214

10064

11266

12398

13529

14721

15743

16975

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

64 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Input data size (bytes)

E
xe

cu
te

 m
at

ch
in

g
ti

m
e

(t
im

e
ti

ck
)

Our custom automata system

Figure 3-8 Matching time of custom automata system when input different data sizes.

 26

 The matching time of Snort system for different packets and that for our

proposed custom automata system are shown in Table 3 and Table 4, respectively. We

can also see that the data size consumed by our custom automata system is much

smaller than that of Snort system. But the performance of our custom automata is

worse than that of Snort system. Nevertheless, the software simulation acts like a

single pattern matching algorithm when comparing a pattern in a node. It only

compares one pattern step by step while doing matching and does not have any

advantages of multiple pattern matching. To overcome this problem, putting our

custom automata in SRAM and implement the whole system in our hardware design

is a good solution to achieve multiple pattern matching. The hardware design for the

proposed custom automata system is discussed in the next section.

 27

 Table 3 Matching time of Snort system for different packets

Using AC-std algorithm user_time (sec) memory
length
(Bytes)

compile time
(sec)

Content packet PCRE
packet

100*1500 0.17 0.19
100*1000 0.154 0.179
100*500 0.135 0.155
100*100

2.64 ~ 2.82

0.12 0.135

268.57
MB

Using AC-full algorithm user_time (sec) memory
length
(Bytes)

compile time
(sec)

Content packet PCRE
packet

100*1500 18 .79~ 19.1 0.17 0.193

139.52
MB /
271.5 MB
if using 4B
state

Using SFKTrie (lowmem) user_time (sec) memory
length
(Bytes)

compile time
(sec)

Content packet PCRE
packet

100*1500 0.244 0.274
100*1000 0.21 0.23
100*500 0.165 0.185
100*100

0.11

0.128 0.149

16.87 MB

Using Modified Wu-Manber user_time (sec) memory
length
(Bytes)

compile time
(sec)

content packet PCRE
packet

100*1500 0.166 0.194
100*1000 0.158 0.18
100*500 0.138 0.157
100*100

0.195

0.128 0.14

51.28MB

 28

Table 4 Matching time of custom automata system for different packets

3.6 Implementation in hardware
 According to the experiments mentioned above, the software simulation of the

proposed custom automata system has smaller data size but worse performance. The

main factor is that this simulation doesn’t do parallel matching in software so all the

pattern-matching jobs are similar as single pattern matching. However, the much less

storage requirements are the most important advantage to implement in hardware.

Although AC algorithm is multi-pattern matching, it is not easy to implement in

hardware parallel architecture because AC algorithm only depends on failure path to

achieve multi-pattern matching and its data size is too big indeed. Thus designing an

efficiently hardware architecture for the custom automata system will overcome the

performance concern in software simulation. The hardware architecture designed in

this thesis is illustrated in Figure 3-9.

system user_time (sec) memory
length (Bytes) content packet PCRE packet

5000 2.28 2.34
4000 2.06 2.08
3000 1.4 1.4
1500 0.7 0.71
1000 0.48 0.49
500 0.27 0.28
100 0.11 0.12

361.538 KB

 29

Figure 3-9 Hardware architecture for parallel pattern matching.

In our hardware design of custom automata system, the whole system is

partitioned into four parts, as shown in Figure 3-10.

 Hash Filter: Using M hash functions to filter those pattern nodes which may be

matched input payload in next matching step of matching engine.

 Automata in SRAM: Store constructed automata and load patterns into

matching engine for next matching step

 Matching Engine: Use N different P-bit ALUs to handle matching processes.

Let N*P be always greater than the length of every pattern in order to do

multi-pattern matching at the same time. (in our assumption, P=32, but the value

can be changed if necessary for seeking higher performance)

 Regular Expression Engine: Handle Regular Expression matching.

Engine 1

Engine 2

Engine 3

Engine 4

All the patterns
in SRAM

P1

P2

P3

P4

Addresses of next 4
patterns

Input stream

 30

Figure 3-10 Hardware Design of Custom Automata System

 Hash Filter

In this hash filter, M different hash functions are used to calculate every pattern

in the node of automata. In other words, we give every node an M-dimension attribute

set. With different hash functions, all the nodes are divided into groups and have G1,

G2, G3,…,GM hash values in M-dimension. The hash filter maintains a hash table

stores those hash values of every node. When doing matching, the hash filter first

takes every four bytes of input payload and uses M different hash functions to get M

hash values. According to those hash values, search for the correspond nodes in the

hash table. Those nodes whose hash values are the same as the input hash values may

be matched in the next matching step of matching engine. And those nodes whose

hash values are different from the input hash values have no possibility to be matched.

