ERMGEL [N RN Ak

Multi-Pattern Matching Algorithms for Networks

dip
g
ek

H
A\

|

D FFEEF (899606)

Tzu-Fang Sheu
e P e

Prof. Nen-Fu Huang

I L O R S B

ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this dissertation
possible.

My foremost thank goes to my thesis adviser Dr. Nen-fu Huang, who has
advised me in various aspects of my research, and has assisted me in
NUMErous ways.

| thank the rest of my thesis committee members: Dr. Shiuhpyng Shieh, Dr.
Chi-Sung Laih, Dr. Chin-Laung Lei, Dr. Wei-Kuan Shih, Dr. Han-Chieh
Chao, and Dr. Yin-Te Tsal. Their valuable feedback helped me to improve
the dissertation in many ways. | gratefully thank to my master thesis adviser
Dr. Shiann-Tsong Sheu who introduced me to the field of network studies.

| gratefully acknowledge the MediaTek for the award of the MediaTek
Fellowship, which has supported me during my three years of research;
thank the National Science Council of the Republic of China for the award
of field research in the Northwestern University. | would like to express my
sincere thanks to the host professor Dr.. Chung-Chieh Lee of Northwestern
University, for his valuable advice and friendly help.

I cannot end without thanking my family, onwhose constant encouragement
and love | have relied throughout-my time at the Academy. For my parents
who raised me with love and supported me in al my pursuits. For my
younger brother and sister who always listened to my heart and being my
side. And most of al for my loving, supportive, encouraging, and patient
boyfriend Ping who is my best research partner.

This dissertation is in memory of my grandfather whom | adore; in memory
of my beloved grandmother who was the mentor of my life. | miss you
dearly.

It isto them that | dedicate this work.

Tzu-Fang Sheu
Natioanl Tsing-Hua University
Nov. 2008.

Contents

LY 013 £ = Lox PP OP PP UPPPPPPPPPPN 9
N [01 (oo [F o3 1 o] o DT PP P PP PPPPPRRRPPPT 11
2 BaCKgrOUNd........oooiiiiiiiiii et 15
2.1 General Definitions and NOtationsccccceeeeeeiiiiiiiiciiiiiiiiee 15
2.2 Previous WOrkS. ... 16.
2.2.1 The Boyer-Moore-Like Algorithms..........ccccccovvviiiiiiiiiiiinnnnnnn. 16
2.2.2 The Aho-Corasick-Based Algorithmscccceecceiiiinniennnnnnnn. 20
2.2.3 Other APProaches ..ot 21
2.3 MOBIVALIONS ... i i i ek sh kb nn ettt e e e e e e e e e e e e e e e e 22
2.3.1 Network Processors and-MiCro-proCesSSOrS. .. c.c.uvvvuuaeeeennnn. 22
2.3.2 Hierarchical ArchiteCturesuceeaec i 24
2.3.3 Pattern SPeCIUM .. i e 25
2.4 The Sketches of the Proposed Algorithms cceevvvvvveevviiiiiieeeen. 25
241 HMA e 6.2
2.4.2 EHMA 26
2.4.3 ACM Lo 8.2
3 The Hierarchical Multi-pattern Matching Algorith(RIMA) 29
3.1 The FCS AIQOrithmcoooiiiiie i e e e e e e e e e e e e eeeeaannens 30
3.2 The Cluster Balancing Strategy (CBS).....cccccceeiiiiiieeeeiieeeeeeeeiiiinnns 32
3.3 The On-line Hierarchical and Cluster-wise Maigh....................... 35
3.3.1 The First-tier MatChing........cccoooiiiecee e, 35

3.4 The Incremental Update..........ccoooiiiccceeee e 40
3.5 An Example: Network Intrusion Detection System...................... 42
3.6 Performance ANAIYSESccoviiiiii i 44
3.6.1 AVEIrAgE CaSE ...uuiiiiiiiiieiiie et 44
3.6.2 WOISt CASE.....uuuiiiiiiiiiiiiiiiii e e 48
3.6.3 BeSt Case........cooiiiiiiiiiiiiirrrrrr 9.4
3.7 RESUIS ..o e 50
3.7.1 MeEASUIEMENTSceviiiiiiiiiiiiiie e 51
3.7.2 Input Traffic MOAEIS..........uuuuiiiiieeeeecice e 51
3.7.2.1 Models T and . iueeeiieeiiieeeee e 51
3.7.2.2 MOl i i e ittt 52
3.7.2.3 Model VI e 52
3.7.3 Memory ReqUIrEMENTSuuvrruuennmmmmmmn e eeeeeeeeeesnnnnnnnnnnneeeeens 53
3.7.4 Results and DISCUSSIONS..............ommmm s eerrreeeeesnannneeeeesnanns 55
The Enhanced Hierarchical Multi-pattern Matchi&igorithm (EHMA)...... 63
4.1 The Basic Idea of EHMAccoooiiiiimmmmn e 63
4.2 The GFGS AlQOrtNMcciiii e e e et e e e e e e 65
4.3 Cluster Balancing Strategy (CBS)coumemmieeiiiiieeieieieeeeiiiiinn 67
4.4 Safety Shift Strategyccooeeeiiiii e 69
4.5 Table CONSIIUCHION.cccciiiiiie e 71
4.6 The On-line Hierarchical and Cluster-wise Matgh.................ccccceunn.. 75
4.6.1 Tier-1 MatChingccovvviiiiiiiiiiemmcme e e e 76

4.6.2 Tier-2 MatChingccoovvviiiiiiiiimmmmme e e e e e e 77

4.7 Incremental UPAate.........cccoooeeeee it et e e e e e e e 81
4.8 WOISE CASE....ciiiiiiiiiiiiiiicieet s s e 82
4.9 RESUIS....ceiiiiiiiii e 84
4.9.1 MeEASUIEMENTScoevriiiiiiiiiiiie e 84
4.9.2 Traffic MOAEIScoviiiiiiiieeee e 85
4.9.2.1 MOAEl Lccoiiiiiiiiiiieeeeee 86
4.9.2.2 Mol 1l ..o 86
4.9.2.3 Model Hl...oooiiiiiiiiiieee e 87
4.10 Memory REQUIFEMENTScoevvveeirtcmmmmmm s e eeeeeeeeeeeeeeeenennnnnnnnnneeeens 87
4.11 ReSUltS and DiSCUSSION i, iiureeeseaammersitiereeeeesainrr e e e e e s sineeeeee e 89
AC with Magic StruCtur@S (ACM). ... k. i mmmmmeeeeeeeeeeeeaniriinrsas e e e e e eeeeaeeeeens 99
5.1 PreVviouS WOIKS. i i e i vttt no
5.1.1 The Aho-Corasick Algorithm (AC).........ceeeerviverivriiiiiiiennn, 101
5.1.2 The Basic Implementation of the Aho-Coragitdorithm...... 102
5.1.3 The AC Algorithm with Bitmap (ACB)cccceeeeviviiiieeiiininnnns 104
072 I U= @ \Y Y o o 1 o . PSR 106
5.2.1 Chinese Remainder Theorem...........cccceeeeeiiiinreereeinniinneene. 107
5.2.2 The MagiC StrUCIUIeccceeeeeeiiiieeeeeee e 109
5.2.3 AC with MagiC StrUCUIeSe e eeeeeeeeeeeeeeeiniinnns 110
5.2.4 Implementation ISSUESccceeiimmmmee e e 113
5.3 Performance ANAlYSIS...........ooovvvvvsummmmmeceevensaa e e e e eeeeeeeeseeeeennnnnnns 114
5.4 ResSUItS and DISCUSSIONS..............eeommmmmmmreeeeeesaainieeeeeessninneeeeeaens 116

6 Conclusions and FUtUre WOrIKS... ..o, 12

References

List of Figures

Figure 1. The memory architecture of WM-PH, whére prefix sizeD = 3..........ccoo oo 18
Figure 2. The architecture of 8 NEtWOIrK PrOCESSOI-........ciiiiiiiiiit ettt 22
Figure 3. The pattern spectrum whBh3 1200 from Snort’s rule Set.........ccccveeeiiiiiiiis 24
Figure 4. The FCS algorithm. ...t e et e e e e e e e aaaaaaeeas 30
Figure 5. The hierarchical index table Of HMA . .. o oo 34
Figure 6. The on-line matching procedure of HMA........ooo i 37

Figure 7. Examples of HMA on-line matching, whehe input strings are ‘pink’ and ‘black.. 38
Figure 8. The incremental update Of HMAL. ettt 39
Figure 9. The architecture of a network-processmeld NIDS.c..ooviiiiiiiiiiie e 43
Figure 10. The average matching tim Y versus the attack loadi () for HMA, WM-PH, BMH and AC-C
with different pattern set size®[$200 and 1200), using Model Il, and Y@= 250, (b)wg= 100..54

Figure 11. The average matching cd$t)(versus pattern:set siz|j|for HMA, WM-PH, BMH and AC-C

with different attack loadsA), using Model I;'and (aye = 250, (bWe = 100.ocovevreveveeereeeeeee 56
Figure 12.¢, andy,, versus attack loadA();.where P|=1200 andve = 100, using Model I. The labeled
value above each bar & . (a) HMA, (b) WM-PH, (c) BMH and (d) AC-C.....cccciiiiiiiiiiieaannnnnnn. 57
Figure 13. The average number of XOR comparisodstzat of external memory access versus the attack
load (1) for HMA, WM-PH and BMH with different pattern seizes @|), using Model I: (a)
Comparison, (D) MEMOIY GCCESS. uuiiiiiaaiaaaaititti ittt ee eeaeaaaaaaaaaaaeeaaan 59
Figure 14. The pure costs of the matching algoritimthe worst-case and best-case situations d&datg!
TP P TV RPUU R TOURTPPRPPRN 60

Figure 15. The processing time and the norrmalezests using Model VI withve = 100: (a) ¥ and ¢,,

where IP| = 1200 (b) The matching costs normalized to HMi#eve P| = 200 and 1200. 61
Figure 16. A simple state machine of EldMA MatChing ProCeSS.ovvvvvieeeeeeiiei i 64
Figure 17. The sampling WINAOW.cccoeiiiiiiiiiiiiicccirniee e e e e e e e e e s e s e e e e e e e aaaaeaeeeeeaenan 66

Figure 18. The general frequent-common gram seagdgorithm (GFGS).cccccccvvvvvvv .. 66

Figure 19. The pattern clustering arChiteCtUre...........cooiiiiiiiii e 69

Figure 20. An example of EHMA, wheBy =1,B, =1, m=M =6,W=3 andF={e, h}......ccccccccccee..... 73
Figure 21. The processing flows of the on-line MBdg. ... 75
Figure 22. The on-line matching procedure, inclgdiier-1 Matching and Tier-2 Matching.78
Figure 23. An example of matching process with tHRaNQGaroo’.ccccveveviiviiie e, 80
Figure 24. An example of matching process with tH@mManactress’.cccccceeeeeiiii s e e 80
Figure 25. The average matching timé § versus the number of patterr|(] using Model | withA =0
AN A =4, WHEIBWNE = 100, wuuuueiiiiiieiiiee e ee e e s e e e e e e e eeeeeeab et seseeeseasaesseeeenees 90

Figure 26. The proportion gf, to ¥ andy, to ¥ using Model | withP | = 1200 andve = 100: (a)

A =0aN0 (D) A = 4 e a et aareas 91
Figure 27. The comparisons of average number efeat memory accesses) (using Model | withwg =
100: (@) A =0aNd (D) A = 4. oo 93
Figure 28. The average matching tim# § versus the number of patterrd|f| using Model II: (ayve = 100
=Yg Lo (0] 1T = O B SRR 94
Figure 29. The costs versus the number of pat(§Pf)susing Model llwez = 100 andv = 10: (a) Average
matching time, (b) Extra memory-requirement, andlfee average number of external memory
BICCESSES. ..itteeieee e ittt tee e s et e e eessae Ehne e e oA Ao R T 5t et i et e e e e e e e et e e R e e e e e e e et e e s a e e e e e n i nree s 97

Figure 30. The average matching timé § versus the number of pattern|)| using Model Illwg = 100.

... 98
Figure 31. The Aho-Corasick algorithim. ... 102
Figure 32. A parent-Child SEt..........ccooiiiieiee e e r e e e e aaae s 103
Figure 33. The ACB_matching ProCeAUIE.......cceiiiiiee e e e 105
Figure 34. MAgIC SIIUCIUI.ciiiiie e eeeeee ettt e e e e e e s s e s et rerreaeaaaaeeas 109

Figure 35. The architecture of ACM state machinkeeng the number in the parentheses is the magic

(018] oL T PP PP PP PPPPTPPPPPPPPPN 110
Figure 36. The matching procedure using the ACMCBUTE.cuvviiieiiiiiieie e e 111
Figure 37. The total memory requirement for the AGMCB and ACO structures in the case of 1200 and

200 PALEINS FESPECHVEIY. .. uuvverieeeieee s st eeeeeeaeeaeasessssssasnsrnebeateerreeeeeeeaeeseesasaannnssnsennrnnnnnes 118

Figure 38. The average execution time per symb@l@¥, ACB, and ACO matching in the case of 1200

and 200 patterns reSPECHIVEIY.ottt e e e e e e e e 118

List of Tables

Table 1. Comparisons of single-pattern matchingfoputers and multi-pattern matching for network
12101 = TP PPURPRPRRRR 17

Table 2. Comparing the shifts of BM-based, FV, Wiid WM-PH algorithms.............ccccccceiii . 19

Table 3. The pattern size distribution Of SNOM. ... 50
Table 4. The MEASUIEIMENTS.ciiiiiiiiiceecmree ettt e e st e e s e e anr et e e s e e s anreeeeanes 51
Table 5. The traffic MOUEIS.coiiii e e 52
Table 6. The Simulation PAramELErS.ccueeueiiiiiii e e e e e e e sss e e e rraaaaaaaaeeeees 53
Table 7. The extra MemOry rEQUIFEIMENTS. ... e eeeeeeeeteaaaaeaaaaae e e aaaaeeeebrereeaeeeaaaaaeaeaeaaaasaaaannnnnnes 53
Table 8. The number of frequent common-codes vahaipattern set Size.............occooiiceeeeeeeeneenn, 54

Table 9. Analysis and simulation results of HMARNlodel | and A = 0. 0.6

Table 10. The Simulation PAramMEeLErS. ... il iivine e eeeee e e eaaaa e e e e e et eeeeeeaaaaaaaaaaaaaaaaaas 85
Table 11. The pattern size distribution. Of SNORSET Rl ivree i 85

Table 12. The statistics of the traffic traCeS . il it i b 87
Table 13. The MemMOrY rEQUITEMENTS. I ik i iimaeiiissbin st ninessrnsesnerrerraeeeeeeseeemansnssssssssnnrrrrrrerraeeeees 88
Table 14. Alist Of SYMDBOIS.coi e i s o et e e e e e e e e e e s e e e e e e e eaaaaeaaeeeesanas 88

Table 15. The impact of the size of sampling wind@yon the shift values of tableld shiftandH? shiff),
[F|, actual average shifts aBAUSING MO 1.ueeeiiiiiiiiiie e 96

Table 16. The memory size (in Bytes) of a node#ah traversing using simple structure, Bitmapcttme,
T To Y R o] (U3l o] 10 = o SR 116

Table 17. The normalized cost of ACM, ACB and ACGQhe case of 200 and 1200 patterns. 19..1

Multi-Pattern Matching Algorithms for Networks

ABSTRACT

In-depth packet inspection engines, which searehwhole packet payload to
identify packets of interest that contain certamtt@rns, are urgently required. The
searching results from the inspection engines @wuthized in the network equipment
for varied application-oriented management. The tniogortant technology for fast
packet inspection is an efficient multi-pattern amatig algorithm, which performs exact
string matching between packets and a large sgbatterns. This study discusses
state-of-the-art pattern matching algorithms anappses three efficient multi-pattern
matching algorithms for networks: laerarchical multi-pattern matching algorithm
(HMA), an enhanced hierarchical multi-pattern matching algbm (EHMA), and an
Aho-Corasick with Magic Structur¢dCM) algorithm.

HMA and EHMA are built based on hierarchical andistér-wise matching
strategies. The hierarchical matching strategyMi®and EHMA can efficiently reduce
the number of external memory (L2) accesses andrimint of memory space. EHMA
contributes modifications to HMA and includes theas ofSampling Windowsand a
Safety Shift Strategyrhe Safety Shift Strategyan significantly speed up the scanning

process of packet inspection. HMA and EHMA imprtive average-case performance of

multi-pattern matching, and are useful for the mekwequipment that locates at the
general network environment.

Moreover, the proposed ACM presents a noMelgic Structurebased on the
Chinese Remainder Theorem. ACM needs only a smatiuat of memory space and
does not increase computational time complexity. MAGas better worst-case
performance than state-of-the-art algorithms, ansluitable for the network equipment
that usually suffers heavy attacks or requires ajutaed performance.

In this study, the analyses and simulation reslitsv that the proposed algorithms
in this study outperform others. HMA and EHMA sussilly reduce the average
number of L2 memory accesses to about only 0.06—0e code, and improve the
performance to about 0.89-1161 times better thansthte-of-the-art algorithms. The
overall cost of ACM is about 1.1-+459 times bettamt the existing implementations. In
particular, HMA, EHMA, and ACM - use. only'simple aedsy instructions, and no special
hardware is required. Therefore, the proposed maltiern matching algorithms are easy
to be implemented in both hardware and softwarens€gquently, the proposed
multi-pattern matching algorithms can be efficigndpplied to packet inspection

engines for network equipment.

10

Chapter 1

1 INTRODUCTION

Many applications run over the Internet today @emathigh demand on in-depth
network management. Low-layer network equipmentkéspecified fields of the packet
headerssuch as layer 2/3 switches and layer-4 firew@ltgeecking only packet headess
insufficient for application-oriented managemenyirg to the increasing amount of
information stored in packgtayloads.Network management systems urgently need
efficient and in-depth packet inspection engineshigh-layer network equipment. The
packet inspection engine is used to find packetstefest over the network.

A packet inspection engine in the high-layer netnagquipment, such as an intrusion
detection system (IDS), anti-virus. appliance,. aggtion firewall or layer-7 switch,
typically contains a policy or rule database. la tlatabase, every rule consists of several
patterns (or signatures) and a matching actiora(eeries of actions). These patterns
describe the fingerprints of traffic flows. A patkmspection engine applies the
pre-defined patterns to identify or manage packétsterest over the network. The
pattern form depends on the application of the ngtwequipment. However, the patterns
have similar features: (1) a database generalliaoma few thousand patterns, of various
lengths, and (2) the patterns may ap@esmvheren any packepayload

For instance, Snort is an open-soursdwork-based intrusion detection system
(NIDS), which is adopted to listen in packets omedwork link, identify anomalous
intruder behavior with a set of patterns, and gateelogs and alerts through predefined
actions [1]. Snort describes one pattern of the ddéimworm as “GET

Iscripts/root.exe?/c+dir” [2], [3]. If the Snortspection engine detects a packet with this

11

Chapter 1

pattern in its payload, then it generates apprigpagerts to warn network administrators.
Pattern matching is known to be the most resourtaisive task in the Snort [4], [5], [6].
It has been shown that the pattern matching routin®nort needs 31% of the total
execution time, which is the most expensive roufiie Therefore, the emerging
high-layer network equipment needs an efficientkpanspection engine to search the
entire packet headewmnd payloads for pattern matching. This study fesusn the
nascent issues of payload inspection, and propibses fast multi-pattern matching
algorithm.

The most important component of an inspection engra powerfumulti-pattern
matching algorithmwhich can efficiently perform exact string matuito keep up with
the growing data volume in the network. Howevernwamtional string-matching
algorithms are impractical for packet inspectiof [8]. Because of the large pattern
database, an effective inspection engine must leg@bimultaneouslygearch for a set of
patterns, rather than iteratively performing thegi-pattern matching. The performance
of processing packets is not only affected by tbmpmutation time, but also strongly
affected by the number of external memory accesses.

It is well known that the rate of improvement inopessor speed exceeds the
improvement in memory speed. The gap has beearhedt problem for system builders.
For example, the latency of one external memorgsgdes about 150-250 times more
than the time of one instruction cycle in the In¥P2x00 network processor systems [9].
Therefore, a high-speed multi-pattern matching rétlgm should aim to minimize the

number of external memory accesses.

12

Chapter 1

This study proposes three efficient multi-patteratehing algorithms for in-depth
packet inspection: bierarchical multi-pattern matching algorithiHMA), anenhanced
hierarchical multi-pattern matching algorithf(EHMA), and anAho-Corasick with
magic structure$ACM) algorithm. These three algorithms can simnéously search the
packet payload for all patterns in a set. HMA, EHIslidd ACM are proposed for different
network situations. HMA and EHMA have better averagse performance, while ACM
has better worst-case performance than the stdteeedrt algorithms. Usually,
algorithms of good average-case performance wotkimvthe general network systems.
However, algorithms of good worst-case performaareevery important especially for
the equipment in the core and edge network requgiraranteed services. Consequently,
HMA and EHMA are useful for general-network appliocas, and ACM is suitable for
reliable network applications.

The increasing problem of network security threaézmns that NIDSs have become
essential network applications [20], [23].-NIDStect network infrastructure from
attacks and intrusions without modifying end-useftvgare. To ensure effective
protection, NIDSs must be capable of real-time paakspection, and be fast enough to
keep up with the ever-increasing data volume ower network. Hence, this study
illustrates HMA, EHMA and ACM with the promising N5 that makes use of a set of
patterns describing known intrusions.

The rest of this study is organized as follows.ti®ac2 presents the background of
pattern matching algorithms and the motivatiorhefproposed HMA, EHMA and ACM
algorithms. From Section 3 to Section 5, the detaflthe proposed algorithms: HMA,

EHMA and ACM, are described respectively, and thalyses and experimental results

13

Chapter 1

are also shown and discussed. Finally, Sectiorvésgihe conclusions and the future

works of this study.

14

Chapter 2

2 BACKGROUND

This section describes the background ofekact string matchinglgorithms. The
fundamental definitions and notations used in ghigly are firstly presented. Then the

related works are discussed in this section.

2.1 General Definitionsand Notations

An array is adopted to represenstaing of characters from an alphabet et
Namely, an element of strinigat the positiom is T[t], whereT[t]OA. The absolute value
of an object signifies the size of the object. FAstance,T| represents the length of the
string T, and J\| is the number of elements in.the AetDefine a function sub(t, B),
which is the substring of that starting frond[t] to T[t+B—1]. A string can also be given
as a set oB-grams, where gramis defined as‘a group of characters, Brisithe number
of grouped characters in a gram. For exampe, tingsigreen” can be translated into a
set of grams {‘gr’, ‘re’, ‘ee’, ‘en’} wherB=2.

Let P = {p} denote a set ofistinct patterns, wherg, is a pattern with an

identification number (ID). Note that in the se®, p #p; wheni #j. Assume that the

payload of an input pack&tand each pattemmOP are both strings drawn ovaAr.

A search requeslH|=1) in a conventional exact string matching aldomtgenerally
only contains one pattern. A single-pattern matglalgorithm is used to search a string
(or text) T for thefirst occurrence oall occurrences anegiven pattern. A multi-pattern
matching algorithm is adopted to search the inpédr all occurrences o&ny pattern

piLIP where|P|#1, or to confirm that no pattern &fis in T. That is, the goal of the

15

Chapter 2

multi-pattern matching is to finall the matched patterns T sayPy L P, such thaPy, =
{pi| OpiJT andp;LIP}. Py can be applied to any high-level decision policghsas the
high-priority-win, first-matched-win or other statencerned rules.

The notatiore.fdenotes the value of the field (or offsiesit the entry (or address)

If eis a table, ther.fmeans all fields namddf the tablee.

2.2 Previous Works

Single-pattern matching algorithms were originaflyoposed to perform text
searching in computer systems. In single-patternicimay, Boyer-Moore-based
algorithms provide the best average-case perforenanc terms of computation
complexity, which is sublinear to the input striigd, [13], [21]; while the Aho-Corasick
algorithm has the best worst-case performance;hwkilinear to the input string [1], [31].
Since algorithms with better average-case perfocamaypically work better in the real
world, Boyer-Moore-based algorithms:are widely usethe practical implementations.
Some multi-pattern matching algorithms that modlify Boyer-Moore-based algorithms

have been proposed for the IDSs in [21], [27], [29%]. The details are as follows.

221 The Boyer-Moore-Like Algorithms

For single-pattern matching, the Boyer-Moore aliponi (BM) [13] employs dad
character heuristic and ayood suffixheuristic to build askip table and ashift table
respectively. The Boyer-Moore-Horspool algorithniv{B), which is a variant of BM,
slightly modifies the bad character heuristic tdda singleskiptable [21]. The tables of
the Boyer-Moore-based (BM-based) algorithms aregrguted, and are used to obtain

the number of safety shifts elvery characteduring the searching process [13], [21].

16

Chapter 2

Table 1. Comparisons of single-pattern matchingcfoputers and multi-pattern matching for
network packets.

Single-pattern SearchingMulti-pattern Matching
Pattern Length Long Many patterns are very short.
Pattern Database 1. One pattern 1. Hundreds of patterns

2. 200 p 1< 2. Usually, % p, |> [Tl
Memory Requiremenf Small Large

Therefore, some characters of the input Tecdin be skipped during the matching process.
In other words, the safety shift (jump) of eachhalpetal]/A when searching a single
given patterm, sayJ(a, p), is precomputed, an#{a, p) < |p|. The BM-based algorithm,
while scannind to verify the existence @, checksl(a, p) to locate the next character of
T to scan after the input charactt] = a is scanned. This shift method speeds up the
searching process.

Some algorithms apply the BM=-based algorithtasativelyfor each pattern to solve
the multi-pattern matching problem. However, thalgerithms were originally designed
for single-pattern matching. BM-based approaches ot applicable for packet
inspection, because of the different pattern lengtale of the pattern database and
memory capacity. Tableshows these differences.

Although BMH is the best average-case algorithmgimeral pattern lengths in the
single-pattern matching, several studies have coed that the Brute Force method
outperforms the BM-based approaches in the extreases of pattern length less than
three characters or close to the length of thetisping [8], [22], [31]. Generally, the
patterns in many network systems are very shortekample, 13.7% of the patterns in
the Snort pattern set have pattern lengths oftlesms three characters, and the range of
pattern lengths is 1-122 bytes. Conventional shpgligern searching algorithms are

designed for text file searching in computers, whire length of an input string is

17

Chapter 2

S

Patterns | R aaa o a |
(1)a aab -—-IT'
(2) red
(3) orange .
(4) green bila o+ black p— a |
(5) vellow .
() black |h|3 gre o——{ oreen |

ora s—— orange pB— a
red —— red

yel ——{ vellow
X.

Figure 1. The memory architecture of WM-PH, whére prefix sizeD = 3.

typically larger than that of a pattern string. - Hawer, the input string for multi-pattern
matching across a network is a packet; whose laagtiuch smaller than the sum of the
length of all patterns. Moreover, the pattern $#J) (s generally very large in a network
system. Notably, the required amount of memory\ene important, especially in a
hardware-based design. For single-pattern searchhmg table size of BM-based
algorithms is O(\ [). However, for multi-pattern matching, the tabiee of BM-based
algorithms rises significantly to & |A |).

To search for a set of patterns, Snort runs a Bsedalgorithm iteratively for each
pattern. In this case, the time complexity iC3{| p, |+|P|x [T]) for one input strind [5],

[31]. BM-based algorithms obviously have poor padkgpection performance due to the
large pattern set in the network. The complexityimplementing the conventional

matching algorithm has been cited as a reason tgsinot been adopted extensively in

18

Chapter 2

Table 2. Comparing the shifts of BM-based, FV, Wivid WM-PH algorithms.

Shift Value Maximum Shift
BM-based| J(a, p) [9]
Fv min{J(a, p) |0 piLIP} min{| pi| |0 pLIP}
WM min{J(g, p) [g0pi, O pi01P}, where | =D | min{|pi| | O p[1P}-D+1
WM-PH min{J(x, p;) | subf;, 1,D) =x, O p; 0P} D

multiple-pattern matching [7], [21]. Markatos’s apach promoted Snort by using a
bitmap filter before BMH, but still searching fonlg one pattern in each iteration [29].

Several modifications to BM-based algorithms hagerbdeveloped to solve the
multiple-pattern matching problem. Fisk and Varghesnethod (FVproupsall patterns
to precompute the safety shifts [7]; Wu and Manbalgorithm (WM) group®-grams of
the prefixes of all patterns to build a shift tabksed on thbad gramheuristic, where
each entry contains the safety shift of eBefram [36]; Liuet al. presented an algorithm
(WM-PH) that groups the prefixes of all patternstold a large hash table, where the
length of the prefix iD [27]. Figure 1 displays: the memory architecture of WM-PH.
Notably, WM-PH has to duplicate the patterns ogtarsmaller thab in the hash table to
avoid a miss. Table @resents the shift values of BM-based, FV, WM anM-\RH
algorithms.

Obviously, grouping a large number of patterns ¢et@da small average shift. The
valid shift decreases as the size of pattern sawvgrAdditionally, the maximum shift
value of the FV and WM must be less than the minmpattern length i in order to
avoid missing any pattern. Hence, FV and WM aresasible for the inspection engines
when the pattern set includes single-symbol patteFhe required memory space of the
table for WM and WM-PH is Of|°). GenerallyD = 3, and the table requires 16M entries
when the alphabet size is 256. These large tablest be held in the external memory,
which leads to long access delay during the magcpicess. Furthermore, because the

19

Chapter 2

safety shift of @-gramg in the BM-like algorithms relates to all pattermstainingg, it
is a very complicated process to derive the shiits updating the tables when the pattern
set is changed. The BM-like inspection engines rhastuspended for table update, even

when only one pattern is added or removed.

222 The Aho-Corasick-Based Algorithms

The Aho-Corasick (AC) algorithm is a well-known atghm that provides the best
worst-case computational time complexity [1], [3A€ is an automaton-based algorithm.
By using a simple data structure, the memory spaqgeired to store thé&ansition
matrixesof the states is in the order of O} S), whereSis the number of states of the
automaton. Using a compressed structure, Bicd. modified AC (nhamed AC-C), and
lowered the required memory to about 2% of theioalgAC [34]. However, the data
structure of AC-C is still too large to be-cachadhe on-chip cache of general chips.
Although the AC-based algorithms: have the best tacase computational time
complexity, the latency of external memory accesgidates the processing performance
rather than the computational time. Even in the-base scenario, AC still needs at least
two memory references per character. Additionadlyen when only one pattern is
removed, AC must rebuild the failure table sinceésA@ilure table is built by correlating
the entire pattern set. AC-C also needs to relthdcentire state machine when it adds or
deletes a pattern, because the structures of AGeC@npressed. Consequently, the
AC-based inspection engine has to be suspendgohftarn update, and the suspended

time is proportional to the total length aif patterns irP [1].

20

Chapter 2

Coit et al. proposed a matching algorithm for Snort by commgrAC and BM [15].
However, their algorithm requires three times themmory of the standard version, and

may Yyield inconsistent results.

2.2.3 Other Approaches

In the case of hardware solutions,dti al. developed an FPGA-based inspection
engine for NIDSs, using the internal content adshbke memory (CAM) to speed up
multi-pattern matching [28]. Because the size ofraernal CAM of FPGA is not large
enough to store all patterns,dtial’s engine dynamically reloads a block of patteris i
the CAM, resulting in long latency. Moreover, &i al's approach does not solve this
problem while the patterns of varied lengths congié the formulation of a CAM for
exact matching.

Additionally, Dharmapurikaet-al.-adopted- Bloom Filters (BFs), and Kiet al.
employed mask filters in the FPGA-based.packetdatpn [17], [24]. However, these
two methods only act as filters and have to codpevath another string matching
algorithm to verify a match. Furthermore, this Bio&ilter-based algorithm can be used
only in the case that all patterns are longer thaartain length.

Lu et al. used several binary CAMs and BFs to implement Ilghreompressed
deterministic finite automata (DFAs), and Dharmdgaret al. combined AC with BFs
for packet inspection [18], [22]. Both approaché&éBze parallel BFs, and assume that a
BF can execute one query every clock cycle. HoweWeese architectures and
assumptions are only valid in specific hardwarelan@ntations. BFs are inefficient in

software implementations, because one BF is condpaisgeveral hash functions, which

21

Chapter 2

SRAM

0 0000000w 400000000

SRAM Controller
L L 1

Microengine Clusters

00000000000
000000000000

Packet Input Packet Output
MAC/PHY Controller Controller ya MAC/PHY

o
8
DRAM Controller o
o
2,

000000000/ 900000000

=)
=)
o
o
=)
9

[l Data Cash
DRAM [] Instruction Cash

Figure 2. The architecture of a network processor.

generally have long computation times in softwat8],[unless hash functions are
carefully selected for different CPUs.

A Piranha algorithm, based on the idea that a patizn be identified from iteast
popularD-gram of a pattern, has been presented [11]. A pegsular gram of a pattern is
selected as an index key of a pattern. However Pirenha algorithm cannot handle

patterns with lengths smaller thB and require a large memory space £().

2.3 M otivations

Generally, there are three ways to improve thegperdnce of a real-life appliance:
(1) reduce the number of required instructionsafdask (computation complexity); (2)
reduce the memory requirement (space complexidy)rdduce the number of memory

references, especially the external memory refe®(a@ccess latency).

231 Network Processors and Micro-processor s

Programmable chips, such as network processorsAgP@etworking on chips

(NOCs) or system-on-a-programmable-chips (SOPCsg, iacreasingly used in

22

Chapter 2

implementations in order to have the performanak feexibility at the same time [6],
[12]. Although microprocessors are slower than gan€PUs, microengine clusters
using pipeline or parallel technologies have be@pgsed to overcome this shortage. A
network processor system generally consists of owiggines, on-chip memory (L1
cache), external memory (L2 memory), and packetrobmodules (Figure 2). Due to the
cost and power consumption issues, programmabjes generally have small on-chip
cache. For example, the Intel IXP2x00 network pssoe has only a 4 KB instruction
cache and a 2 KB data cache in each microenginige Wie Vitesse 1Q2000 network
processor has a 4 KB data cache [22], [35]. Neettis, the required memory capacity of
the existing multi-pattern matching algorithms 8nort’s database is usually larger than
300 KB. Because the number of patterns-is stillmgng, the on-chip cache of general
programmable chips is typically too small to sttire tables and patterns for the existing
algorithms. Therefore, the pattern content anduipdaiables built by matching algorithms
have to be stored in the external memory.

However, frequently accessing the external memtoyréad patterns or tables)
significantly decreases the matching efficiency ttutlhe long and indeterminable access
latency of the external memory. It has been poimetithat processor speed doubles
every 18 months, while the memory latency imprdwesnly 7% per year. For example,
Intel IXP2x00 needs about one cycle for one basstruction, but about 150 cycles for
one access from SRAM (or 250-300 cycles from DRAMI] While considering
implementation issues, the system performanceosgiy affected by memory latency.
Therefore, reducing the number of required extemmainory accesses is more important

than reducing the amount of computational time.[34]

23

Chapter 2

005
0045

004
0035
003 | | |
0025

002
0015

00t 1
0.005

(a) Spectrum of 1-gram.

0.016
0.014
0.012

0.01

0.008
0.006
0.004
0.002
0 ‘Illl‘lll QIR

(b):-Spectrum-of 2-gram.
Figure 3. The pattern spectrum whEp3.1200 from Snort’s rule set.

The proposed three multi-pattern.matching algorghAiMA, EHMA and ACM, all
try to lower the number of external memory accesses reduce the amount of required

memory space at the same time.

232 Hierarchical Architectures

As shown in Section 2.2 (and later shown in Tabén@ Table 13), every existing
algorithm uses a large index table for multi-patteratching. To reduce the number of
external memory accesses, the idea of HMA and EHMAto use hierarchical
architectures: hierarchical memories and hieraadmaatching strategies.

The hierarchical architecture is a common idea lzasl been used to solve many

problems. However, how to obtain a small first-tegsle is the major point for a fast and

24

Chapter 2

efficient multi-pattern matching algorithm. Thisudy will propose novel methods to

obtain smaller index tables.

2.33 Pattern Spectrum

Firstly, Snort’s patterns are analyzed, becausexindbles of matching algorithms
are constructed by the patterns. Figure 3 plotp#teern spectrum of the Snort patterns.
The pattern spectrum indicates the occurrence émuof grams of patterns. Figure 3 (a)
shows the distribution of 2-grams of patterns, &ngure 3 (b) is the distribution of
characters of patterns.

As shown in the figures, they are not normally orfarmly distributed, and have
several peaks, which mean that some grams obviagslyr more frequent than others.

Hence, the idea of finding a small first-tier tatdgoossible.

24 The Sketches of the Propaosed ‘Afgorithms

Generally, an algorithm of better average-caseopadnce performs better in
real-life applications. However, some applicatiovaking in special situations require
guaranteed performance and reliable systems, ssiator@ routers. In this case, an
algorithm of better worst-case performance is dafadn Consequently, this study
proposes three algorithms for different requireraehhe hierarchical-based algorithms,
called HMA and EHMA, have better average-case perdmce; while the
automaton-based algorithm, called ACM, has betterstwcase performance than the

state-of-the-art algorithms.

25

Chapter 2

241 HMA

The hierarchical multi-pattern matching algorithn(HMA) for in-depth packet
inspection simultaneously searches the packet adyfior all patterns in a set. A small
first-tier table from themostfrequent common-coded patterns is used to narrow the
searching scope. HMA significantly reduces extermamory accesses and pattern
comparisons by two-tier and cluster-wise matchimgtsgies. HMA requires much less
memory space than current state-of-the-art muttepa matching algorithms [12], [21],
[27], [34], [36]. For instance, HMA requires ledsah 350 KB to import the Snort
database of 1200 patterns and it reveals smak-soal cost-effective implementations.
The average number of external memory accesseslislabout only 0.1-0.37 per byte,
which efficaciously improves the perfoermance of thepection engine. Simulation
results demonstrate that HMA' performs ‘about 0.9-4itfles better than the
state-of-the-art algorithms [21],.[27], [34]. HMAak better best-case and average-case
performance, and also manageable worst-case pemi@en HMA furthermore has an
incremental pattern update mechanism to make iablel and appropriate for on-line
network equipment. Consequently, HMA is a very @fgtctive and efficient mechanism

that can be employed in fast network content inspec

242 EHMA

The Enhanced Hierarchical Multi-pattern Matching Algtrm (EHMA) for fast
in-depth packet inspection can simultaneously $esrt¢he packet payload for a set of
patterns. EHMA contributes modifications to HMA J3&nd introduces the idea of a
sampling windowand aSafety Shift Strategyn addition. EHMA is a two-tier and

cluster-wise matching algorithm, and can perforst &kippable payload scan. Based on

26

Chapter 2

the occurrence frequency gfams this study discovers a small set of signatures fthe
patternsthemselves to narrow the searching domain. A MaxMtrategy is used in the
EHMA. The hit rate of the first-tier table in théd1A is minimized, while the spread of
patterns in the second-tier table is maximized.oddimgly, EHAM significantly reduces
the number of memory accesses and pattern compsrigbiMA can skip unnecessary
payload scans by applying the propostafety Shift Strategyyhich is based on a
frequency-based bad gram heuristithe frequency-based bad gram heuristic is a
modification of thébad grouped character heuristof Wu-Manber algorithm (WM) [36].
Therefore, EHMA has the advantages of both HMA \afd.

The memory space and the number of external memorgsses required by the
proposed EHMA are much smaller-than those requibgd the state-of-the-art
multi-pattern matching algorithms. EHMA needs lésan 40KB memory space to
construct required tables for the Snort of 120@0gpas, and therefore enables small-scale
and cost-effective hardware implementations. Usinty 768 bytes on-chip memory,
EHMA reduces the average number of external meraoccgsses to 0.06—-0.19, and thus
significantly improves the matching time of the etgion engine. Simulation results
reveal that the matching performance of EHMA iswb®.89-1161 times better than
other matching algorithms [12], [21], [27], [34B4], [38]. Even under real-life intense
attack, EHMA still outperforms others. Because amplg only basic instructions and
two small index tables, EHMA is very simple for thamare and software implementations.
Consequently, the proposed EHMA is a very costesitfe and efficient mechanism for

real-life network detection systems.

27

Chapter 2

24.3 ACM

Guaranteed performance is very important espedaitlyhe equipment in the core
and edge network. The AC algorithm has the beststagase computational time
complexity for multi-pattern matching, where themher of state transitions for each
input symbol is at most two [1], [19]. However, fas realistic implementations, the
performance of an algorithm is not only affected thg computation time, but also
strongly affected by the number of required memreferences. Because using the
conventional simple structures to implement theadgdrithm requires a large amount of
memory, the performance of AC in a realistic impéernation is not good as the
theoretical value. Therefore, this study proposkkgic Structurebased on the property
of Chinese Remainder Theorem and-contributes nuadidins to the AC algorithm
(named ACM) for fast in-depth packet inspection.

The Magic Structure needs . only:a small amount ofmorg and features fast
traversing schemes. This study uses NIDSs to nétestthe performance of ACM. The
results show that ACM has better worst-case perdoga than others. The overall cost of
ACM is about 1.1-459 times better than the existinglementations. The performance
of the Magic Structure is analyzed, which shows tha Magic Structure performs very

well especially for sparse graphs.

28

Chapter 3

3 THE HIERARCHICAL MULTI-PATTERN MATCHING

ALGORITHM (HMA)

Based on the concept of hierarchical and clustsewmatching, the proposed HMA
can effectively reduce the number of external mgnamcesses and string comparisons
without sacrificing the memory space. HMA compriseg stages: the off-line
preprocessing stage and the on-line matching stEuge.off-line stage constructs two
small tables for the on-line stage.

A frequent common-code searchirdgorithm ECS and acluster balancing
strategy(CBS are proposed for the table-construction. To olbsaialler index tables and
narrow the searching scope, an idea@juent common-codes$ patterns is used. FCS is
proposed to find out the frequent' common-codé-sethich is used to build thest-tier
table H*; theF and CBS are used to build the balansedond-tier tableH? H* andH?
act as two filters to avoid unnecessary externahorg accesses and pattern comparisons,
and thereby pass the innocuous packets quicklyhénan-line matching stage. The
second-tiematching activates only after the first-tier getmatch, andH? indicates a
small cluster of patterns that are similar to tmgut packet for real comparisons. HMA
compares only a fewelectedpatterns ofP with the suspectedsubstrings of a packet,
rather than comparingll patterns withall substrings of a packet. Consequently, HMA
significantly improves the matching performancee HCS and CBS algorithms and the

on-line hierarchical matching stage of HMA are disd in the following subsections.

29

Chapter 3

FCS Algorithm
Input: A set of pattern®.
Output: A set of frequent common-codEs

1 Initialize F « O ;
2 For each patterp; of P, O<i<|P|do
3 Transfer the firstf [-1 codes ofy into a vector M by settingy = 1 if j LIp; otherwisem = 0, for allj,

O<j<|A;
If pi is a single-code pattern, sgt= 1 if j=p;.
4 Read M. For eacin = 1, set the elements of matrix ig:= rj + my, for allk, 0< k<[A];
5 Whiler; 70, O<i<|A| do
6 Find a frequent common-coflewherers = max{r; |01, O<i<|Al};
7 Add this code intd- : F = F O {f};
8 For O<i<|A|do /* refresh R*/
9 ry =ri —ryg, if ry >rg; otherwiser; = 0;
10 Return;

Figure 4. The FCS algorithm.