With this hash filter, it only needs to check the nodes which may be matched instead

Hash
Filter

Matching Engine

Automata in
SRAM

Regular Expression Engine

Gid

Compared Patterns

Input
Payload

Match Result

Match Result

 31

of checking all the nodes in matching engine. Therefore this hash filter could save our

time and raise the performance of matching process.

For illustration, consider the example shown in Figure 3-11. Assume M = 2, the

hash filter divides all the nodes in automata into two groups G1 = 1 and G1 = 2 with

hash function 1 and three groups G2 = 1, G2 = 2, and G2 = 3 with hash function 2. If

input hash values = (2,2), then P7 and P8 may match this input and other nodes are

never to match this input.

 Figure 3-11 An example of group nodes with hash filter (M=2)

 Automata in SRAM

From the result of experiments in previous section, the data size produced of our

custom automata system is much smaller than that of Snort. We could put all the

automata into a SRAM to accelerate and save the memory-access time while reading

patterns to match. After hash filter picks the correspond groups of nodes which may

be matched, system will get those nodes in automata according to the group ID of

hash table and input those patterns to matching engine for the next step of matching.

P1 P2 P3

P6 P7P5

Root

P4

P8

P9 P10

G1=1 G1=2

G2=1

G2=2

G2=3

G1=1 G1=2

G2

=1

G2

=2

P1

P2

P3

P4

P5

P6

P9

P10

G2

=3

P7

P8

Hash Table

 32

 Matching Engine

It has been pointed out that the length of every pattern in Snort rules is almost

around 4~15 bytes [16]. In order to fit our hardware design, the matching method of

our custom automata is then changed. In the original design, the whole pattern is

matched byte by byte. In the new design, every four-byte substring is matched in a

32-bit ALU. For each pattern longer than four bytes, divide it into a sequence of

4-byte substrings, except the last one, which may be shorter than or equal to four

bytes. And every substring has relationship “distance = 0”. Figure 3-12 shows an

example to partition the pattern “abcdefghij” into three substrings “abcd”, “efgh”, and

“ij”, and the relationship is “distance = 0”. Then the matching engine with N 32-bit

ALUs is used to do the matching process in parallel. This design could match one

pattern in only one step no matter of its length and the performance can be improved

dramatically.

Figure 3-12 An example of dividing every pattern into 4-byte substrings.

The matching engine in hardware may focus on accelerating with using N 32-bit

ALUs to check if every four bytes of input payload match any patterns. For example,

a matching engine with N = 4 is illustrated in Figure 3-13. Four ALUs will be

abcdefg
hij

abcd

efgh

ij

distance =0

distance=0

 33

employed to process a pattern with length of 16 bytes or more. For shorter patterns,

only less number of ALUs are required and some of the ALUs may be arranged to

process other patterns.

Figure 3-13 Matching engine in hardware with N 32-bit ALUs (N=4)

 With the parallel ALUs to handle matching process, our system in hardware

could achieve the performance of multi-pattern matching system. After adding a hash

Matching Engine

32

32 bit ALU

32

32 bit ALU

32

32 bit ALU

32

32 bit ALU

32

32

32

32

 34

filter in front of the matching engine, it only needs to pass the possible matched

patterns into matching engine instead of all patterns. The matching engine will

become more efficient and faster.

 Regular Expression Engine

Because it is not useful to use hash filter and parallel matching engine when

processing a Regular Expression pattern, an engine is designed for handling Regular

Expression. Actually, PCRE is the most easy and direct way to solve this issue in both

Snort and our custom automata system. PCRE handles Regular Expression patterns

with single-pattern matching. However, with the more and more complex Regular

Expression rules, a Regular Expression automata is also designed in this thesis which

will be discussed in Chapter 4.

The flowchart of custom automata system in hardware matching is shown in

Figure 3-14.

 Matching steps in hardware design:

 In the hardware design of our custom automata system, the hash filter is used

first to the pass the patterns whose hash values are matched into the matching engine

for raising the efficiency of the matching engine. Then with N P-bit ALUs in the

matching engine, do multi-pattern matching in parallel to achieve high performance.

The hardware implementation of custom automata system combines the performance

and functionality with low memory requirements.

 35

Start

Get 4 bytes of payload Use PCRE to compare Regular

Expression patterns

Input 4 bytes to M hash functions

in parallel

Search for the same hash values in

hash table

Get M hash values

If there are some groups

with the same hash values

in hash table

Get the nodes of those groups

with the same hash values

F

T

 36

Figure 3-14 Flowchart of custom automata in hardware matching

Load these patterns form the nodes in

SRAM automata to matching engine

Divide every pattern into some 4-byte

length substrings

Input substrings into N P-bit ALUs

severally and do matching process in

parallel

If it’s the end of input

payload

Finish matching process

F

T