3.1 TheFCSAlgorithm

Since the packet payloddand the patterns iR are strings drawn over the same
alphabet seA, and in addition the patterns may appear anywihdahee packet payload, to
recognize the packets that have the patternsfisudif HMA assumes that a small set of
signaturescan be found from the patterns themselves, andlilgausing the signatures,
distinguishing the suspicious substringg av¥ill become easier. A set significant codes
is defined as representatives of a patterfPsgiven by [0 0 A. A pattern ofP may exist
in the payload only when at least a significanteceglists. In other words, for each pattern
pi0P, at least one charactermfoccurs in 0. Many innocent characters ©fthat do not
belong to O can be skipped without further processing whemricg the inputT.
Obviously, smallerd leads to fewer pattern comparisons, and thus rfgséern
matching. The FCS is proposed to find the smalléstrom P.

Define P. as a subset d?, and all patterns iR, contain acommon-code, which

meansP.= {p; | cOp; andp;0P}. Obviously, if there is a common-code that appeaar

30

Chapter 3

distinct patterns more frequently than other codes, it is selected as one of, then a
smaller O is found. Based on this inference, FCS is desigioefind the frequent
common-code seff a givenP, denoted- = {f; | fiO A}, such that~ is the minimum set of
significant codeso represent the pattern $gtwheref; is afrequent common-code

The FCS algorithm is presented in Figure 4, usijdd gector M = () and aA|x |A|
matrix R = () as temporary memory, where j<|A]. M is a bit-map recording the
occurrence of each character in a pattern. R id teseecord the occurrence frequency,
whererj, i #], indicates the relations of concurrent occurrendaéen two alphabets
and g in P, andr; records the frequency of an alphabgt A occurring in different
patterns. For examplg;=2 means that currently two patternigontain bothe; anda;.
Firstly, the FCS algorithm records the characteuoence of each pattern in the bit-map
M, and then accumulates the elements of ‘M into dbeesponding elements of R
respectively (lines 2-4). Secondly, FCS finds thmést occurrence frequengy and
consequently the corresponding alphakét selected to be one Bf Then the elements
of R relating toes are subtracted accordingly to renew R (lines &@)S repeats until all
elements on the diagonal of R become zero.

After FCS finds ouf from P, F is used to construct a small index table, calted t
first-tier table (H'). To speed up the proces$: uses a direct index table of||entries.
Theath entry ofH' is denotedH*(a), where each entry has two fields: the frequedeco
ID, sayH'(a).fid; and the single-symbol pattern IB%(a).pid. That isH(a).fid = {i |a=f;
OF}, and HY@).pid = {i | jpi| = 1, p="a and piOP}. The unused fields ofi* are set as
NULL. SinceH! is a small table, e.g. only 256 entries in theeaafsone-byte coding, it

can be stored in the on-chip cache. Lateracts as a first-tier filter in the on-line stage t

31

Chapter 3

quickly discover whether a packet contains a pattsamely, HMA makes use &f to

narrow the searching scope to the most likely sutifsgatterns (clusters).

3.2 TheCluster Balancing Strategy (CBYS)

Generally, most packets are innocent and a harp#cket may contain only few
patterns. Hence, comparing all of the patternbedargeP with each input packet is time
consuming. If the patterns I can be distributed into different smalustersbased on
their similarity, then only the patterns in few sfers that are most similar to the input
need to be compared. Therefore, the efficiencheibatching process is improved. This
subsection presents strategies to attain this ok, the method of clustering a $et
based on the similarity of patterns is describdugkrila cluster balancing strategy (CBS) is
used to balance the cluster size, and finabg@ond-tier tabléH?) for on-line matching
based on the clustering results is built.

Define theclustering pivotsas. the keys used to distribute patterns, wheré eac
clustering pivot is a common-code of patterns aefipreviously. Two common-codes
are employed as a pair of clustering pivots, cadled/ot pairand noted asa(b), where
the first pivot is a frequent common-code=gfand the second pivot is the code following
the frequent common-code. LBt |, represent a cluster of selected patterns (a soalbset
patterns) with the pivot paia(b), which means tha,, = {p; | ‘ab’ LI p;, a0 F andbOA},
where‘ab’ is the combination of two stringsandb, and is a substring @. Notably, a
pattern is assigned to only one cluster in thetelusy strategy, although a pattern may
have more than one pivot pair. That is, the clgskave the following properties: any

clusterPapIP, Uana bPap=P and Naia b Pap=0. Since a pattern may have several

32

Chapter 3

opportunities to select a cluster, a better assegriroan lower the maximum cluster size,
and thereby improving the worst-case performandeéNdA.

In order to lower the worst matching time, CBS nspéoyed to balance the size of
clusters. In CBS, aifr|x [A| matrix N = () is used to record the current size of a cluster
Pap The algorithm is as the followings. Firstly, CB&ds one pattern at a time frén
and scans the pattern. According to FCS, for amgrgn;, there exists a character such that
pi[k]OF, where k k<|pi|. To balance the cluster size, CBS finds the swsil} , among
all available pivot pairs gfi, say &, b), whereaOF and ab’ Lip;. After groupp; into the
smallest clusterP,p, the corresponding,, is then incremented. All patterns are
distributed sequentially into the designate clissiethe same way.

The second-tier tabld? is constructed-based on the cluster assignmdhtntains
the pattern contents and the patterns’ formatteatimation for fast on-line matching. Let
H%(a, b) denote an entry df?, storing the head-pattern of a clus®gr, and defined as

H?(a, b) =h(a)x |A| +b,
whereh(a) = H(a).fid. Each entryH*(a, b) consists of five fields: the pattern si#éa,
b).size the pattern conteht?(a, b).data, the position of the frequent common-code in the
patternH®(a, b).offset the pattern IH%(a, b).pid, and a pointeH*(a, b).nextto the entry
of the next pattern in the same cluster or thenfragted content of the current pattern.
Transferring the information of patterns into ada#ned format can accelerate the
matching procedure. The patterns in the same clasgdinked by the linked-list structure
to optimize the memory utilization.

For example, ify is clustered t®, , andH%(a, b) is empty, then the information pf

is saved intH*(a, b), whereH*(a, b).size= pi|, H*(a, b).data= p;, H*(a, b).offset = kif

33

A Hi@
H'(b)

H'(e)
H'(f)
Al H'g)
H'{h)
H'(i)

y Hiz

On-chip Cache DRAM (H%)
single-pid fid
41
(1) | e R
{a,b)
P {a,c) black
i TN
e b
He,d)) '
E{E.E, green
- (a.2)
E {EIH:,'EIIDW
ez

P.‘l ¥

Figure 5. The hierarchical index table of HMA.

Al

Chapter 3

pi[K] = a, H(a, b).pid =i, andH*(a, b).nextis NULL. If the pattern size gf is larger than

the width of data fieldp; is fragmented.and.the remaining part is saved fiee entry

H*%@, b’) in the shared memory podi’(a’, b').sizeis H%(a, b).sizeminus the width of

the data field, andH*(a, b).nextis pointed toH*@@, b’). Similarly, if anotherp is also

clustered toP,), then a free entry is also assignedptoandp; andp; are linked by a

pointer.

Figure 5illustrates the logical architecture of the indekles of HMA, assuming the

alphabets are 26 English letters. This exampleixgsatterns as shown kigure 1 Since

‘e’ and ‘a’ are the most frequent common-codes blo#th occur in three different patterns,

FCS discover§ = {e, a} as the signatures of these six patternscediti has onlyA| (=

26) entries, it can be stored in the on-chip cathefid fields of H! are pointing to the

corresponding offsets 1. Since the first pattern ‘a’ is a single-pattdts pid (= 1) is

34

Chapter 3

stored in theH® table. As the patterned’ has ‘e’UF and the pivot pairs (e, d).ett’ is
grouped to the clustd?. 4 according to CBS. The remainders of the pattestievi the

same clustering strategy.

3.3 TheOn-lineHierarchical and Cluster-wise Matching

The off-line stage of HMA constructs two tablésandH?, holding the index and
pattern information in the cache memory and extemamory respectively. These two
tables are regarded as the two-tier filters anth@dises for the on-line matching. In this
subsection, the on-line stage of HMA are presemetétail. Notably, HMA is designed
for multi-pattern matching, where the pattern Iéisgare varied from one character to
hundreds of characters. HMA has no-constratnt emrtimimum length of patterns.

In a packet inspection engine, an input packetgiwv@n object and forwarded to the
engine for multi-pattern matching. Then the-insjpectengine returns the searching
results of matched patterRg. This study focuses on the payload inspectioneesdmes
that every input is a packet paylo&dlo reduce the times of external memory accesses,
HMA uses a hierarchical matching scheme. The maggbiocess of HMA is divided into

two tiers: the first-tier matching and the secoied-thatching.

331 TheFirst-tier Matching

In the matching stagd,is scanned from left to right, and each charafjtgns used
as the index key to fetch the enty(T[t]) in H'. H' acts as the first-tier filter of HMA,
using to check weath@rcontains any pattern & SinceH! is small enough to be kept in
the embedded memory of microengines, the latenagadssingi® is much less than that

of accessing external memory.

35

Chapter 3

In the first-tier matching, iH*(T[t]).pid is not NULL, thenT][t] is a single-symbol
pattern, and this matched pattern will be addemifpt WhetheH*(T[t]).pid is NULL or
not, then the first-tier matching procedure chebledid field.

If HY(T[1]).fid is NULL, i.e., T[t]OF, T[t] will be skipped with no pattern comparison,
and thereby no external memory is necessary. Tierom-line matching stays in the
first-tier matching, proceeding to the next chasact[t+1l] and checking the
HY(T[t+1]).pid as previous steps. Sinéq s much smaller tham |, most characters af
can gain the skips and avoid the second-tier magci@ionsequently, both the number of
character comparisons and costly memory accesadseagduced.

If T[t{]OF, T may contain a pattem P, whereT[t]Op;. That is, a$i*(T[t]).fid is not
NULL, T may have a pattern (or more-than.one) belongingeaalustePrg jt+13. Then

the second-tier matching is activated to identiiy pattern.

3.3.2 The Second-tier Matching

After the first-tier matching, as long &$(T[t]).fid is not NULL, the matching
procedure proceeds to the second-tier matciiA@]t], T[t+1]) indicates the location of
the corresponding clust®y mi+1; according to the inpuk. As a cluster-wise matching,
HMA checks only the patterns in the small clu®gg -1, which are most similar to.

In the second-tier matching, firstly thed field of H? is checked. IfH*(T[t],
T[t+1]).pid is NULL, it means the clusté?ry 1) has no pattern. Afterward, the next
characteff[t+1] is scanned, and the matching procedure retortigetfirst-tier matching.
Otherwise, ifH*(T[t], T[t+1]).pid is valid, it means the clustd¥qg mi+1) has patterns
similar to T. Then, HMA compares the pattern contentHf(T[t], T[t+1]) with the

suspected part of, sub(l, T[t-H*(T[t], T[t+1]).offsel, H3(T[t], T[t+1]).siz8. If the

36

Chapter 3

Procedure OnlineM atching(T, H*, H?)
Input: Packet payload, two preprocessed indexing tableg:andH?
Output: The matched pattern setTfPy,, and its correspondirgd PIDy,
1 Load the input payload into buffar
2 Initialize: Py«
3 For eachT[t] do
4 1f (ke—HT[t]]. pid) £ NULL then Py«—Py 0{pd and PIDy«—PIDy 0 {k}; /* First-tier matching*/
5 If (ke—H[T[t]].fid) = NULL && t<|T| then
6 Load data from the external RAM at ent§(T[t], T[t+1]) to a local buffetB;
7 While (k— LB.pid) = NULL do /* Second-tier matchinhg
8 Compare the substring start {t-LB.offse}] with the patterrLB.data of lengthLB.size /*
Assume no fragmentation here*/
9 If the comparison is matchélden Py«—Py O {p¢ and PIDy«—PIDy O {k};
10 If LB.nextz NULL then
11 Load data from the external RAM at entig.nextto the local buffet B;
12 Else
13 Break;
14 Return;

Figure 6. The on-line matching procedure of HMA.

pattern siz4*(T[t], T[t+1]).sizeis larger than the width of@atafield, the next fragment
of the pattern aH*(T[t], T[t+1]):nextis fetched. and compared only when the current
fragment gets a match. If the next-field of the [zsttern fragment points to a valid next
pattern, say ati’(a, b), similarly the “pattern irH*(a, b).data is compared with the
substring ofT starting af[t-H%(a, b).offse}. All matched patterns are added/.

Notably, if a patter; exists inT, then all characters of will appear inT. Definitely,
the clustering pivot pair of pattepny saypi[k] andpi[k+1], will be found inT, say afl]t]
and T[t+1], whereT[t] = p[k]OF. WhenT compares with the patterns in the cluster
Py,mt+1) during the matching procedugg will be recognized. Consequently, no patterns
in the payload will be missed.

The on-line matching procedure of HMA is presente#figure 6. Obviously, only
few suspected patterns are loaded from externalangnand the number of string

comparisons is decreased. HMA can scan the packgitly by usingH' andH?, since

37

Chapter 3

H abeclk

Hi(a.c) [Black [2]-]

data offset next

Figure 7. Examples of HMA on-line matching, where input strings are ‘pink’ and ‘black’.

most packets in the network are generally.innoeemt the obtainedr narrows the
searching scope.

Figure 7 demonstrates the on-line-matching of HMasume thed' andH? tables
have been constructed Bigure 5 whereF ={e, a}. HMA scans the inpul from left to
right. If T = ‘pink’, after checkingl with the on-cachéi* for four times and finding that
all characters of do not belong td-, HMA knows thatT contains no pattern and no
external memory access is requiredrl ¥ ‘black’, HMA stays in the first-tier matching
until ‘a’ is scanned, and finds that taF (H'(a)fid is valid) and ‘a’ is a single-symbol
pattern H(a)pid = 1). Then, ‘a’ and its following ‘c’ are used detindex keys (pivot
pair), and the second-tier matching loads an efrtosn H*(a, c) for further checks.
BecauseH*(a, c)pid (= 6) is not NULL, HMA compares the substring($)Towith the
pattern(s) inP, ., whereH?*(a, c)data= ‘black’, and a match is got. Ad%(a, c)nextis

NULL, the on-line matching process returns to th&-tier matching as the previous steps.

38

Chapter 3

Since ‘c’ and ‘kTJF, the scanning process of this input is finisheat. the input ‘black’,

only one external memory access is required. Tadtref this casés Py={a, black}.

Procedure AddPattern(p;, |F|, H*, H?)
Input: A new patterrp, with pattern IDi, the currentf|, H* andH?
Output: The newH* andH?
Initialize: flag « FALSE;
If |pi|==1 && H*(pi[1]).pid# NULL then

HY(p[1]). pid « i;
Else

For eachpi[j] && j<|p| do

If HY(pi[j]).fid # NULL then
flag — TRUE;
If Hp(iNI[pij+1]].pid==NULL then
Save the information g to the entryH*(pi[j], pi[j+1]); /* Assume no fragmentation here*

10 Return;
11 If flag==TRUE then /* Nopty cluster*/
12 Choose a random numberl< r<|p;|, such thap,[r]OF;
13 Add the patterm; to the clustePyy pir+1: Find the last entry of the cluster, ddi(a’, b'), and sav|

the information op; to an empty entry dfi, sayH*@”, b");
14 H¥@, b').next—H*@’, b");
15 Else
16 Choose a random numberl < r<|p|;:setH*(p[r]).fid—|F|++ and save the information pfto the

entryH*(pi[r], plr+11);
17 Return;

O©CoO~NOOULD WNPE

Procedure DelPattern(p, H, H?)
Input: A patternp to delete, the curreht*:andH?
Output: The newH* andH?

1 Initialize: Set temporary registemew—NULL andthise~NULL;

2 If [p|==1 && H[p[1]].pid# NULL then

3 HYp[1]].pide—NULL;

4 Else

5 For eachp[j] do

6 If (ke—H'[p[j]].fid) # NULL && j < |p| then

7 Load data from the external RAM at enthjs—H?(p[j], p[j+ 1]) to a local buffeB, andf—p[j];

8 While (k— B.pid) # NULL do

9 Compare the substring startpftj-B.offse}] with the patterrB.data of lengthB.size

10 If the comparison is matchélden /* Assume no fragmentation here*/

11 If prev#z NULL then prev.next—B.next

12 Clear the data of the entrythis andGoto Line 16;

13 Else If (prew—B.nex) # NULL then

14 Load data from the external RAM at enByextto a local buffeiB;

15 Else Break;

16 If for all aOA thatH%(f, a) = NULL then H(f).fid—NULL; /* Check the frequent commarode
after deletg*/

17 Return;

Figure 8. The incremental update of HMA.

39

Chapter 3

34 Thelncremental Update

A packet inspection engine, just like most netwa§uipment, must work
persistently to avoid missing any packet. Whenrspéction engine suspends, even for
only 30 seconds, millions of packets will cut thgbuit without any inspection.
Nevertheless, the pattern database of network swrip has to be updated frequently,
because contents over networks change with easingaday. For example, when a new
attacking scenario is discovered, the new pattennst be added to the databases of IDSs
as soon as possible. However, the BM-like and A€ebdalgorithms have to suspend for
a long time for pattern update. For the BM-basgdrithms, they calculate the valid shift
by correlating one pattern with others fhbased on bad character and good suffix
heuristics. For the AC-based algorithms, they btiid fail tables by correlating the
substrings of all patterns A Accordingly, BM-based and AC-based algorithms have
modify many entries of the lookup tables even wbely a pattern is added or deleted.
The number of the modified entries relates to thegih of the updated patterns.
Contrarily, the proposed HMA has the advantagenofamental update, with which at
most three entries of the tables have to be updatazhe changed pattern.

The incremental pattern update mechanism is shaowfRigure 8. The pattern
insertion is similar to the table construction d1A. To add a new patterp into the
pattern seP, HMA has to modify at most one fiel#t®.next H'.pid, or H.fid; and add
one entryThe newp; is scanned from left to right. (1) If there istecactempi[j] such that

pli] OF (i.e., HY(p[j]).fid is valid), and clusterP, . .., is empty (i.e.,H*(plj],

pi[j+1]).pid is NULL), thenp; is added to the entiy*(pi[j], pi[j+1]). If there is no empty

cluster forp;, then a random numbers chosen, such thg{r] JF. Thereuponp; is added

40

Chapter 3

to the clusterP, and saved in a free entrytdf, sayH?(@", b"). Then thenextfield

prlplr]

of the last pattern oP sayH?(@', b').next is modified from NULL toH?*(a", b").

UEEIE
(2) If there is no character of belongs td~, then a random character @mf saypi[r], is
chosen as a new frequent common-code and adddel #& new ID of frequent
common-code is assigned and saveH'igpi[r]).fid. If pi is a single-symbol pattern, i.e.,
Ii| = 1, then modify4*(pi[r]).pid to i; otherwisep; is saved in the entiy?(pi[r], pi[r+1]).
The size of the cluster is balanced by randomlywshw a cluster if the information of all
cluster size (the matrix N) is not kept in the eyst If the matrix N is kept in the system,
the pattern insertion procedure is the same asabie construction.

To delete a pattem, only one entry has to be cleared and at mostofi#é?.next
H™.fid, andH™.pid have to be modified. The first process is to find the patterp; in H?
by using a matching process similar-to-the on-hmetching. If fi| = 1, then change

H(pi[j]).pid to NULL. If |pi|# 1 andp;is‘in the clusterP

o a o » then (1) whem; is not

the only pattern in the clustd? link pi's previous entry and its next oneliti

pLilpl il
before clearing the entry @ (H?.nextis modified); (2) wherp; is the only one in the

cluster Pp.[n, ol

a7 » check whether any pattern exists in the suliye} . after clearing
the entry ofp;. If no, it means the frequent common-cgg¢ = f is not used any more.
Then, the codécan be removed froffs and the fielcdH'(f).fid is set to NULL.

Obviously, the number of modified fields due to HMAattern updates are constant

(at most three), and thus the updating time isrdetestic and negligible. Therefore,

HMA provides more reliable inspection engines falt#time network equipment.

41

Chapter 3

3.5 AnExample: Network Intrusion Detection System

HMA can be used in many novel network applicatitmenspect packets, such as
NIDSs, anti-virus appliances, and layer-7 switchdsich search for a set of patterns in
packets. The only difference between these appitaitis the pattern format. Most
patterns of virus codes are binary codes; whiletrpasterns of layer-7 switches are
formed by English letters. The patterns in NIDSs\aritten in mixed plain text and hex
formatted bytecodes. In this section, we illustateapplication of HMA with NIDSs.

Two complementary techniques are used to cope thighintrusion detection
problem: anomaly detection and misuse detectioh [@Bomaly detection techniques
attempt to model normal behavior; while misuse ceia techniques attempt to model
abnormal behavior. Anomaly-based IDSs-are depldged on machine learning, data
mining or statistical algorithms, which are 'morenstive to new attacks than
signature-based IDSs. However, anomaly-based I38ally trigger up to 99% false
positive alarms, and their complex normal modesaltein poor performance. Several
researchers have proposed new schemes to impmaadmaly detection [25], [32], [37].
Misuse detection is assumed to be more accurateffingent than anomaly detection,
and therefore signature-based IDSs are commonty/tosiay. Some effort has focused on
automatic signature generation to improve the rotass of the signatures [32]. An
example of signature-based NIDSs using HMA is showthis section.

As network processors have been widely used toloevevel network equipment
[33], a network processor platform is used to tHate the HMA-base NIDS. A network
processor development system usually consists wéraé on-chip multi-context

processing engines, each with a small on-chip camhe host CPU, external memory,

42

Chapter 3

— /
f\\?l‘:?:;fﬂ— Host CPU (Control Path) |-~ / r(
__Pattern Set e

.
' DRAM/SRAM
[

Engine
o =
Action
Engine Pass
Packet IIIIII . :IIIIII

——> Packet Path Drop
— — — ¥ Signal Path
B Copied Packet Path

Administrator

Figure 9. The architecture of a network-processmed NIDS.

built-in Ethernet MAC modules and queue moduleshsas weighted fair queues (WFQs)
[35]. A NIDS can be a sniffer for intrusion analgser can combine with an embedded
gueue module (as irFigure 9 to .intercept ‘malicious packets. To accelerate the
performance of the network equipment, the netwadc@ssor-based systems generally
divide the tasks into two paths:-tlentrol path and thedata path The host CPU
processes the non-real-time tasks in the cohtrthl, jrecluding the table construction, the
pattern set management, the log analyses, andsereinterface control. The on-chip
microengines handle the real-time tasks in the gath, including the packet parsing,
header matching, content matching, decision coatidlqueue management. The content
matching engine utilizes the proposed HMA, whichgsally the most resource-intensive
element; while the header matching engine usesrdwiaae-supported classification
module. TheH? table of HMA is stored in the external memory &ffds in the on-chip
cache of the content matching engines.

When a packet comes in, the packet input moduleemakme standard checks and

put it into a packet buffer. Because the intrusietection rules have both the header and

43

Chapter 3

payload patterns, one engine for header matchidgwo engines for content matching
are employed to accelerate the processes. Thermmatiehing engine checks the packet
headers; and in the meantime the content matcmgmes search for the patterns in the
packet payloads. The matching results both forwaré decision procedure, which
decides to drop the packet, to generate alerts/lmg® send the packet to an assigned
WFQ. A management procedure in the host CPU amalyeelogs and feedbacks to the
decision procedure that controls the bandwidttefsuspicious flows by using the WFQs.
Thereby, the HMA-based NIDS can efficaciously avatacks. Furthermore, the
HMA-based NIDS can react fast to the new attacks loiv false negative alarms when it

is cooperating with proactive bandwidth managenaedtanalysis feedbacks.

3.6 Performance Analyses

The performance analyses of HMA are presented ig gbction. Thenput and
patternsin worst, best and average formatted type are tesadalyze the worst, best, and

average performance of HMA respectively.

3.6.1 Average Case

Since the pattern database is usually predefinddtatic, assume the given patterns
are uniformly distributed. First of all, the clusteganization is modeled. Assume that the

occurrence probability of any alphabet in a patgrs an uniform distribution:

B

Pr{pl[j] =alal} = Al (3-1)

>

Based on the table construction procedure of HM#e probability that any
two-character substring, sagty, is a pivot pair, and also exits in a patt@rs denoted

Cpivots Where

44

Chapter 3

|F |

Convots= Pr{*ab O p; andalF, bA | ‘ald X } = (5—1)“\—, (3-2)

and B is the average pattern size. In other wo@s.qs is the probability that a cluster
Pap IS one of the available clusters for a patg@riThereby, the average number of pivot
pairs in a patterrdenoted\,vots Can be derived by the following equation:

p-1

N|IF
Npivots = kglk(l ||<| Dcpmk(l— Covo T T, (3-3)

where [mJ =__m

N et According to CBS, when a cluster, g2y, is one of the available
ni(m-1n:

clusters ofy;, and also is the smallest one, tipeis grouped td°, ;.. Since the patterns are

uniformly distributed and CBS classifies the patteras balance as possible, the

probability that an available cluster is-the minimone is Mo Consequently, the

probability that a pattern is grouped to a:desigmauster is

C.
pivots : 3_4
T (3-4)

Cp - cluster=
pivots

As k patterns are grouped into the same cluster, thstesl size ik. Thus, the

probability that the size of a clusterkior a given pattern sétis

[P i
Ck :(k Cpaclu'sterk (1_ Cm cluste)|P| k' (3_5)

Let Ncuster represent the average cluster size, which carebeed by the following

equation:
1P|
Neluster = kZ_ll ka . (3-6)

Note that the structures bf* andH? depend on the predefin&j and additionally

are controllable and balanced by HMA. Thereforenegally the tables will not be

45

Chapter 3

constructed badly, whether the input string isltest, average or worst-case string for the
algorithm. In factNgusiercan be reduced by increasing the sizelgfusingB characters

for the second pivot instead of one character. Thghs-sis smaller thatCpivors Which is

Cpivots-B = (E - 1) (3-7)

INFE

ReducingNguster Dy Using the smalleZ,iois.sCan improve the matching performance,
but however will increase the required memory spdtes is a trade-off between the
matching performance and the memory cost.

In the average case, assume that an input strirgdrawn randomly from the
alphabet seh. As defined previouslyH® is a direct indexing table for each character. The
fid field of the entryH'(a) is assigned. a valid ID, sdy for all a= f,CF. Thus, the
probability that an entry dfi* has a validid is:

1E]

Pr{H".fid 2NULL} = (3-8)

where | is the number of frequent common-codes. In thdchiag process, if
H.fid# NULL, the next step is to check tipéd field of the indexedH? in the external
memory, and proceed to the second-tier matchingoslingly, the probability that the

on-line matching goes to the second-tier matchimgainy input charactef[t] A is

defined asC..’5 , and

AVG ll\‘ll F |F|
ier A I (3-9)
G ;| L IAL A

The first step of the second-tier matching is tolieghe entry and check tpé field,
and thus one external memory access is requiré¢deré is more than one pattern in the

cluster, additional external memory access willneeded to fetch those patterns. We

46

Chapter 3

assume every pattern can be loaded into micropsocgsvithin one external memory
access. LetNs" represent the average number of external memorgsaes per one

input character, and it is

IP| |P| _
NI'?L\,:\/I\(/I3 = th(\e\r/ZG X [14_ kz=:2 (k - 1)(k j Cpa clusterk (1_ Cm clus.terjPI kj

F
= |_:(Ncluster + (1_ C p- cluster)lpl)) (3_10)

If the indexedH*(T[t], T[t+1]).pid is valid, it meansT may have a pattern

pPiLIPg mer)- ThenT has to be compared with the patterns in the clistgfy1;, Where

the average number of patternsPify Ti+1) iS Newster LEt Nfvo-' be the average number

of patterns fetching from an external-memory forgimen average-case input

NAS-Tcan be derived from the previous equations:

N = (T4 DX GEZ > Ny - (3-11)

ier2
Thereby, the number of XOR instructions used imgtcomparisons betwednand

the patterngor a given average-case inpiytdenotedN ys-", can be obtained by

Nyor~ = Néﬁ-{ﬂ . (3-12)

where w is the computer wordsize. In the average caseviHet NZY> represent the

average number of XOR comparisons betw&amd the patterns in the cluster for one

input character, which can be derived by

NAVG—T |F | B
NOYS = —xor o 11 EIN . 3-13
XOR |T | |/\ ||70) cluster ()

47

Chapter 3

3.6.2 Worst Case

If a given stringT is formed badly that has to do the exact stringpuarisons the
most times, the performance of HMA for the bad-fed is the worst case. Assume the
largest cluster size ik.. When every character daf (T[t]) belongs toF, and every
corresponding indexed cluster is the larg@i 1| = Lo), this is the worst scenario of
HMA. As every charactef[t]LF, the probability to fetch the tabk? for the worst case

is one. Thus, the number of external memory acegssecharacter in the worst case is

_(T]=1)x

Assume the largest pattern sizePims L,. When every input character points to the
largest cluster, in which every pattern has theésh size, the worst case requires the
largest number of comparisons. Henece, the numbfQR character comparisons for

one input character is

L
N LH’W (3-15)

Obviously, the worst-case performance depends.oho derivel., assume there is
a largest cluster, sd& y. SincePy y is the largest cluster, assume that the clusterisi
always larger than one, and initially the prob#piihat its cluster size increases from 0 to

lis one. Thatis
Pr{P,,|=0 -1} =1. (3-16)

In the worst case, the patterns are assumed fdoaig and have a bias on the pivot

pair (, y). SincePy y is the largest cluster, based on CBS, a giveregttwill not be

48

Chapter 3

clustered intd®y, y, unless all available pivot pairs phre not in the sgixA exceptX, y).

Therefore, the probability thak,],| increases fromtoi+1 is

(IR)
=1 - i+l} = |/\|2 , (3-17)

Pr{

P,

where p| is the given pattern size. As in the worst-casnario, every pattern has the

longest sizé, the equation is rewritten

(A R)
=i L+l = ’ , (3-18)

Pr{
A

P,

Thereby, the probability that the cluster sizé>gf is L. is derived

AP e+
o

Pr
{ %

P.y

(3-19)

When P| is 1200 withH| = 77, \|: =256 and_,= 128, the probability thdt. = 4 is
about %107°, which is very small. When replaciig with the average pattern size of
Snort (p| = 11), then the probability that = 4 is about 3.610°, and is still very small.

Thus N35, and NjStare very small. Consequently, we can say thak|P|, and the

worst-case performance of HMA is moderate and dabép

3.6.3 Best Case

If a given stringT is a good string, where every charadigtF for all t, 1< t<[T|,
this good string will gain the best-case perfornreant HMA. In this case, no external
memory access and no pattern comparison are nege§dse good string can be
processed quickly, and only one embedded memofuf¢checkingH! to see whether

T[t]OF or not) is needed per input character.

49

Chapter 3

Table 3. The pattern size distribution of Snort.
Pattern Lengtlr1 <4 <8 <12 |<16 ([>16
Ratio 0.028 | 0.245| 0.482 0.653 0.813 0.187

3.7 Results

This section shows the simulation results of HMApmpared with the
state-of-the-art multi-pattern matching algorithmdH [21], WM-PH [27], and bitmap
compressed AC (AC-C) [34], which have been usetthénIDSs. BMH and AC-C have
been deployed in a famous open-source NIDS — Sadt \WM-PH has been proposed
for a network-processor-based NIDS. In the simoilsj a network processor
development system is used as a simulation plat{@3h HMA, BMH, WM-PH and
AC-C are emulated by assembly-like-microprogranspeetively, and the number of
instructions and that of memory accesses are @il One microprocessor is used in
the simulations to simplify the evaluation, thoumhetwork processor may have several
microengines.

Snort is the most famous open-source NIDS todaytl@gatterns (rules) used in
Snort are provided and tested by the Sourcefirsm&fability Research Team (VRT),
which is the largest group dedicated to advancastwork security industry [1]. The free
and real pattern set released by VRT is used isithelations (the statistics of the pattern
set are listed in Table 3), although the pattetrcae be any self-defined or commercial
pattern set. The number distinct patterns used in the simulations is 200-1200, gher
each pattern is about 11.2 bytes on average. $iecepatterns of Snort are written in
mixed plain text and hex formatted bytecodes, tlphabet size {|) is 256 in the

simulations.

50

Chapter 3

Table 4. The measurements.

Notation M eaning

[\ The average number of RISC instructions per inpatacter (including comparisons and
calculations)

N The average number of local memory accesses (imgudading data from cache to registers)

Ne The average number of external memory accessésafing the packet, querying the entries of
tables in the external memory, and fetching théepad

W The time of one instruction or one local memoryistsy access

We The time of one external memory access

W, The average computation cycleg; =N, x w,

W, The average memory latencyj,, = Nex we + N x w,

W Total average matching time¥ =y, +y,,

371 M easur ements

Table 4 shows the measurements used in the siongatNotably, we assume that
the skip table of BMH was small enough to be loaddd the cache memory in the
simulations, and thus only one external memory sxceas counted for each pattern
during the matching process of BMH. We also ass#@eC needed one external
memory access per input code, although it.genemadjyires two memory references (one

for reading the next pointer and one for travers$ailgire pointers or reading the patterns).

3.7.2 Input Traffic Models
3.7.2.1 Models I and I

In the Models | and Il, the malicious packets aeaayated by randomly choosing
patterns fronP and spreading over the packet payloads. Attaak lbais defined as the
expected number of malicious patterns in one paéla@texample, ifA is 0.5, it means
every two packets have one harmful pattern on geera

The characters in a payload besides the patteensadled background characters.
Two forms of background characters are respectivedyl in the Model | and Model Il. In

the Model I, the payloads edndom backgroundre formed by characters randomly

51

Chapter 3

Table 5. The traffic models.

Packet For mat

Packet Length | Number of Packets

Background | Number of Patterns
Model | Random A 640 bytes 10 million
Model Il | Pure A 640 bytes 10 million
Model Ill | All permutations 4 bytes 2

Model VI | Real Traces from Defcon

drawn fromA to imitate the normal packet contents. Howeveg,rimdom background
may unconsciously contain some patternd?offTo evaluate the impact of on the
performance of algorithmspure backgroundis used in the Model Il. The pure

background is formed by the characters that ngueeared irP.

3.7.2.2 Model IlI

Since different multi-pattern matching-algorithmevé different string forms that
cause their best-case or worst-case performarigegrahutations of four-character input
strings (22 strings) are used in the Model- !l to examinegkizeme performance of every
algorithm. We choose the length of four.charadbexsause 24.5% of Snort’s patterns are
less than or equal to four characters {Eatgle 3), and the test pool o¥anput strings is
large enough for simulations. Because it is vefffiadit to obtain the best-case and
worst-case traces for every algorithm, it is gietsible by using this model to evaluate

the extreme cases of every algorithm.

3.7.2.3 Model VI

To evaluate the performance of algorithms in aerisé attack, a real trace from the
Capture-the-Flag contest held at Defcon9 was ad@s¢he input traffic in the Model VI.
The Defcon Capture-the-Flag contest is the largesirity hacking game. In this contest,

competitors try to break into the servers of oth&hsle protecting their own servers,

52

Chapter 3

Table 6. The simulation parameters.

Items Value

Time for one RISC instructions or one local memacgessw;) 1 cycle

Latency for each external memory access (100 or 250 cycles
Number of patterns iR (|P|) 200, 400, ..,21200
Range of pattern length 1-122 bytes

Table 7. The extra memory requirements.

HMA WM -PH BMH AC-C

Cache memory spach() O(A) o(1) O\ 0(1)
External memory spac/g)* O(F|x [A[+P)) O(AP+P) O(PIx |Al+P) OEHP)

“IF| < \[<< P| <S

where each server hides several security holesTh#] summary of the traffic models are

shown in the Table 5 and the simulation parameterdisted in Table 6.

3.7.3 Memory Requirements

The lookup information and patterns are generadlyed in the memory using a
tabular structure for fast lookup. and:matching,réfere, the memory requirements are
shown in terms of the number of entries. Sincéthef HMA is a direct lookup table, the
cache memory spac#l() of HMA is |A| entries. Based on the proposed schemes, FCS
and CBS, the number of entries i is the total number of possible clusters. As all
possible pivot pairs are in the spade F, the maximum size dfi® is F|x |A| entries
along with a shared space of no larger tRaentries for collisions. Thereby, the external
memory spaceMg) of HMA is O(F|x |A|+P|). The lookugable of WM-PH is based on a
direct prefix hash table with prefix length &f, whereD = 3 in the simulations.
Accordingly,Mg of WM-PH is p|°+|P| entries for the index table and pattern conténts.
the BMH, every pattern has its own skip table /&f éntries, so thavle of BMH is

O(P|x IA|*+P]). Since each skip table of BMH is small enouglhdédoaded to the local

53

Chapter 3

Table 8. The number of frequent common-codes vealsipattern set size.

P 100 | 200 | 300 | 400 | 500 | 600| 700| 800 90(1000 1100 012p

IF| 11 28 32 37 45 49 52 58 66 74 75 77

10000

---4-- HMA 200
B —— N N WM-PH 200
——————— R T S T e REELEE ---&-- BMH 200
"""" AC-C 200
—+— HMA 1200
—=— WH-FH 1200
—— BMH 1200
—e— AC-C 1200

meg 5 a4

Crycles

0 0.5 1 15 2 25 3 35 4
Attack Load

(a)\NE =250

10000

we e | = Wh-PH 200

Cyeles
=
=4
]
=1
=4

—=— Wh-PH 1200
—— BMH 1200
—e— AC-C 1200

0 05 1 15 2 2.5 3 35 4
Attack Load

(b)-wg =100
Figure 10. The average matching time)(versus the attack loadi | for HMA, WM-PH,
BMH and AC-C with different pattern set sizeR|£200 and 1200), using Model Il, and (&)
= 250, (b)wg = 100.

memory, we allocate a cache memory space for BMHha simulations for fair
comparisons. WM-PH and AC-C also need cache mefooftpading one skip value or
one state during matching process. The requiredaneosed in HMA, WM-PH, BMH
and AC-C is summarized in Table 7 including lookalples and pattern contents.
Table 8 lists the relations between the pattersigetP| and the number of frequent
common-codes-| in the HMA. It shows that the growing rate Bf s much slower than

that of P|. In the simulations witiP] = 1200 for example, the maximuvi: of HMA is

54

Chapter 3

20192 entries (326.75KB external memory when the sf an entry is 16 bytes, including
pattern contents and formatted information); WM-Rekeds more than 16M entries
(16MB for shift values, excluding pattern conten&yIH needs more than 300K entries
(300KB for shift values, excluding pattern contgnend AC-C requires 10731 states
(461KB when the size of a node is 44 bytes, exoydP| entries for pattern IDs).

Consequently, the required memory space of HMAery emall.

374 Results and Discussions

Figure 10 shows the attack loatl on the average matching timne using Model
Il with different attack loadsP| = 200 andR| = 1200 respectively. Since the ratio of
instruction costW;) and external memory cosivd) are varied in different deployed
systems, Figure 10 (a) and (b) also show the pedoce of each algorithm with different
weightswg = 100 andweg = 250 respectively.. Simulation results reveal tHMA
outperforms WM-PH, AC-C and BMH even whd?| pndd increase. The curves of
HMA and WM-PH are slightly increased with rising because HMA and WM-PH need
more external memory accesses and string comparisben more malicious patterns
exist in a packet. With the larger pattern set,rtagching time increases a little faster in
both HMA and WM-PH. This is because the probabithgt the input strings hit the
lookup tablesKl* andH? for HMA and the prefix table for WM-PH) increaséfMA has
higher growth rate than WM-PH because the tabkesiHHMA is much smaller than that
of WM-PH. WM-PH gains performance by having a ladiyect index table. The curves
of BMH seem flat with rising, since the tiny increment of BMH is caudad the
increasing number of comparisons with relatively is when compared tae. Because

AC-C needs one external memory access in addiime intensivgopsunto count the

55

Chapter 3

10000

1000 ¢

Cycles

2no 400 400 ano 1000 1200

MNurrber of Patterns
() we = 250
10000

1000 //———1 om-- WMPH 2=0
|| e BME 7=0

o

Cycles

200 400 600 00 1ono 1200

Humber of Patterns

(b) We= 100

Figure 11. The average matching co$t)(versus. pattern set siz€|j| for HMA, WM-PH,
il;/(l)H and AC-C with different attack loads!{, using Model I, and (ajg = 250, (b)wg =
next state for every character, i is high. In the case ofz = 250 andR| = 200 (P| =
1200), the matching time of HMA is about 26.5-68.73-409.5) times less than that of
BMH, 4.2-10.6 (2.8-10.6) times less than that of WM, and 15.5-34.8 (9.1-34.7)
times less than that of AC-C under different attexads. In Figure 10, whed is low,
HMA significantly outperforms WM-PH, BMH, and AC-@onsequently, HMA is very
suitable for IDSs in a general network environméeiause most packets are innocent
(A=0).

The simulation results shown in Figure 11— FiguBeuse Model | as input traffic.

Figure 11 compare$®¥ of HMA, WM-PH, AC-C and BMH with different attadiwads

56

100 100
90 90
80 | 80
70 7
60
50
40

b AR
47 g e SN
> © & RIS QO A o
F @%9 ,\\~\ «\"\:b AT A A ut
i © > N P ~ S o % 8 f B Delay
Lo S Y YW 8)
a9 » o 4 @ Computing
- 30 b
20 20
10 10
0 .
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25 3 35 4

Cycles

30

3000

2500

2000

Cycles

1500

1000

500

Chapter 3

S S

5 NG 6
N

K NS [H Delay 5
@ Computing

Cycle:
S

S

Attack Load Attack Load
400
S 19) 1S5 SN 5> =
SE N N N v) > o Sh
& o o o o o o o o 350 |
A AX AX X AX X N AX AX
300 [27564 27001 28234 28415 28593 287.67 289.46 291.26 2929
= Del 250
elay
£ ® Delay
i S 200
8 Computing < & Computing
150 |
100
50
0
0 0.5 1 15 2 2.5 3 3.5 4
0 0.5 1 1.5 2 25 3 3.5 4 Attack Load
Attack Load

Figure 12. ¢, andy,, versus attackloadi(), whereP|=1200 andve = 100, using Model I. The
labeled value above each barys. (a) HMA, (b) WM-PH, (c) BMH and (d) AC-C.

A= 0 and A = 4 respectively. It also shows the impactRjfdn W . Simulation results
reveal that HMA outperforms WM-PH, BMH and AC-C evevhen IP| andA are
increasing. For bot = 0 and A = 4, the matching costs of HMA and WM-PH both rise
with |P|. This is because whil@||rises, the number of patternsRnthat have similar
substrings also rises. This leads to the increasimgber of marked entries that request
for comparisons in HMA and WM-PH. Hence, HMA and \ARH require more string
comparisons and memory accesses with increaB|nglMA has slightly higher growth
rate than WM-PH, because the table size of HAdndH?) is about 830 times smaller

than that of WM-PH. The increasing| [makes the matching time of BMH rise steeply,

57

Chapter 3

because the BMH is originally a single-pattern rhatg algorithm that simply executes
iteratively for every pattern. In the casengf= 250 andA = 0 (A = 4), the matching time

of HMA is 14.5-35.8 (11.7-29.8) times less than ti88MH, 2—3.3 (1.9-2.8) times less
than that of WM-PH, and 11.9-22.2 (9.5-24.3) tiness than that of AC-C under
different pattern set sizes. Figure 11 reveals HisltA is quite stable due to slight
increment of its¥ while P| increases.

The processing timé¥ includes the computation timey() and memory access
delay @,,). Figure 12 (a)—(d) illustrate the proportion ¢f to ¥ and ¢,, to W
respectively for all approaches with| F 1200 and variouk. In these figures, the upper
and lower part of the bar are represented/gs and ¢, respectively. The results show
that HMA's ¢, is close to WM-PH’s; but:HMA'sy,, is much less than others.

Therefore, the hierarchical matching strategy ofAdid highly effective in reducing the
memory latency, only tiny overhead of the'compotatime is needed. The proportion of
¢y, to W of BMH seems smaller than others. The reasoraistti®e whole skip table of

a pattern is idealistically assumed to be loaddtiimione external memory access, and
kept in the cache during the matching process. lBecAC-C compresses the size of each
node, it requires more time to calculate the néadespointer. Thereby, AC-C does not

have the smallesg, . Simulation results show that thg does not significantly rise

with A in any of the experiments, because each algofitasralready tried to reduce the

computation load¢,). However, ¢,, dominates the overall matching cost. This reveals

that the number of external memory accesses ibdtikeneck of almost all algorithms.

The result also reflects our opinion mentioned jnesly that the essential issue in

58

Chapter 3

1000

=
=

------ B L SEEREEE RECERERF (RRREELY SECEEEE" EERREE oo HMA 200
-oom - WC-PH 200
---ar-- BMH 200
coewees 4C-C 200
—— Hh{A 1200
—=— WNI-FPH 1200
—— BNH 1200
—=— AC-C 1200

=

Number of Word Comparisor

] 0.3 1 1.5 2 25 3 35 4

Attack Load

(a) Comparison

oo

L6 | “ea - HMA 200
14 | ~--m- WH-PH 200
vz b ~--a-- BMH 200
. ceemes K0 200

—— HIA 1200
—=— Whi-PH 1200
—— BMH 1200
—e— AC-C 1200

Mumber of External Memory Acces

] 0.5 1 15 2 2.5 3 35 4
Attack Load

(b)-Memory access
Figure 13. The average number of XOR.comparisomsthat of external memory access
versus the attack loadi () for HMA, - WM-PH‘and-BMH with different pattern ssizes @|),
using Model I: (a) Comparison, (b) Memory access.

designing a high-speed detection engine is to edbe number of required external
memory accesses.
Since different systems have different implemeatativerheads, Figure 13 extract

two basic measurements from overall costs to coentfa algorithms themselves. The

results in Figure 13 (a) plot the average word canspns (N;5s) versus A for every

approach, withA| = 200 and 1200 respectively. Figure 13 (a) shinas N; 5 of HMA
grows moderately withdA and P|, and is more efficient than others, especiallgmwil

is low. Figure 13 (b) shows the average numberxtéraal memory accesNG,,.). It

59

Chapter 3

Table 9. Analysis and simulation results of HMA M odel | and A = 0.

Neaw
|P| Analysis Simulation Analysis Simulation
200 0.109417 0.109965 0.0122 0.00282
400 0.144658 0.146164 0.0244 0.005762
600 0.191621 0.193972 0.0366 0.008785
800 0.226885 0.229967 0.0488 0.011705
1000 0.289458 0.293 0.0610 0.014587
1200 0.301327 0.305335 0.0732 0.017624
100000 — — —
10000 |
8 1000 |] @ HMA
9 g O WM-PH
£ 100} o BMH
F g @AC-C
10 g

Worst Best Average

Figure 14. The pure costs of the matching algomstimihe worst-case and best-case situations
using Model 1lI .

demonstrates that HMA effectively reduces the nurobesquired external memory
accessesN2Y® of HMA is only 0.109-0.369 wheR||= 200-1200 and! = 0—4. In other

words, HMA can successfully filter out about 90%%6payloads without any external

memory accesses and string comparisons. Talts%oth the analysis and simulation

results of N4vs and NAYe respectively, using Model | and = 0. The simulation and

analysis results oNZ./ are very close. The simulation results Nfys are a little

smaller than the analysis results. The reasonasttte comparison between the input

string and patterns will stop in the

60

Chapter 3

B Total Cyeles @Memory Access Time

10000 5
E 2566.1

1000 £

E 2316
] 1023
- 512

Time (Cycled
g

=]

HMA Wh-PH ACC BLIH

(a) Processing Time

| # 200 patterns W 1200 patterns |

100 5

|

5 +

™

. 10

é .

= u

|
1 i
HIA W-FH AC-C BIMH

(b) Normalized Costs

Figure 15. The processing time and the norrmalcaeds using Model VI witlwg = 100: (a)
Y and ¢, wherelP| = 1200 (b) The matching costs normalized to HVi#ere P| = 200 and

1200.
simulations if there is one unmatched word; whikeagsume that the whole string has to
be compared in the analysis.

Figure 14 plots the best-case, the worst-caselandverage performance of HMA,
WM-PH, BMH and AC-C, using Model Il withvg = 100. The matching time shown in
Figure 14 excludes the cost for loading packetsmfmoput modules into the processor,
because every algorithm has the same cost. Réwdlldifferent algorithms may have

different extreme scenarios. This simulation usesl® Ill and records the extreme and

61

Chapter 3

average results for each algorithm respectivelyuie 14 shows that HMA outperforms
WM-PH and BMH in all cases. In the best case, HMAuires only seven instruction
cycles to process an input character. In the wease, the performance of HMA s still
better than others. Therefore, HMA significantlypiraves the best-case and average-case
performance and has moderately worst-case perfarenan the multi-pattern matching,
enabling practical implementations.

The simulation results using a real trace (Modglafe shown in Figure 15, where

we = 100. Figure 15 (a) draws the overall cost)(and the memory access timg,()

respectively, whereP| =1200. To compare the performance of the sthatbesart
algorithms, the matching tim& of WM-PH, AC-C and BMH are normalized to HMA
and shown in Figure 15 (b). Although. the DefcorcérgModel VI) contains a lot of
malicious packets, Figure 15 shows that HMA perfomell and much better than others.
It also demonstrates that the memory-access timdéMA is much smaller than others
(note that figures are in logarithmic scale), whimbans HMA successfully reduces the
number of memory accesses. In other words, thel $mrsditier filter of HMA can still

work well even under heavy attacking loads.

62

Chapter 4

4 THE ENHANCED HIERARCHICAL MULTI-PATTERN

MATCHING ALGORITHM (EHMA)

Enhanced Hierarchical Multi-Pattern Matching Algithm (EHMA) contributes
modifications to HMA [38], and introduces the idefaa sampling windowand aSafety
Shift Strategyn addition. EHMA is a two-tier and cluster-wisatohing algorithm, and
can perform fast skippable payload scan. Basedermdtcurrence frequency gfams
this study discovers a small set of signatures flo@patternsthemselves to narrow the
searching domain. A Min-Max strategy is used inEMA. The hit rate of the first-tier
table in the EHMA is minimized, while-the spreadpatterns in the second-tier table is
maximized. Accordingly, EHAM significantly reduc#se number of memory accesses
and pattern comparisons. EHMA ‘can skip- unnecegsayload scans by applying the
proposedSafety Shift Strategwhich is based on faequency-based bad gram heuristic
The frequency-based bad gram heuristic is a meadifin of thebad grouped character
heuristicof Wu-Manber algorithm (WM) [36]. Therefore, EHMAas the advantages of

both HMA and WM.

41 TheBasic |ldea of EHM A

Based on a hierarchical and cluster-wise architectiHMA comprises two small
index tables, namely thiirst-tier table (H') and thesecond-tier tablgH?). These two
tables act as filters to avoid unnecessary extemmamory accesses and pattern
comparisons, and thereby pass the innocuous pagketkly in the on-line matching
process. The second-tiprocedure Tier-2 Matching activates only after the first-tier

63

Chapter 4

Has next pattern in

Skip and
Read the
Next
Gram

Figure 16. A simple state machine of tildMA matching process.

procedure Tier-1 Matching gets a match. Using?, which indicates a small subset of
patterns that are similar to the input packet, EHdMnpares only a feselectegpatterns

of P with thesuspectedubstrings of the packet, rather than comparihgadterns with
all substrings of the packet. Furthermorefrequency-based bad gram heurist
proposed in the EHMA to determine the safshyfts on the input strings during the
on-line matching process. In other words,.someathars of the input packets can be
safely skipped without any process.

Figure 16 displays the simple state machine ofBERMA, which illustrates the
hierarchical and skippable matching flows. Extemalmory accesses are needed only in
the Tier-2 matching state. Consequently, EHMA digantly enhances the matching
performance, and effectively reduces the numbegxdérnal memory accesses, string
comparisons and character scans, by utilizing twallsindex tables.

This study proposesgeneralfrequent-common gram searchiafgorithm GFGS
and acluster balancingstrategy(CB9 to lower the size of the tablé$' andH% The

following subsections describe the GFGS, CBS aedSafety Shift Strategy in detail.

64

Chapter 4

The hierarchical on-line matching using these maek tables, namely Tier-1 and Tier-2

Matching, are then shown.

42 TheGFGSAIgorithm

In the high-layer intrusion detection, patterns nagpearanywherein the packet
payload, making the attacking packets difficultéoognize. GFGS assumes that a small
set ofsignaturescan be found from the patterns themselves, theeauhbpicious substrings
of T may be easier to distinguish from the innocentspand the pattern matching is

therefore faster. A set sfgnificant gramss defined as representatives of a patterPset
given by 0 0 A% | where the size of a gramBs characters. The sdtl is much smaller

than A™ . Only when at least a significant gram occurhimpayload, a pattern may exist.
That is, when at least ori&-gram of p; belonging to U occurs in the payload, the
patternp; 0P may be found if. Many innocenB;-grams ofT, that do not belong tdJ,
can be filtered in the Tier-1 Matching when scagnihe packet payload. Obviously,
smaller [leads to fewer pattern comparisons, and thusrfgsttiern matching. The
GFGS is proposed to find the smalldst from P.

Define Py as a subset d?, thatPy= {p; | p has the grang, OpOP}, whereg is
called thecommon granof those patterns in the sB§. Notably, if a common gram
appears in the distinct patterns more frequentiy thther grams, and it is selected as one
of the significant grams, then a smaller is found. Based on this inference, the GFGS
algorithm is designed to find theequent-common gram sé&t, such thatF is the
minimum set of significant grante represent a pattern $&tin the GFGS, the common

grams are searched only from gampling windowwhich is defined as the |aét

65

Chapter 4

Sampling Window
(M

By Ba,

+— | 'he first s characters of a pattern——

Figure 17. The sampling window.

GFGS Algorithm;
Input: Given a set of pattery the parametersV, B,, B;, andm.
Output: A set of frequent-common grarfs
1 Initialize: F—0O, V andR are set to zero;
2 For each patterp; of P, O<i<|P|do /*build a matrixR */
3 Transfer the firsW- B, bytes of the sampling window of the pattgrrinto B;-grams, and set t
element of a vectov: v, 1 if B;-gram =j; otherwisev; < 0;
4 ReadV. For eachy, = 1, set the elements of matRr < ry +Vi, 0 k, 0<k<|A [P
5 While(r; #0, O0<i<|A[F") do
6 Find a frequent-common gragy, whererys = max{r; |01, O<i<|A [P}
7 Addthisgramintd- :F«— FO{ g:};
8 For O<i<|A[* do I* refresh the diagonal @& */
9 li < i — Iy, if i >, OtherWiserii —0;
10 Return;

Figure 18. The general frequent-common gram seagaigorithm (GFGS).

characters of the firsh characters of a-pattern. The rangems M <m<|p|, whereM
denotes the minimum pattern length of all patteams| |p;| is the current pattern length.
Figure 17 illustrates the sampling window, wh&keis the size of a frequent-common
gram,B;<W, andB; is the size of the second pivot in tHé table, which is explained
later.

The GFGS algorithm is presented in Figure 18. Antaip vectorV = (vi) and a

matrix R = (r;) are temporary memory, where<0, j< |A|” . Vector V records the

occurrence of eadB;-gram in a patterriR is used for recording frequency, wheygi #j,
indicates the number of concurrent occurrencesvofB;-gramsg; andg; in P; andr;

records the frequency of tiBe-gramg; occurring in distinct patterns. For instanges 2

66

Chapter 4

means there are two patterns, each containingdpatidg;. In the GFGS algorithm, each
pattern is first transferred into a setRfgrams, and the occurrence of ed@skgram is
recorded in the bit-may, whereB; is pre-defined and depends on the available om-chi
memory space. MatriRk is then derived frori (as shown in line 4 of Figure 18). Second,
the largest occurrence frequengyis found, and its corresponding grais selected as
one ofF. The elements dR relating tog: are subtracted accordingly to renBWGFGS is
repeated until all elements on the diagondRdfecome zero. GFGS uses only a matrix

and a vector to discovérfrom P.

4.3 Cluster Balancing Strategy (CBYS)

Most packets are innocent in general situationenkavharmful packet may contain
only few patterns. Therefore, comparing all of ffagterns in the large with each input
packet is time consuming. If the“patternsPrcan be distributed into different small
clustersbased on their similarity, then‘onlythe pattereach cluster that is most similar
to the suspected packet needs to be compared,irttprsving the efficiency of the
matching process. This subsection presents stestégiattain this goal. First, the method
of clustering a seP based on the similarity of patterns is describEtgen a cluster
balancing strategy (CBS) is adopted to balancelimter size. Asecond-tier tabl¢H?)
for on-line matching can be constructed based ertlinsters.

The clustering pivotsare the keys used to distribute patterns, whesk elustering
pivot is a common gram of patterns defined predpu3wo common grams are
employed as a pair of clustering pivots, callgdvat pair, say &, b), where the first pivot
is a frequent-common gram, and the second pivothés substring following the

frequent-common gram. L&, represent a cluster of selected patterns (a sudfset

67

Chapter 4

patterns) with the pivot pairm(b), which means thalP, , = {p | ‘ab' Op;, adF and

bo A® }, where‘ab is the combination of two stringsandb and is a substring @f; F is

the result of GFGS, ar} is the length of the second pivot. Notably, agratis assigned

to only one cluster in the clustering strategyh@ligh a pattern may have more than one
pivot pair. That is, the clusters have the follogvproperties: for any clusté, ,[1P, that
Ualla,bPap= P, and Naia b Pap=0 . Since a pattern may have several opportunities to
select a cluster, a better assignment can lowemidwamum cluster size, and thereby
improve the worst-case performance of EHMA.

The pattern grouping is based Bn To lower the worst matching time, CBS is

. B . .
adopted to balance the size of all clusters. In GBSF|x|A|™ matrixN = (n,, 1) is used

to record the current size of every clus®gi during the pattern grouping procedure. The
CBS is as follows.

(1) First, read one pattern atatime fr®and scan the pattern.

(2) According to GFGS, for any givem, there exists Bi;-gramgOF, whereB; is the
length of a frequent-common gram. To balance thstef size, CBS finds the smallest
Na, b given byn, y, among all available pivot paira, ()s ofp;, for allaOF and ab' Up..

(3) After groupingp; into the smallest clustd?y y, the correspondingy,y is also
incremented.

All patterns are distributed sequentially into thesignate clusters. Accordingly,
GFGS and CBS divide the lar§einto smaller subsets. Figure 19 illustrates thitepa

clustering architecture.

68

Chapter 4

Pattern Set
=]

GFGS
fi : . - Algorithm
/ i 2 x i/ —g,—
P J \‘ ‘ F=1f)
/ “\\ Ve N Uiy
/' Subset Py x"/ Subset P,:,\.\ l
/ / \ \

CBS
Algorithm

Y,
d
e

Figure 19. The pattern clustering architecture.

4.4 Safety Shift Strategy

This section presents a safety shift strategy tivelehe values of thshift fields of
H! andH? H! andH?can use the same strategy to derive their saféftg shspectively.
As mentioned previously, as long:as no frequentroom gram is matched in input
strings, then no pattern exists. Therefore, ifnegifient-common gram is missed, then no
pattern will be missed. The safety shift strategybased on a modifieblad grouped
character heuristic[9], namedfrequency-based bad gram heurisiiicthis study. The
safety shift strategy ensures that no frequent-comgram is missed during a skippable
scanning process. The proposed strategy helps EkiBpeed up the on-line matching
process, since certain characters can be skippesbiiatingly.

Assume thax identifies all possible index keys, and that #megth ofx is B. Because
the index keys ofi* andH? are different, the parameters used to determimshtt fields

of these two tables are different. Fét, as the length of a frequent-common grarBiis
thusxJ A% andB = B,. For H? sincex is all the possible of the pivot paira, (),

xOF x A2 andB = B,+B,. The basic concept of the safety shift stratedlyas: ifx is not

69

Chapter 4

a gram of any pattern, and any suffixxak not any prefix of any pattern B then it is
safe to shiftm whenx is scanned; otherwise, the number of safety skifthe offset
between the rightmost occurrence positiox ahd the position of the frequent-common
gram nearest te. Two parameters are needed to derive the safdty,sfamely, andm,
as shown in Figure 17. Assume tBatW<m, and define the safety shifts of each entry
(H(x).shiff) as follows:
(2) Initially, all shiftfields of the tabléd are set as
If m>W, then
H(x).shift=m-W+q, (4-1)
whereq =min{q| C subg g+1,B-q)=subf, 1,B-q), 0 plPand 1< g<B}when
B > 1 andq exists; otherwisg = B.
Else
H(X).shift='r, (4-2)
wherer = min{r | C subk, r+1,B-r)=subf, 1,B-r), 0 fOF,1 < r<B,andr+B<
W} whenB > 1 andr exists; otherwise = B.
(2) Scanning every pattem for each-th B-gram of each pattep®[i], where ki<mW,
setx < p7[i] if the entryH(X) exists:
If the currenH(x).shift> m-W-i+1, then update the entry, so that
H(x).shift= m-W-i+1. (4-3)
(3) For eacti-th B-gram of each pattepf[i], wheremrW<i<m-B+1, setx < p[i] if the
entryH(x) exists:
If xUJF, then

H(x).shift= 0; (4-4)

70

Chapter 4

Else If the current(x).shift>r, then update the entry:

H(x).shift=r, (4-5)
wherer = min{r | C subg, r+1, B-r) = subf, 1,B-r), OfCJF,1 < r<B, andr+B<W}
whenB > 1 andr exists; otherwise = B.

Notably, the maximunshift of EHMA is m while W = B. The frequent-common
grams and the sampling window are introduced inpfeposed frequency-based bad
gram heuristic to improve the flexibility and th#figency. Additionally, comparing
EHMA with WM, the maximum safety shift is raisedin m—B+1 tom. Theshiftvalue of
the proposed EHMA is similar to but larger than shét value of WM, when the given

parameters ana =M andW = B.

45 TableConstruction

The result of GFGS:, is used to construct the small table which is stored in the

on-chip memory. A direct index table §f|™ entries is used for! to achieve fast

lookup.B; is usually very smallR; = 1 or 2), and is pre-defined according to the abtala
size of on-chip memory. An entry f' is denoted asi'(a), wherea is aB;-gram, and
each entry has three fields: the frequent-commamdb, H'(a).fid; the pattern ID when
a itself is a patternH'(a).pid, and the safety shift number in the Tier-1 Matghin
H'(a).shift Namely,H'(a).fid = {i |a = fi OF}, andH(@).pid = {i | ppi| = [f| = B1, pi= ‘&
andp;OP}. The unused fields oH' are set to NULL. Sincéi' is a small table (for
instance, 256 entries in the case of one-byte godimiB; = 1), it can be stored in the
on-chip cache. LateH' acts as a filter in the on-line matching to qujckliscover

whether the packet contains a pattern. Namely, EHploysH* to quickly scan and

71

Chapter 4

jump over the innocent substrings of the input péskand to narrow the searching field
to the most likely clusters.

The H? table is built based on the cluster assignmerfscontains the pattern
contents and formatted information of patternsfémt on-line matching. Let*(a, b)
denote an entry dfi?, indicating the head pattern of the clus®gg, and defined as

H2(a, b) = H'(a).fid x || +b, (4-6)
whereB; is the length of the second pivtand is pre-defined according to the available
size of the external memory. Each eni(a, b) consists of six fields the safety shift
number in the Tier-2 Matching®(a, b).shift, the position of the frequent-common gram
in the patternH®(a, b).offset the pattern sizéd*(a, b).size the pattern content
H%(a, b).data, the pattern IDH?(a, b).pid, and a pointeH?(a, b).nextto the entry of the
next pattern in the same clusty or the fragmented content of the current pattern.
Transferring the information of ‘patterns into: ageened format can accelerate the

matching procedure. The patterns in the same cl>e point to the same head entry

1 Only the first two fields are specialized for EHMPhe other four fields are used for structuredgpas as
other algorithms.

72

Chapter 4

Patterns

/ 1 1
/(1) actress L [sl | 1]
[(2) teacher |11 []
[(3) firefighter [|
| (4) foarmer i
“\(5) architect A 1 B
\/Refresh
cef himr ceft h i1 mr cef hi mr
clOl T T1] . cily | |1 | ol [1 []
el [O1] | 1F{h}? 701 1] el [@1 171
D R S CLL AN RN E
hi1 |Tl1 < h| 1] 2Pt | [K—h1 201 |
il] |10 |Refresh i [T i 1]
m_ 1 [] @l | m_ [1] | [o] m_ [[| & |
i [[[[[od rl @ [[1] 1 el

(a) An example of GFGS.

On-chip Cache (H)

shifi fid
X Ha | 1 _ o
H1(b) 4 W*3, B/+B_7*2, m=6
H'(©) 1 External Memory (H?)
H'(d) 4 P
H'(e) 0 f;sh(ﬁ data .
H'(f) 1 (e,.a) ; 7y
A 1 4
1Al :{ﬁ; o P shifi data :
H (ha)| 4 (ee)l s
(0] 1 5 —
' (e,f) | 2 [firefighte
R (e,9) 5
1~d (h,e)| 1 |teacher | (e,h)| 5
(hf)| 4 5 |A|
. |3 .
\ 4) 4 - (er)| 2 | farmer
- e (h.h) s (e,s)| 2 | actress
h,i)| 2 hi
W=3, B=1, m=6 (‘I) ; architect (e,t) :
(h,t) 4 (e2) 5 Y
5
h2)[s

(b) The architecture of the hierarchical hash t&ble
Figure 20. An example of EHMA, wheRy = 1,B,=1,m=M =6,W= 3 andF={e, h}.

H%(a, b), and are linked by the linked-list structure f@imize the memory usage. The

required memory size ¢f? is |F| ><|/\| " entries plus the share memory pool.

For example, ifp; is clustered tdP, , by CBS andH*(a, b) is empty, then the
information of patterm; is saved intd4%(a, b), whereH?(a, b).size= |, H*(a, b).data=
pi, H*(a, b).offset = kif the k-th B;-gram ofp; is a, H*(a, b).pid = i, andH*(a, b).nextis

NULL. If anotherpjis also clustered tB,, 1, then a free entry is also assignegjtand

73

Chapter 4

linked with the previous patteqm. Similarly, if the pattern size qf is larger than the
width of data field, thep; is fragmented, and the remaining part is savedfiee entry of
the share memory pool, and the address is savgt{@nb).next

Figure 20 shows an example of EHMA, which has fiaéterns: ‘actress’, ‘teacher’,
‘firefighter’, ‘farmer’, ‘architect’, where the alpabet set comprises the 26 English letters.
The parameters for EHMA are assuniad= 1,B,= 1, m= 6 andW= 3. Figure 20 (a)
demonstrates the GFGS. According to the GFGS (Bned of Figure 18), after scanning
the first W-B, characters of the sampling window of every pattéhe underlined
characters of the patterns in Figure 20 (a)), tlarimR is obtained and shown in the
figure. In the first run, the maximum value on tiagonal ofR is three, and thus the
corresponding grane”is added intd-. After refreshing the elements on the diagon& of
(lines 8 — 9 of Figure 18), GFGS finds that the mmaxm value on the diagonal Bfis two
in the second run, and the corresponding grar’.isSFGS stops while all elements on
the diagonal ofR are zero,and getsk={e, h}. Figure 20 (b) displays the logical
architecture of the two-tier tables of EHMA. BecaBs= 1, and thé4’ table has only 26
entries, theH' table can be stored in the cache memory.fithéelds of H' point to the
corresponding offsets d1°. As the pattern ‘actress’ has 'IF and the pivot paires,
according to CBS it is grouped to the clusrs The shift fields of H* and H? are
obtained from the proposed safety shift strategjgially, sinceB; <1, H!.shift= 4. While
B.+B, > 1,H?.shiftis set to 5 for those entries whose second psnbt the prefix of any
pattern (that ishO{‘a’, ‘', ‘t'}); otherwise, H2.shiftis set to 4. When scanning the pattern
‘actress’, theshift fields of H'(‘a’), H*(‘c’) and H(‘t') are updated to 3, 2 and 1

respectively (the? safety shift strategy); thehift fields of H'(‘r') and H(‘s’) are both

74

Chapter 4

Processing Unit

Tier-1 Matching Tier-2 Matching
Output . NO
Matched Skip on Input [«
Single-gram YES
YES
Read Next . > No String
Gram | Skip? pISLL‘? Comparison
and Output
NO
N i
y
Read Entry from External Memory
Input String

External Memory

Figure 21. The processing flows of the on-line rhiug.

updated to 1, while thil*(‘e’). shift is updated to zero, becausel € (the 3¢ strategy).
As for the tabléH?, only the existing entrid®(‘e’, ‘s’) has to be updated to two, becase
= By+B, = 2, and no prefix oF is the suffix-of ‘es’ (the 8 strategy). The remainders of
the patterns follow the same clustering and safeify strategy. Thehiftfields ofH' and
H? tables are updated when the nahiftis less than the previous one. Let usid§&’)
for example. When scanning the pattern‘actré$¥'a’). shift= 3 (ag'[i] = ‘a’, i = 1 and
m-W-i+1 = 3); while scanning the pattern ‘teachef{'(‘a’).shiftis updated to 1 (as ‘a’ is
the third character of ‘teacher’s 3, therm-W-i+1 = 1), because the new value is smaller
than the previous one (thd%Xtrategy). FinallyH(‘a’).shift = 1 is saved in the table
because the remaining patterns do not hi¢&’). shift smaller than one. Notably, the
maximum shift oH* andH? is large (4 and 5 respectively). Consequentlynimaber of

scans and comparisons can be significantly reduced.

46 TheOn-lineHierarchical and Cluster-wise Matching

The previous subsections presented the off-lingestd EHMA, which builds two

index tableg4* andH?, holding the indexing and pattern informationtie tache memory

75

Chapter 4

and external memory respectively. These two tahlesregarded as the two-tier filters
and indices for the on-line matching. This subsectpresents the on-line matching
procedure in detalil.

In network intrusion detection systems, an inputkeais forwarded to a detection
engine. The detection engine then returns the Beasults of matched patterRg. This
study focuses on the payload inspection, and assthraeeach input is a packet payldad
As a hierarchical matching, the on-line matchinggedure of EHMA is divided into two
tiers: Tier-1 Matching and Tier-2 Matching. The raiehical architecture is applied to
decrease the number of external memory accessesriallH! is stored in the cache of
the processing unit for Tier-1 Matching, while th€ with pattern content is in the
external memory for Tier-2 Matching.-Figure 21 siitates the processing flows of
EHMA, and shows that the on-cached Tier-1 Matchilogs not access the external
memory, but does act as a pre-filter. The extamehory access is necessary only when
the Tier-2 Matching is invoked. This process isatdiéed in detail in the following

subsections.

4.6.1 Tier-1 Matching

In on-line matching, the payloddis scanned from left to right, and ed&hgram of

T is the key to fetch the entii(t;), wheret;= T ™[i]. TheH* acts as the first-tier filter of
EHMA, by checking whetheF may likely contain patterns belonging the pattsebP.
BecauseH' is small enough to be stored in the on-chip mentging the on-line
matching procedure, the latency of accessihgs very small.

In the Tier-1 Matching, first thehift field is checked. IHl(tl).shift;é 0, i.e.,t;0F,

then no external memory is necessary. The obtaiiét).shift also determines the

76

Chapter 4

number of grams that can be skipped without furgtecess. The next gram to check is

then T™[i+H'(t).shiff] . After read the next gram, the matching processats as in the

previous steps, and remains in the Tier-1 MatcHeg.auseH| <K |/\|Bl , the probability of

t,0F is small and most grams @fgain the shifts, thus avoiding the Tier-2 Matching
Consequently, both the number of string comparismalsthe costly memory accesses can
be significantly reduced.

Otherwise, ift;0F, thenT may contain a malicious pattepgp0P, wheret; L py.

Simply stated, iH*(t1).shift = 0, thenT may have a pattern that belongs to the cluster of

pivot pair ¢, t,), wheret, = T™[i + B,]. Therefore, the matching procedure activates

Tier-2 Matching to identify the pattern.Hf'(t;).pid is not NULL, then the current gram

itself is a pattern, and this matched patternge-aldded int®y.

4.6.2 Tier-2 Matching

After the Tier-1 Matching, iH*(ty).shift= 0, then the matching procedure proceeds
to the Tier-2 Matching. The functid#?(t,, t,) indicates the location of the corresponding
cluster according to inpdt Since EHMA is a cluster-wise matching algorittonly the
patterns in the small cluster of pivot pdi,), which are similar td@, are loaded to the
processing unit for further checks.

Tier-2 Matching first checks theid field of H% If H%(ty, t,).pid is NULL, then the
cluster(t;, t;) contains no pattern, and no pattern comparisoecessary. Otherwise, if
H?(ty, t,).pid is not NULL, then this cluster contains patterfise pattern content in the
H2(t,, t,).data is then compared with the corresponding substofig: sub(T,

i-H(ty, t).offset H(t1, t,).siz8. If H(t1, t,).nextis valid, and points to the next entry, here

77

Chapter 4

~NOoO oA~ WN PP

(o]

A WN P

0 ~NO Ol

9
10
11

Procedure Tier-1Matching(T, H*, M, W, B,)
Input: Packet payload, a first-tier hash tablé4*, the minimum pattern lengi, the length of the
frequent-common gram and the length of the sampling winddw
Output: The output of Tier-2Matching.
i<—M-W+1;
Whilei <=[T|- B, do
Read thé-th B;-gram of T: gram—T2i];
If H*(gram).shift> 0, then shift—H*(gram).shift,
Else
If H*(gram).fid = NULL, then shif—Tier-2Matching(T, H?, By, i);
If H*(gram).pid= NULL, then
Pu«Py 0 {gram;
If shift==0,then shift—1;
Jump over the stringk—i+shif; [*shift and read the next*/
End While
Return;

Procedure Tier-2Matching(T, H?, By, i)
Input: Packet payload, a preprocessed indexing tathg; the length of the second piv4, and the
current pointer
Output: A safety shift number for Tier-1 Matchinghift, the matched pattern set@fPy, and its
correspondingpid PIDy,
Load data from the external RAM at entf§(T?Y[i], T*4i+B]) to a local buffelLB;
shift—LB.shift
While (k<LB.pid) # NULL do
Compare the substring ®f sub{T, i-LB.offset L.B:siz@ with the patterrLB.data, /*Assume no
fragmentation here*/
If it is matchedhen Py<«Py 0{p-and PIDy<~PIDy 0O.{k};
If LB.nextz NULL then
Load data from the external RAM:-at enf§.nextto the local buffet.B;
Else
JumptoLinel0;
End While
Return shift,

Figure 22. The on-line matching procedure, inclgdimer-1 Matching and Tier-2 Matching.

given by H%(a, b), then the cluster contains other patterns. Siigilahe pattern in

H%(a, b).data is also fetched and compared with the substringToftarting at

T[i-H ?(a, b).offset of lengthH%(a, b).size Every matched pattern is added to the matched

pattern sePy and its corresponding matchpil setPIDy in order. Until all patterns in

this cluster are checked, the next grdmt[i +H?(t,t,).shiff] is then read, and the

on-line matching procedure returns to the Tier-Itdfimg. H%(ty, t,).shift also indicates

78

Chapter 4

the number of characters of that can be skipped, since the next possible
frequent-common gram may only appear far tHafty, t,).shiftaway.

Notably, if a pattermpy exists inT, then all grams ofx appear inl. The clustering
pivot pair of pattermpy, (P “[i]1, P[]+ B.]) is certainly scanned, saytatandt,, so

that t;= p, *[j]1 OF andt,= p,2[j +B,] . Patternpx is then recognized whem is
compared with the patterns in the clustertf) during the on-line matching procedure.
Based on the Safety Shift Strategy, EHMA never skapy frequent-common gram.
Consequently, no patterns in the payldaare missed.

The on-line matching procedure of EHMA is describedrigure 22, including
Tier-1 Matching and Tier-2 Matching. Since EHMArimducesH* andH? as filters, and
CBS is employed, only a few suspected patterndoaged from external memory and
compared withl. Because generally most of the packets are innasar the network,
and the frequent-common grants) (harrow:the searching field, EHMA performs a fast
scan over the packets. The returned ré3ylincludes all matched patterns for a givien
and is applied to make the final decision and @yae the impending attacks. The final
decision depends on decision-making rules.

An example is provided to demonstrate the onlinechiag of EHMA. Assume that
theH' andH? tables have been built as Figure 20 whi&re 3 andM = 6. Assume that the
input T is ‘kangaroo’ as given in Figure 23. The scan rixom left to right. The scan
starts at ‘g’ (M-W+1)-th gram), obtainingi’(‘g’). shift = 4. Therefore, Tier-1 Matching
shifts four characters. Because the pointer gogerukT|-B; after the shift, EHMA

completes scanning the inplt This example only requires one on-cache tabl&upp

79

Chapter 4

H agor
shift[1]4]4]1]

|
|
Y
kangaroo

Figure 23. An example of matching process with trikangaroo’.

H aceimnrst
shift |[1[1[0]1[T][4]1]1]1]

Wl

. Y
|amanactr§55

H(e.s)

shift dura offver

Figure 24. An example of matching process with trifgumanactress’.

and no external memory access. By.only checKingth the embedded tablé', EHMA
can know thaT contains no pattern.

Considering another example - whére ‘iamanactress’ as shown in Figure 24, the
first scanned;-gram is ‘a’, yieldingH*(‘a’). shift="1. Thus the matching process stays in
the Tier-1 Matching, and the neéB-gram ‘n’ is read after shifting one character)djiieg
H*(‘n’). shift = 4. Similarly, staying in the Tier-1 Matching, atite nextB;-gram ‘n’ is
read after shifting one character, yieldt(‘n’). shift= 4. Similarly, staying in the Tier-1
Matching, the matching process obtaift§r’). shift= 1 andH’(‘e’). shift= 0 in order after
shifting. WhileH'(‘e’). shift= 0, the Tier-2 Matching is activated. After cheakihe field
H%(‘e’, ‘s"). pid and finding that it is not NULL, EHMA knows a stespied pattern may
exist. The Tier-2 Matching then compares inputvith the pattern in the clustéts,
whereH?(‘e’, ‘s’).data = ‘actress’, and gets a match. Because this clustetains no
other patterns, the matching process returns teIrMatching withH*(‘e’, ‘s’). shift = 2.

Since the pointer goes beyoddHB; after shifting two characters, the matching preces

80

Chapter 4

for the inputT is finished. In this casé}* is checked four times, andf is fetched only
once for the string of twelve characters. EHMA thus significantly redadhe latency

caused by memory accesses.

4.7 Incremental Update

EHMA can achieve incremental update by addingpant field in the H?, which
records the current size of every cluster. Thantfield has the same function as the
matrix N of CBS. When a patteqmis added intd, after checking theountfields of the
possible entries according to the pivot pairgpofthe smallest cluster, sd y, can be
found. Then,p is added into the cluste?, y by following the steps of the table
construction mentioned previously. If i&-gram of p belongs toF andp finds no
existing entry in théd?, then a randomB;-gram ofp, sayg, is chosen and added inffo
(H'(g) is modified accordingly), and a memory spacdl@ated for cluster sd¥y in the
H?. A random pivot pair op, say ¢, h); is.chosen and thenis added into the clust®y, n.
The shift fields of H* andH? may be modified because of the adge®ince the safety
shift strategy scans the patteome by onéo calculate thehift values, no modification to
the safety shift strategy is required for patteddiion. The addeg can be recognized as
the last scanned pattern of the safety shift sjyatét most p|-B;+1 fields ofH' and
Ip|-B2+1 fields ofH? are modified for a pattern addition.

To delete a patteqmfrom P, first step is to find the pattern. Wheis found, just link
p's previous entry t@'s next entry by modified itaextfield in theH?, and delete from
tables. Then, subtract tlweuntfield of the cluster thap belongs to. The shift fields are
not modified for pattern deletion. Because shét values are universal minimum in the

safety shift strategy, they may not be optimumrgfegtern deletion. However, no error

81

Chapter 4

will occur after pattern deletion, even while tlehift fields are not modified.
Consequently, EHMA needs not recalculate the whalex tables as long as the pattern

database is changed. EHMA can refresh the inddegathen the system is not busy.

4.8 Worst Case

If a given stringT is formed badly that has to do the exact stringnmarisons the
most times, and no charactertan be skipped during the on-line matching pracess
processing this bad-formddis the worst case of EHMA. Assume the largesttelusize
is L. When every charactdit] LIF, H'(T[t]).shift= 0, and each corresponding indexed
cluster is the largestRigm+1] = Le), T is a bad-formed string and this is the worst
scenario of EHMA. As for all[t], T[t]OF andH*(T[t]).shift= 0, the probability to fetch
the tableH? for the bad-formed is one: Thus, the number of external memory aesess

per character in the worst case is

T|=B,) %Ly
Niaw = (HTI) <L, (4-7)

where assume that fetching one pattern needs ongrgeaccess. Define the largest
pattern size i asL,. When every input character points to the largkstter, in which
every pattern has the longest size, this bad-formedquires the largest number of

comparisons. Hence, the number of character cosg®iper input character is
Ng’l\jl;r = N\QIA?I\-; X Lp < Lc X Lp . (4'8)
Obviously, the worst-case performance depends.ofo derivel, assume there is
a largest cluster, s&# y. SincePy y is the largest cluster, assume that the clusterisi

always larger than one, and initially the probapiihat its cluster size increases from 0 to

1is one.

82

Chapter 4

As Py y is the largest cluster, based on CBS, a giverepgitwill not be clustered
into Py y, unless all available pivot pairsphre not in the sgixA exceptX, y). Since the

pattern database is usually predefined and stestyme the given patterns are uniformly

distributed. Therefore, the probability th@g || increases fromtoi+1 is

I N E e
=l -1 +1} - |/\|2 . (4'9)

Pr{

Py

As in the worst-case scenario, every pattern hadaigest sizé,, the equation is

rewritten

Pr{

Py

(W)
=i - i+l} = |/\|2 , (4-10)

Thereby, the probability that the cluster sizé>@f is maximum L) is derived

Pr{j P,

AL [ExjA 1
=L;}= (4-11)

(|Lp|-B2-D)(Le-)

A J
When P| is 1200 withH| = 77, \| = 256 and_, = 128, the probability thdt. = 4 is
only 7x10"°. When replacind., with the average pattern size, which is aboutezien
the Snort, then the probability that= 4 is about 3.610°. The probability that. = 4 is
tiny, which infers that EHMA has a smdll, and thusNgZy, and NG5 are small.

Consequently, the worst-case performance of EHMAaslerate and acceptable because

Lc is much smaller thaj®|.

83

Chapter 4

49 Results

As the number of network security threats rises, RHDS has become one of the
most important applications of packet inspectio®][2[23]. Therefore, this study
demonstrates the feasibility of integrating thegmsed EHMA with the promising NIDS.
This section presents the simulation results of EHdiéployed in the NIDS, compared
with the original hierarchical matching algorithm HNMIA) [38], the
Boyer-Moore-Horspool algorithm (BMH) [21], the Wuaviber algorithm (WM) [36], a
variant of the Wu-Manber algorithm using a groupeefix hash (WM-PH) [27], and
the Aho-Corasick algorithm with memory compresgiag-C) [34]. In the simulations,
the assembly-like microprograms were emulated taM&, BMH, WM, WM-PH and
AC-C using RISC instructions of general-networkgqassors (such as ADD, XOR, MOV),
and the number of instructions and the number aharg accesses needed to process a
packet were calculated. To simplify:the evaluatitme simulation assumed that one

microprocessor was employed.

49.1 M easurements

Define | as the average number of RISC instructions (inolydomparisons and
calculations), andl as the average number of local memory accessdsding reading
data from the cache to the registers for furthecesses), for each payload character in
the pattern matchinde represents the average number of external menuogsaes per
input character, which includes loading the inpathets, querying the entries of tables in
the external memory, and fetching the pattemsindicates the time needed by one
instruction or one local memory/register accesdyvarnndicates the time for one external

memory access. The following measurements are gilileraverage computation cycles

84

Chapter 4

Table 10. The simulation parameters.

Items Value
Time of one RISC instruction or one local memorgess {)|1 cycle
Latency for each external memory accegs (10, 100 cycles
Packet payload length for Model | 512 bytes
Number of patterns iR (|P|) 200, 400,...,5000
Simulation time for Model | 10 million packets

Table 11. The pattern size distribution of Snokt ket R.

Pattern Size =1 <4 <8 <12 <16 >16

Ratio 0.028 0.245 0.482 0.653 0.813 0.187

¢, = Ixw; the average memory latengy, = Exwg + Lxw; and the total average
matching timeWw =y, +y,, , which is regarded as the overall performance.

In the simulations, the skip table of BMH was assdno be small enough to be
loaded into the cache memory, and therefore only external memory access was
counted during the matching process of BMH for epattern. One external memory
access was assumed for AC-C, althoughit typieadlyds two memory references to fetch
the transition matrices, and the: fail‘table or thatched patterns. Table 10 lists the

simulation parameters.

492 Traffic Models

The simulations used two free and real pattern $gtand R, from Snort in Aug.
2004 and May 2008 respectively [1], although thiégpa set can be self-defined or any
commercial pattern set. The numbediustinctpatterns is about 1250 in the, Rhere the
average length of a pattern is about 11.2 bytes gtatistics of the pattern set listed in
Table 11); while the number of distinct patternedrees up to about 5000 in the Bince

Snort patterns are written in mixed plain text &ed formatted bytecodes, the alphabet

85

Chapter 4

size (A]) was set to 256 in the simulations. In the simatatraffic models, Model | and

Il use R, and Model Ill uses Ras the matching pattern sets.

Table 8 shows the relationships between the nuwibgatternsR| and the number
of frequent-common gramEg|| of the EHMA, where the lengths of patterns arehia t
range from 1-122n = |pi|, and the patterns are randomly selected frenT Re results in

Table 8 reveal that the growth rateBf s much slower than that ¢|]

4.9.2.1 Model |

In the Model I, the synthetic malicious packets geaerated by randomly choosing
patterns from the pattern $&aind spreading over the packet payloads. The dttadkA
is defined to represent the expected number ofaak patterns existing in one packet.
For instance, ifA =2, then each packet contains two harmful padtemaverage. Except
for the injected patterns parameterizedibyhe background characters of a packet were

randomly drawn fromA to imitate the-normal packet content. Hence, thedoan

background may unconsciously contain patterns.

49.2.2 Modelll

To evaluate the performance of algorithms in a irg#@inse attack, a trace from the
Capture-the-Flag contest held at Defcon9 was adastehe input traffic in the Model II.
The Defcon Capture-the-Flag contest is the largesurity hacking game, in which
competitors try to break into the servers of othénge protecting their own servers, each

hiding several security holes [14].

86

Chapter 4

Table 12. The statistics of the traffic traces.

Statistics Model 11 Model 111
Average Packet Size (Byte) 467.71 896.1
The Standard Deviation of the Size of each Padkge] 651.06 690.99
Data Transmission Rate (Kbps) 254.13 280.03
Number of Packets per second 69.55 40
Packet Type: TCP (%) 48.48% 97.18%
UDP (%) 0.65% 2.56%
Others (%) 50.87% 0.26%

4.9.2.3 Model IlI

Model Ill uses a real 2-hour trace as the inpufitraand the more recent Snort rules
R, as the pattern seP|| This real trace recorded all IP packets in aratory of
Providence University for 2 hours. The laboratoag lan FTP server, a web server, and
three PCs running several network application tdien

Table 12 lists the statistics of the traffic traces usedvindel Il and Model lII,

where the values are measured by traffic’ analgsis ttcpstatandtcptrace

410 Memory Requirements
For fast lookup and matching, the lookup informatimd patterns are usually saved
in the memory using a tabular structure. Therefohe, memory requirements are
estimated according to the number of entries. Safiadgorithms need to keep the pattern
content in the (external) memory, this section odlgcusses the extra memory
requirement for the tables of each algorithm. eagimulations, the numbers of characters
in the clustering pivots®; andB,) were both assumed to be 1. Becauséithef EHMA

is a direct index table, the cache memory spdti¢ ¢f EHMA comprises A| entries.

Based on GFGS and CBS, the number of entrigs?iis the total number of possible

clusters (plus a small memory pool). Since the dormoBpossible pivot pairs Bx A, the

87

Chapter 4

Table 13. The memory requirements.
EHMA HMA WM WM-PH AC-C BMH BMH-O
CacheMemory | O(JA]) O(Al) ©O@1) O(1) O(1) O(Al) 0(1)
External Memory|O(F|x A) O(F|x|A]) OAF) O(AF) O O(PIx|A]) O(PIx Al

Table 14. A list of symbols.

Notation Meaning

pi A pattern with an identification number (ID)

P Pattern set? = {p}

[P] The size of pattern sét

A Alphabet set

T Input string

0O Significant gram set

F Frequent-common gram set
B-gramA gram is defined as a group of characters, & the number of

characters in a gram.

B, The size of a frequent-common gram

B, The size of the second pivot in tHé table

M The minimum pattern length of all patterns
W The size obampling window

I

The average number of RISC instructions per inpatracter (including comparisons

calculations)

L The average number of local. memory accesses @imgureading data from cache
registers)

E The average number of extefnal memory accessewdding the packet, querying
entries of tables in the external memory, andhietg the patterns

w;, The time of one instruction or-one local memonyister access

we The time of one external memory.access

¢, The average computation cycleg; =l x,w,

%y The average memory latency;,, =Ex Wg +Lxw,
W Total average matching time¥ =y, +y,,

external memory space fof (Mg) of EHMA is O(F|x | Al). HMA has the same memory

requirement as EHMA. Th&hifttable of WM is also a direct hash table. The gs@a of

WM (block sizeB) was 3 in the simulations, so thigifttable of WM had A I° entries. The

groupedskiptable of WM-PH used in the simulations was a dipgefix hash table with a

prefix length of three characters. Therefore, skip table of WM-PH comprisegA [°
entries. Every pattern in the BMH has its oskiptable off A| entries, so that the table of

BMH has P|x| Al entries. Because easkip table of BMH (for one pattern) is small

88

Chapter 4

enough to be loaded into the local memory, fornksls, a cache memory space was
allocated to lower the number of external memoigeases. The BMH-O is the original
BMH with no local cache and assesses the lateneslfye Notably, WM-PH, AC-C and
BMH-O also require cache memory to store the slkajuer or one state during the
matching process. Table 13 lists the memory remerds of EHMA, HMA, WM,
WM-PH, BMH and AC-C. The scale relation of the paeders isH| < Al € [P| <SK
IAF.

In the simulations using Model I, whel| js 1200, theéd* andH? of EHMA needs
256 and 19712 entries respectively (about 768 bgteship memory and 38.5KB
external memory, including the shared memory padMA has the same number of
entries as EHMA, but needs smaller entry size ag\Hlsts ncshiftfield; the table of WM
needs more than 16M entries (L6MB external memiorythe case without using an
additional prefix table); the table size of WM-P$ithe same as that of WM; BMH and
BMH-O need more than 300K entries (300KB externaimory); and AC-C needs 10731
states (461KB with each node of 44 bytes). The mgrsize of all algorithms listed
previously excludes pattern content. Obviously,réggired memory space of EHMA is

quite small. Table 14 lists the symbols used inSketion 4.

411 Resultsand Discussion

The minimum pattern length of the feeding pattémg&igures 24-27 is only one
character, i.e.M = 1. Because the minimum pattern length of WM idrieted to be
larger than the gram size, in this case three cheng WM is not compared in these

figures. In Figures 24-27, the results labeling EXiM the following simulations use the

89

Chapter 4

100000

] ~-a--HMA A =4

Cycle Time

200 400 600 800 1000 12

Number of Patterns

Figure 25. The average matching timg Y versus the number of patterrB|)] using Model |

with 4 =0 and A = 4, whereng = 100.

sampling window with parameteVg = m = [p;|, which means that each pattern is sampled
in its entirety.

Figure 25 compares the average matching tim¢ ¢f EHMA, HMA, WM-PH,
AC-C, BMH and BMH-O using Model | with differenttatk loadsi= 0 and 1= 4
respectively. It also shows the impact of the nunab@atterns B|) on the matching time.
Simulation results reveal that EHMA outperforms HMWM-PH, AC-C, BMH and
BMH-O even whenR| andi increase. EHMA has slightly higher growth ratentha
WM-PH, because it has a much smaller table size -®HVgains performance by having
a large direct index table. Notably, the matchimget of the original AC using basic
structure is independent from| |and 1. The curves of AC-C increase witR| jand A
owing to thepopsumused in the AC-C algorithm. The increasiRgrhakes the matching
time of BMH (BMH-O) rise steeply, because the BM#$iariginally a single-pattern

matching algorithm that simply executes iterativielymulti-pattern matching.

90

Chapter 4

Memory Accessl Instrruction

25000
1 100,
20000 }
4 80 I
£ 150001
[= | 0y
o]
& 10000 07
1 20w
50004+— o 1[]
1 .7
P -
EHMA HMA WM-PH AC-C BMH
(a) 4=0andP| =1200.
‘ Memory Accesdl Instrruction
25000
20000
o]
£ 15000
=]
©]
& 10000
5000]
01

EHMA "HMA ““WM-PH. ~AC-C BMH BMH-O

(b) A=4.0 andR}-=-1200.
Figure 26. The proportion aof, to W' ‘andy, to ¥ using Model | with |= 1200 and

wg =100: (a) A =0and (b) A = 4.

The caseld = 0 means that the traffic has no malicious pacHKetghis case, the
proposed EHMA needs only 9.5-19.9 cycles per cleran average, which is about 0.9,
3.3-5.3, 16.3-26.8, 40-117 and 408-1161 timesthess the matching time of HMA,
WM-PH, AC-C, BMH and BMH-O, respectively, under i@ars pattern set sizes. We can
say that EHMA is very appropriate for network eaquent, because generally most
packets are innocenti&0). The time available for the detection engine tocpss the
malicious packets rises as the innocent packetgracessed more quickly.

When 1 = 4, then the systems are under heavy attack,henttdffic contains many

monitored patterns. In this situation, the matchiinge of EHMA is about 0.89-0.94,

91

Chapter 4

3.1-4.5,14.1-24.9, 33.2-96.4 and 335-957 timedem that of HMA, WM-PH, AC-C,
BMH and BMH-O respectively. Additionally, the perfoance of EHMA is quite stable,
since W rises only slightly asa or P| rises.

The processing time of the pattern matching indudlee time necessary for
instructions {,) and the time for memory accesses (. To investigate their impacts on
the algorithms, these two measurements are segddrata overall matching costs since
different systems introduce different implementataverheads. Figure 26 displays the
proportion of ¢, to ¥ andy,, to ¥ respectively, for all approaches using Model |
with |P| = 1200, where Figure 26 (a) shows the resulteurd 0, and Figure 26 (b)
shows the results under 4. In Figure 26, the upper part of the bagis and the lower
part of the bar isy,, . The results show'that the, of EHMA is close to HMA’s and
WM-PH’s, but ¢,, of EHMA is -much-less than-others. The proportibryg, to v of
BMH seems smaller than others, because the whigldathie of a pattern is idealistically
assumed to be loaded within one external memorgsacand kept in the cache during the
matching process for each pattern. Because AC-(psres the data structure of the
state machine, it requires more time to derivenibd state pointer. Therefore, AC-C does
not have the smallest, . Simulation results show that thig does not significantly rise
with A in any of the experiments, because each algofitasralready tried to reduce the
computation load¢,). However, ¢,, dominates the overall matching cost. This reveals
that the number of external memory accesses ibdtteeneck of almost all algorithms.
This result also reflects our opinion mentionedvpesly that the essential issue in
designing a high-speed detection engine is to dbe number of required external

memory accesses.

92

Chapter 4

& 200 patternsa 1200 pattern%

10004

1001

10]

0.1; u
i@

Average Number of External Accesses

0011

EHMA HMA WM-PH AC-C BMH BMH-O

(@) 1=0.

‘ # 200 patterns 1200 pattern:%

10005
1004

107

=}
[

L d |
on

Average Number of External Accesses

EHMA HMA WM-PH AC-C BMH BMH-O

Figure 27. The comparisons of avera(gbg nAur:anJlér @freal memory accessds) (Using
Model | withwg = 100: (a) 4 = 0 and:(b)4 = 4.
Figure 27 compares the average number of exteraaiary accesses per character

(E) of the state-of-the-art pattern matching algonish The figure shows that tie of
EHMA is only 0.06-0.19, which is much smaller ttahers. In other words, EHMA can
successfully filter out about 94% payloads whejnH 200, and 81% wheR||= 1200,
requiring no external memory accesses and stringpaoisons. Thé& of EHMA rises
only slightly with rising A. The increasing rate @& is slightly higher in EHMA than in
WM-PH when | rises, because EMHA has much smaller table e YWWM-PH. Since
BMH is based on the single-pattern-matching algarit its E is proportional toH|.

Consequently, the hierarchical matching along wiid safety shift strategy is highly

effective in reducing the memory latency.

93

Chapter 4

@ 200 patterndm 1200 pattern%

100000;
10000+
E]
S 10005
E |
S 1
& 100y
104
1] . . .
EHMA HMA WM-PH AC-C BMH BMH-O
(a)wg = 100.
‘ 0 200 patterndm 1200 pattern%

1000007
10000
£]
£ 1000+
KJ) b
S]
s} 100§

RIE N Ri B
1]

EHMA HMA WM-PH AC-C BMH BMH-O

Figure 28. The average matching tinig)xv\\/h(:_—:-r:s&g.the number of patterrid|f| using Model Il
(a)we = 100 and (bjve = 10.

Figure 28 and Figure 29 adopted the Model Il asalife network environment
under intense attack to evaluate the performantieeo$tate-of-the-art algorithms. Since
different implementation systems may have diffeetternal memory costsvf), Figure
28 illustrates two results witle = 100 andvg = 10 respectively. To lower the impact of
We on an algorithm, a very small valuewf is adopted in Figure 28 (b). The results in
Figure 28 indicate that EHMA significantly outpemfus others in both cases of small and
large pattern set size even in the intense attaledlA still performs better than others

even when the penalty on the external memory adeg¥ss reduced (as shown in Figure

28 (b)). Comparing EHMA with HMA in the Figure 25 Figure 28 reveals that the

94

Chapter 4

proposed safety shift strategy significantly redut¢ke number of external memory
accesses and thus improves the matching performance

The minimum length of Snort patterns is one charadiowever, some detection
systems, such as virus detection systems, haverlangnimum pattern lengths. The
performance of matching algorithms with long minimgpattern lengths was examined
using Model I, including only the patterns witmfghs greater than 104(= 10) from
Snort patterns, as drawn in Figure 29. Since thebau of patterns whose length larger
than ten characters i & around 500, Figure 29 shows the caseB|af P00 and H| =
500, respectively. Figure 29 (a) shows the avemgeessing time ¥);Figure 29 (b)
shows the memory requirement of the fast index/halsles, excluding the memory for
pattern contents, and Figure 29 (c) compares tieeage number of external memory
accessed) of all algorithms. Since heid is larger than the gram size of WM, which is
three as mentioned before, the-performance of Wabmspared here. The result labeling
EHMA(W=5) is the case using EHMA algorithm withh=M = 10 andW = 5. Recall that
the sampling window of EHMA is entire pattern caritehat ism=M = |pj|. To observe
the performance of WM and WM-PH with smaller haablés, Figure 29 also displays
two additional cases with block size of two chagest WM = 2) and WM-PHB = 2).

Before discussing the simulation results of Figg@eTable 15 presents the effect of
the size of sampling window\) on the performance of EHMA in terms of the averag
shift values of Hand H, the size of the set of frequent-common graf (lerived from
GFGS, the average number of actual shifts andvibeage number of external memory

accesses, using the same traffic model as in the&R29.

95

Chapter 4

Table 15. The impact of the size of sampling wind@y on the shift values of tabled'(shiftand
HZshiff), |F|, actual average shifts akgdusing Model II.

Pl 200 500
EFMA|EHMA|EAMA EHMA|EHMA|EAMA
EAMAL we7)| (wes) | wez) [FIMA we7y | wes) | wea)

H™.shift 094 | 271 | 3.66 | 474 | 091 | 1.86 | 2.02 | 2.49
HZ.shift 199|489 | 6.79| 871 | 199 | 484 | 6.72 | 8.65

[F] 13 20 25 39 23 33 47 65
Average Shift| 1.5 | 1.74] 1.79 | 184 | 149|168 | 1.74| 1.8
E 0.03770.0441/0.0431/0.04340.1243 0.16 |0.16350.2512

Table 15 shows that the number of candidate comgrams increases with
increasingW, resulting in smallerF|. The average number &f'.shift and H?.shift
increases whekllV decreases. Since the traffic spectrum is not niblyrdéstributed, the
actual average number of shifts during matchinggse is not the same as the average of
H*.shift and H?.shift However, the trend.is the santeis effected by bothF| and the
actual average shift.

Figure 29 (a) shows EHMAY =°5) outperfoerms EHMA and others whé& 200;
while EHMA performs better than EHMM{=5) and others wheR||= 500. Therefore,
reducing | becomes more important than increasing the agaramber of shift values
when P| is large. Since all algorithms need a copy ofgthttern contents, Figure 29 (b)
only displays the extra memory requirement of exadgprithm for the index/hash tables.
Figure 29 (b) shows that the required memory of EHMonly slightly larger than that of
HMA but much smaller than that of others. The regghimemory of EHMA grows
moderately withR|. The memory of EHMA(= 5) is greater than that of EHMA due to
the largerf|. As shown in Figure 29, EHMA is highly effective ieducing the required

external memory, providing efficient performancern the virus-detection-like model.

96

0 200 patternsm 500 pattern%

4000
3500 1+ 100
o 30003 80
E 2500
= E 60
© 2000% 40
o El
G 18004 o
10003
5003+ -7 N
3 e \\
0’/ L | e | L
m m I > @ o]
I £ £ § %8 § ¢ 3 g ¢
5 5 > 5 5 & 2 © T 3
= g ¥ I =z o
= LU '?‘,F '?,T
< n @
(a) Average matching time.
‘ 0200 patternsll 500 pattern#
1000003
¢ 100005
3 |
& 10005
S 100+
£ 3
Q]
= 10 4
1]
m m I > o] @©
I I £ § 8 % 8 8 2 2
> 3 7 5 % 2 2 © T 3
= ® W T = o
z e @ B
4 i
(b) Memory Requirement.
2
é ‘ @ 200 patterndl 500 pattern%
Q
< 1005
£] n
£]
£ 104t ¢
w 3
5 v 3 =2
u
;S8
=z
[
g
b m m I > @ @
z I I £ 8§ 2 5 5 5 2 2
<)§>)Z> > =~ =~ 3 % O I I
= % I = o
= & & 5 B

(c) The average number of external memory accesses.

Chapter 4

Figure 29. The costs versus the number of pat{@hsusing Model liweg = 100 andM = 10:
(a) Average matching time, (b) Extra memory requiat, and (c) The average number of

external memory accesses.

97

Chapter 4

(200 m 2500 &5000

100000 ¢

10000

1000 |

Cycle Tim

100 £

10 E

1

EHMA HMA WM-PH AC-C BMH BMH-O

Figure 30. The average matching timie Y versus the number of patterrid])] using Model I,
we = 100.

Figure 30 uses Model Il as real-life normal traffo show the performance of the
algorithms. Meanwhile, to demonstrate the effedhefrising number of patterns on the
matching performance, a more recent Snort rulesef Rbout 5000 patterns are used in
Model Ill. Figure 30 shows that EHMA performs bettigan others even when the patter
set is very large. The matching time of EHMA:onlpaerately increases with the rising

Pl

98

Chapter 5

5 ACWITH MAGIC STRUCTURES(ACM)

To deal with the ever-increasing data volume obher ietwork, many algorithms
have been proposed to improve the performancerantanetwork equipment. Usually,
the network equipment has to inspect all incomiagets and compares the packets with
pre-defined data to find a match or multiple maschigi- and automaton-based lookup
algorithms have been proposed and widely usedesetinetwork applications.

For example, many IP-lookup algorithms use multidoies on longest prefix
matches to speed up searching time, such as Ligleatam [40] and Etherton algorithm
[41] which is now reaching wide deployment in raatéAho-Corasick (AC) algorithm, an
automaton-based algorithm, is a fast multi-patteatching algorithm [1]. AC algorithm
has the best worst-case computational time contyleaand thus it has been modified for
intrusion detection systems (IDSs) and network eointsearching engines [18], [34].
Additionally, deterministic finite automata (DFAahd nondeterministic finite automata
(NFAs) are often employed in regular expressioncimag and deep packet inspection
[26], [42]. While tri- and automaton-based schemesutilized in different applications,
they are very much analogs of one another in tb#t heed similar data structures. To
implement these algorithms on real-life appliancas,efficient structure is the most
essential part to the performance of appliancesvéder, the existing algorithms usually
did not consider the implementation issues.

Furthermore, as many critical and personal dataezessible on the Internet, people

demand more secure networks and systems. Intridstection Systems (IDSs) are one

99

Chapter 5

of the most useful tools to identifying the maligsoattempts and protecting the systems
without modifying the end-user software. Differdndm firewalls that only checks
specified fields of the packdteaders IDSs detect the malicious information in the
payloads IDSs must be capable of real-time packet anafyzamen when suffering
serious attacks; otherwise the protectorate witl be defended strictly. Many studies
recently have aimed for upgrading the performamckaccuracy of IDSs.

As mentioned previously, the required memory cdpa®f the existing
multi-pattern matching algorithms for Snort’s dataé is usually larger than 300 KB. The
number of patterns is still growing. Therefore|JBS requires gattern detection engine
capable oin-depth packet inspection. Without exception, riin@st essential technology
of a detection engine is a powerful multi-patteratohing algorithm.

Many multi-pattern matching algorithms have beesppsed, and most of them are
filter-based searching algorithms,. such as BM-baaslgdrithms, WM, WM-PH, and
BF-based algorithms. However, in these filter-baagdrithms, if there is a match in the
pre-filters, the exact string matching (usuallyngsequential searghin the second stage
is also required. Furthermore, the performancene$e algorithms decreases while the
number of patterns increases. Consequently, thiEggitams have bad worst-case
performance.

Guaranteed performance is very important espediaflyhe equipment in the core
and edge network. The Aho-Corasick algorithm (AC)dhthe best worst-case
computational time complexity, where the numberstate transitions for each input
symbol is at most two [1], [19]. However, as foralistic implementations, the

performance of an algorithm is not only affected thg computation time, but also

100

Chapter 5

strongly affected by the number of required menrefgrences. The off-chip memory
reference costs about 80 ~ 200 clock cycles andg#pe may keep increasing [19].
Because of requiring large memory space, the AGIsideequent off-chip memory
references and then results in poor performancek B al modified the AC with a
compressed data structure, which reduced the memiagy but also increased the
processing time [34].

Therefore, this study proposes a practical mukpgatern matching algorithm that
has better worst-case performance as well as smetjaired memory, called ACM. The
proposed ACM uses Magic Structures based on thpepno of Chinese Remainder
Theorem, and contributes modifications to the AQodthm for fast in-depth packet

inspection.

51 PreviousWorks
511 The Aho-Corasick Algorithm-(AC)

The Aho-Corasick algorithm (AC) provided the besirsi-case computational time
complexity. AC is an automaton-based algorithm.r&here three functions in the AC:
Goto(st, codg, Fail(st) and Outputt), wherestis the state identification and thedeis a
scanned character. In other words, the Goto fundsia state transition function, which is
constructed by a set of patterns (or keyworBsYhe Goto function maps a past,(code
into a state or il message. In the state machine, every prefix op#teerns is only
represented by one state. The Fail function pamgsnext state that is the longest suffix
of the current state. The Output function stores mmatched patterns belonged Ro
corresponding to the current state. These thregtiums are constructed off-line and will

be used in the in-line matching stage.

101

Chapter 5

(a) Goto function.

st Output

3 she,hg
st0 123 456789 5 he
Faill 0 /0| 4[5]0[0f0[1][0[1] 7] his

9 hers

(b) Fail and Output Function
Figure 31. The Aho-Corasick algorithm.

Figure 31 shows the Goto, Fail, and Output funaiohthe AC algorithm with a
pre-defined pattern sBt= {she, he, his; hefsin the matching stage, given an infut=
‘sihé for example, the matching procedure scans oneacher at a time and starts from
the rooted state of the automaton, say, state @eS@®oto(0s) = 1, the machine goes to
state 1 and read the next charadteBecausei’ is not an expected character in the state
1 (Goto(1,) =fail), the Fail function is called and get Fail(1) =Tben the machine goes
to the state 0, and read the next charabteASs Goto(0,h) = 4, and with the same steps as
before we get Goto(4) = 5, the state machine goes to state 5 and haatichoutput
value: Output(5) = Ke. As a result, we can know that the inputontains one pattern

‘he. This example illustrates how the AC matchingaalthm works.

512 The Basic Implementation of the Aho-Corasick Algorithm

Tries and automata have the same architectura thatent node has several paths to
its child nodes. In both tries and automata, stheenext node only depends on the current

node and the current input while traversing the@lrave can simply consider only one set

102

Chapter 5

Children

~N

o, g

~a 7~ N\
A(Co)
Virtual ~ — 7

Figure 32. A parent-child set.

at a time: one parent and all of its child nodegufe 32). Assume the input is drawn from

asetA={a |i=12..2"}, where 2 is the number of paths ands the bit-width of the

input code (the stride size of tries and automata).

A simple data structure to implement tries and mnatia is to savall pointers of
child nodes in the parent node. When the brana@hisifour, it means every node in tries
and automata needs four pointers to:indicate s ébild nodes while using the simple
structure. The space complexity of the simple stmecis O(2). Since the paper [1]

mentioned that the Goto and Fail functions couldcbmbined into one next function:
J(st, codg, the basic original data structure ACO is showfoHews.

struct ACO{
struct ACO next_statg [];
struct Result pattern_list

|5

The pointernext_statewill indicate the address of the next state diyeand the
pointerpattern_listis the memory block storing corresponding patteffrikis state. Since
every next pointer is saved in a state, the addres® next state can be obtained directly

and only one memory reference is required per chara

103

Chapter 5

However, in a system with 32-bit pointers aid | 256, the ACO structure requires
1028 bytes per state. For example, retrieving 1di6finct patterns from the Snort rule
database, 10213 states are built in the AC alguritwhich means about 10 MB is
required for the state machine. Moreover, the sizthe commercial on-chip memory
capacity to date is only several kilobytes in theroprocessors and Application Specific
Integrated Circuits (ASICs), and 128-512 KB in teneral CPUs. Although a few
high-end ASICs providing large embedded memoryaagglable, linking many memory
blocks degrades the chip performance and poselerbak to power consumption issues.
To build a full graph for a detection rule databaseally requires large amounts of
memory. Hence external memory is required in thisec As mentioned previously, the
time to read data from external memeory-is.very lang indeterminist. A compact and

efficient data structure is essential to tries antbmata.

513 The AC Algorithm with Bitmap (ACB)

Tuck et al proposed a data structure with a bitfoaghe AC algorithm, named ACB

in short, to compress the nodes in the state madB#i.

struct ACB {
bitmapnext_flag| A |];
struct ACB *ail_ptr;
struct ACB *ext_start
struct Result pattern_list

|5

The state machine is still constructed based ofstite and Fail functions of the AC
algorithm. The bitmapext_flaga] indicates whether there is a valid forwardinghpfatr
the given charactea (in other words, Gote, a)#fail). Thus, if Gotogt, a)£fail, the

next_flaga] will be set as one; otherwise, it means the séxte will traverse along the

104

Chapter 5

Procedure ACB_Matching
Input: A string: T, the starting pointer of the ACB state machibete
Output: The matched pattern SEtPy.
Initialize: Py «— O.
For each input charactdnCode« T[i] do
If State>next_flaginCodq is setthen
pop_count— 0 andj < O;
Whilej<InCodedo
pop_counk— pop_count+Stateenext_fladj];
End
State— State->next_start pop_coumtSizeof(ACB);
Py« Py U Out(State->pattern_ligt
Else
11 State— State->fail_ptr,
12 End
13 Return;

© 0 N O O b WN P

=
o

Figure 33. The ACB_matching Procedure

Fail function, and the bitmamext_flaga] will be set as zero. This structure can
successfully reduce the memory requirement to d4lBytes for each state (on a 32-bit
pointer system and\ | = 256).

However, there is only one pointerext. stateto indicate the address of the first
valid next state. To obtain the address of a vadigt state with a given characterthe
matching process has to s@mery bits in the bitmamext_flagprior toa and accumulates
the number of valid prior bits. The accumulatiorutioe is called “popcount”. The
matching procedure using the ACB structure is shmwFigure 33.

The accumulation routine in lines 5-8 of the ACB tehing procedure is very time
consuming. In the worst case, it cogtqg pit-access and\ | adds for each input character.
Tuck et al admitted that thgopcountis very expensive for software implementation.
Although in the hardware implementation {h@countmay have the opportunity to be

optimized, the complexity and cost are still high.

105

Chapter 5

Therefore, an efficient function to calculate tluelgess of the next node is required.
Consequently, this stidy will focus on providing afficient data structure which has

compact memory without sacrificing processing time.

52 The ACM Algorithm

Taking the commercial hardware/software constraints account, this study
proposes an efficient data structure, based ongShiRemainder Theorem, nanialgic
Structure The Magic Structure is suitable for both tri- aadtomaton-based lookup
schemes. The Magic Structure needs only a smallatd memory and also reduces the
number of external memory accesses, when compatba@nventional data structures.
Therefore, the performance of network equipmenbgishe tri- and automaton-based
algorithms can be efficiently improved:

Generally most nodes of tries and automata haweaofdw valid child nodes. Hence,
allocating continuous memory only for the existeigld nodes is much more efficient
than for all child nodes. Additionally, assume thet can find a simplenagic function
say U, so that the corresponding child nodes can bedouamy fast according to the
inputs. As for the invalid input that does not havealid path, airtual nodeis assigned.

That is, the functionl] of Figure 32 is

{a;,a,,a5,3,} O - {1,020}, (5-1)
whereg are the input codes and the identification oMinteial node is zero. Assume there

is amagic numberY and define the magic functionl as

O; - x%f (&) =Kk, (5-2)

106

Chapter 5

wheref is a function that maps the code getinto a numerical sety % m returns the
remainder when is divided bym, andk is the index number of a child nod&). In other
words, [acts as a path decoder that returns the correthode for each input. Thus, if

we can prove that the magic numbgr exists, we can obtain thel .

521 Chinese Remainder Theorem
Becausell needs only one simple modulo operation, the patvetsing process
will go fast. It is interesting that the famoGkinese Remainder Theorem (CRT) can be

applied here for this purpose [43]. The theoremsisollows:

Chinese Remainder Theorem (CRT). Let M =i|jm , Wwherem are integers and
relatively prime; that isgcdm, m) = 1-for 1<i,j<k, andi# | 2 Let X4, Xa,..., X« be
integers. Consider the system of congruences:

X'=x(modm)

X = x;(modm,) (5-3)

’Thegcd(a, b) means the greatest common divisoaaidb.

107

Chapter 5

X = % (modm,),
whereX andx; are said to be congruent modufp 1<i <k . Then there exists exactly
oneX andX 0{0,1,..M -}, n

Therefore, if let the functiof number the symbols by prime numbers, that means
{al, az,...,q} O {m, m,..., m}, then by CRT we know the magic numpexists y is

now theX in CRT. Sincd is one-to-one mapping,Rrime table can be used to store the
prime number for each possible input symbol. Phenetable has at mosA | entries, and
so that it is very small and can be kept in thecbip-cache. Thus the prime number of an
input symbol can be obtained by a fast lookup. Btaim the magic numbey, the
following algorithm is applied.

Chinese Remainder Theorem Algorithm. Letz = M/m; andy; = z™(modm) for
eachi = 1, 2,...k, where z* means the multiplicative inverse mf (Note thatz™ exists

if gcd(z, m) = 1.) Then the solution to the congruence sysiéthe Chinese Remainder

Theorem is
k
X = (éx Y z)mod M, (5-4)

|
For example, assume the inputs,{a,, as, as} in Figure 32 maps to the relatively
prime set {2, 3, 5, 7}. We want to find a magic rugny that satisfieg% 2 = 1,/% 3 =0,

x%5=2,ang¢% 7 = 0. Then, we get 147.

108

Chapter 5

Data

Ptr

Magic
Number

Figure 34. Magic structure.

522 TheMagic Structure

Based on CRT, Klagic StructurgMS) is defined as shown in Figure 34, including a
pointer to the first child node of this s€t() and a magic numberin addition to the data

in a node. The address of the next nadex{_pt) for the inputa; can be fast obtained by

Null Jif x%f(a)=0,

Ptr+(x%f (a) ~1)xsizeof MSif y%f(a) =0, (5-5)

next ptr:{

where sizeof_MS is the size of the:Magic Structureich is the size obnepointer plus
log, ¥ in addition to the size of data in a node. Thee sif MS is much smaller than

that of the simple structure of pointers.

Furthermore, MS has a special property: if a nagednly one child, then the magic
numbery will be one. Observing most tri- and automaton-bdaagorithms, we find that
while approaching the leaf nodes, more and moresibdve only one child. Therefore, to
improve the performance, a simple checkyas done before operatingext ptr. If y=1,

next ptr is Ptr. The next node can be obtained directly withoumgoting.

109

Chapter 5

next_start

0x000 0x040 0x0c0 0x180
-—--p000 < 000 h 074 o 100
b2 (@ (0) () tori
L S 0x1 X
| asteNm hl (6) >80 7 000 Y[040
fail_ptr el (0 (0))
i 000 20x200
"1 040
(0) s|°
)

code e h 1 r s
Prime|2|3|5|7|11|

Figure 35. The architecture of ACM state machiniegre the number in the parentheses is the
magic number.

523 AC with Magic Structures

In this section, we will show a case of using AGoaithm with Magic Structures for
multi-pattern matching. Modifying the-—original MagiStructure and adding some
required fields, the data structure for AC, namé&A is proposed as follows:

struct ACM{
bitmapnext_flad|~ |];
struct ACM *ail- ptr;
struct ACM *next_start
struct Result pattern_list

long_intMagicNum
h

In the structure ACM, a bitmapext_flagis used for fast checking whether there is a
valid child. To reduce the size, only one poimtekt_starfpointing to the first valid child
state is stored in the data structure. MagicNumstores the magic numbgrThe ACM
state machine is organized based on the Goto aihduRations of the AC algorithm.
Figure 35 illustrates the memory organization & #CM state machine when using the

same example shown in Figure 31(a), and the prumaoers for possible input codes are

110

Chapter 5

Procedure ACM_Matching
Input: A string: T, the starting pointer of the ACM state machiS&ate and an array with
prime numbersPrime.
Output: The matched pattern SEtPy.
Initialize: Py «— 0O.
For each input charactednCode« T[i] do
If nextState>next_flaginCodq is setthen
If nextState->MagicNuns Othen
nextState—nextState->next_stgrt
Else
nextState—nextState->next_stant
((nextState->MagicNujBePrimg InCodg)*Sizeof(ACM);
8 Pu«— Py U Out(hextState->pattern_li%t
9 Else
10 nextState—nextState->fail_ptr
11 End
12 Return;

~NoOo O~ WN P

Figure 36. The matching procedure using the ACMcstrre.

also listed. Note that when there is no valid cfoldthe leaf nodes, the magic numbers of
the leaf nodes are labeled NULL,

Note that since a bitmapext flagis used for fast checking in ACM, the mapping
organization is slightly modified, and virtual noenot used. Thus the first valid child
node will haveD = 0. Using Figure 35 as an example, lhagicNumof the root state

(state 0) has to satisfy thas{' ‘ h' }—{0, 1}, where the prime numbers fag' ‘and ‘h’ are

11 and 3, respectively. This meaviagicNum% 11 = 0, andMagicNum% 3 = 1. Then
theMagicNumis 22.

The matching procedure using the ACM structurdlustrated inFigure 36 In the
ACM matching, given an input symbalfor example, ihext_flaga] is not flagged, then
the machine traverses the pointait_ptr until a state has a flaggeext flaga] or the
machine returns to the root staté the machine traverses to the root state and the

next_flaga] is not flagged, the machine will stop in the r@bate and read the next

111

Chapter 5

symbol. Otherwise, whileext_flaga] is flagged, slightly modifies the Equ.(5-5), the
pointerto the next state is

nextState= next_start+ [x sizeof ACM (5-6)

= next_start+ (MagicNum % Primfa]) x sizeof ACM,

where sizeof ACM is the structure size of ACM, is the offset to the first valid next
state (ext_star}, andPrimeis a small on-cache table keeping the prime nurfdrezach
possible input character. Obviously, only threedsedgext start MagicNum and
Primga]) and three operations are required for indicating next state. According to
lines 7-10 of the ACM matching procedure in Fig86g the worst case cost is three read
sand three operations. As the number of fail tteorss is never more than the depth of a
state, the number of state transitions-for. eachutirgymbol will be at most two.
Consequently, the cost of fail transition-is small.

Due to the definitions ofl-and CRT,"/ACM matching has a special property as
mentioned before: if there is only one chitagicNumwill be zero. Observing the ACM
state machine, we can find that approaching thienedes, more and more states have
only one child state. Therefore, this heuristic barused in the ACM matching to reduce
the computation. That is, if thmeext_flaga] is set and th&agicNumin the current state is
zero, then there is only one child state and thitpioto the next state for the symladk
next_start The forwarding path can be obtained directly withcomputing thell .

The ACM structure needs only 52 bytes for eachestaten the size of magic
number is 8 bytes, which is much smaller than tkEOAstructure of 1028 bytes, and so
that it successfully reduces the memory requiremédditionally, the state transition

time will be fast because of the simple path decdde and the magic number heuristic.

112

Chapter 5

Figure 35 illustrates the ACM matching, and assuthast the input string issh'.
Scan the string from left to right, and start frdime root state at 0x000. As the bitmap
next_flag'i’] is not flagged, the machine stays in the stdt®@x®00. Reading the next
symbol S, the process finds that it is flagged, and thetsiylagicNum= 22 in the state
0x000. AsPrimd‘s] = 11 and thenext_startof the state 0x000 is 0x040, the address of

the next state fors’ can be calculated by 0x040+(22%%@x34 = 0x040, where the size

of ACM is 52 bytes (0x34). Then the machine goethstate at 0x040 and checks the
bitmap for the next symboh*. Since thenext_flag' h'] is flagged and théMagicNumis
zero, ACM matching knows that it is the only chddd the address of the next state is

0x0c0, which is read directly from timext_startof the state 0x040.

524 Implementation | ssues

According to the magic number definition-and theTQReorem, it is noted that if
there are too many child states and the alphabes ts&rge, the magic number will be a
large number. In the hardware implementations,ithiet a problem. Many papers have
proposed optimized hardware designs for high perémrce modular arithmetic with long
operands, which can archive one operation per cbtycke [44]. Therefore, the ACM
matching algorithm can be easily implemented in tmdware and gain high
performance.

However, in the software implementations, softwaas its limitation on the length
of an operand. Two mechanisms can be employed ¢éccome this: (a) use a bitmap
check beforell ; (b) if the magic number is still too large, these running sumsn
partial nodes. In the first method, the bit of didranput is set; otherwise, it is not. Then

only the valid inputs have to find their next nodgsis is the method that used in the case

113

Chapter 5

study: ACM matching. The invalid inputs pointingttee virtual node are not involved in
calculating the magic number. For example, in tigaie 32 only f, as}—{1, 2} are

used in calculatingy and get y =7, which becomes much smaller.

In the second method, the running sum scheme isogetbinstead ofd in partial
nodes. Aunion structureis used here and then eight running sums and4®ténagic
number share the same memory space. Fortunatehg itase of importing 1200 distinct
patterns from the Snort database, only 0.078%sst#téhe state machine has to use the
running sum scheme. Another issue of implementi@§/fon some general processors is
sometimes the expensive cost of modulo operatibms. study will show the simulation
results later and illustrate that ACM outperform@B\even when running on a general

processor without optimized modulo-instruction.

5.3 Performance Analysis

Different algorithms use different-ways to constrand traverse their graphs, but
while in searching processes, they all need tatatie the address of the next node, which
is a required cost. Based on the heuristic oftlagic number and the magic structure,
the average time to calculate the address of tkenwele (averagaddressing timelex)

IS

Thext =0Ty + A=) Ty + T, (5-7)
where a is the probability that a parent node has onlydrikl node, T,-;and T,, are
the time spent on getting the address of the nadé mvhen y =1 and y # 1 respectively,
andT_ is the time of one lookup to check the magic numéhen x =1, it implies that

the current node has only one child node, and dideeas of the next nodeRsr. Thus,

114

Chapter 5

Ty=1= Treas (5-8)
whereTeaq IS the time of one read. ¥z 1, the pointer of the next node is calculated by
Equ. (5-5). Hence,
Tye1 = Tinod + Taga + Tsup * Tt + T+ 3Treaq (5-9)
where Thog Taga @and Ty are the time of one modulo, add and multiply opena
respectively, and is the time of one lookup on the direct mappirngedf). It requires
three reads while reading operands from data strestor registers is considered. When
the structures can be kept on cadhggis very small. Assume th@ttgg, Tsub Tread, T, @and
Tmueach needs cycle time since the multiplication in Equ. (5i5)a simple constant
multiplication, andT,0q Needsbr cycles.b is very small because the optimizations for
modulo operations in hardware and:software have pegposed in many articles [44].
By substituting Equ. (5-8) and Equ.(5-9) into E(j+/), the average addressing time is
T = (b+8)r=(b+6)ar . (5-10)
In the worst case, the addressing time is
max{T, e} =T, +T =(b+8)7 . (5-11)
As a bitmap is involved in MS, the average addrestime is
T i = BTt T = (A+(b+8)B)T — (b +6)apr (5-12)
where [is the probability that the current code exisfsath for a certain input. For a
sparse grapha and B are very small. The addressing time of Tuck ande&u

algorithms which used popcount to obtain the oftdet child node is

k
Tnzif(ak) = E:L(Tadd +Tread) +Tmu| +Tadd +Tread +TL) (5'13)

115

Chapter 5

Table 16. The memory size (in Bytes) of a nodeaih traversing using simple structure, Bitmap
structure, and MS plus bitmap.

2" | Vvalid Children | Simple | Bitmap | MS+bitmap
8 4 32 5 7
16 8 64 6 12.25
64 16 256 12 28.125
256 16 1024 36 56.875

whereay is the current input code. The worst caselgly is

max{T PP} = 2" x 27 + 47 = (2" + 4)1 | (5-14)

when the input code i$bit coding. Compared Equ. (5-11) with Equ. (5-4¢ can see

that MS outperforms BM structure, whitds usually larger than two ards very small.

Notably, T v increases exponentially..Consequently, MS performgh better than

BM structure, especially for the algorithm that fsparse graph or that uses larger

strides to reduce the searching depth.

54 Resultsand Discussions

Firstly, Table 16 lists the required memory of siengtructure, bitmap structure (BM)
and MS plus bitmap for path traversing in a 32abiiressing system. This shows only the
memory for node addressing, excluding the datalgorithms themselves. Recall that
the simple structure has to save all pointers il ctodes, and the bitmap structure uses
ann-bit bitmap and one pointer that indicates thetistgraddress of the first child node.
Table16 shows that MS needs only a small amount of menftilough MS requires a
little larger memory than BM structure, it is s8inall enough to be stored in the cache

memory.

116

Chapter 5

To show the performance of these structures oalasystem, we implement an IDS
of 1200 rules using the AC algorithm with differesdita structures. In the following
simulations, with detachment we use the free aatipattern set released by Snort [1]
Since the patterns of Snort are written in mixemrptext and hex formatted bytecodes,
we assume that the alphabet size|)|is 256 in the simulations.

To evaluate the performance of algorithms in a nei@nse attack, we use a trace
from the Capture-the-Flag contest held at the D¥cas the input streams of the
programs. The Defcon Capture-the-Flag contest esldihgest security hacking game,
which tries to break into the servers of otherslavprotecting your own server hiding
several security holes [14]. In the simulations ewvaluate the performance by calculating
the number of instructions used in the-algorithmd #nhen multiplying the cost of each
instruction. The costs of the instructions refeatceal AMD processor [45], where the
number of instructions per clock for-add, mov, ncahp, bt, and mod is 3, 3, 1, 3, 3, 1/71
respectively, and the operation cost-of mod:is high

Let Cy represent the total memory requirement @atle the average execution time.
Figure 37 and Figure 38 sho@, and Cr for the ACM, ACB and ACO matching
respectively in the case of 200 patterns and 120tems. Note that th€y, of ACM
includes the memory requirement of fReme table. We can see that the total memory
requirement of ACM is 519.2 KB in the case withig pattern setd| = 1200, which is
only 5.1% of the basic AC and a little (18%) mdnart that of ACB. Furthermore, the
memory size of ACM is still in the scale of the cmip cache that general chipsets support.
Therefore, we can say that the ACM can be easiljleamented in the hardware and

software, and can gain high performance due toffachigp memory access.

117

Chapter 5

@ 1200 patterndm 200 pattem#;

100000 ¢
i 10252.9

912.4

10000 |

1000 519.1 438.8

Memory (KB)
[T
\l
N

100 F—

10 F—

L
ACM ACB ACO

Figure 37. The total memory requirement for the AGNMIB and ACO structures in the case of
1200 and 200 patterns respectively.

@ 1200 patterndm 200 patterns%

100

80

60

Time (cycles)

40

0 .

ACM ACB ACO ACO-100

Figure 38. The average execution time per symbai@i¥, ACB, and ACO matching in the case
of 1200 and 200 patterns respectively.

To date, the largest size of on-chip memory supgoldoly the FPGAs is about 1 MB
and the size of L1 cache and L2 cache of geneoakgsors is only 128 KB ~ 2 MB [22].
Therefore, according to the memory requirement shawFigure 37, the full state
machine of ACO can not be stored in the on-chip mmThe external memory
references are required in the ACO matching dthesverage execution time per byte
of ACM, ACB and ACO matching respectively in theseaof importing 200 and 1200

patterns. There are two cases for ACO matchingrakelt labeling ACO is not assessed

118

Table 17. The normalized cost of ACM, ACB and AGQhe case of 200 and 1200 patterns.

C/CACM C/CACM
(Num. of Patterns=200) | (Num. of Patterns= 1200)
ACM 1 1
ACB 4,492 4.795
ACO 2.141 3.048
ACO-100 323.306 460.197

any latency penalty for the external memory refeesn and the other one labeling
ACO-100 needs 100 cycles for each external fetch.

Figure 38 shows that ACM performs about 4.67 titvetter than ACB in the case of
1200 patterns, and 4.34 times over ACB in the cds200 patterns. Comparing ACM
with ACO and ACO-100, we can see that ACM outpenf®ACO-100 and the external
memory references drastically affect the perforreaoic ACO matching. Note that the
cost of modulo operation in the simulations is extely higher than others. Even assessed
the penalty of high operation cost;,”/ACM still outipems ACB and is moderately slower
than ACO. If implemented in embedded systems orA$?BGCM will be more efficient.

As the required time and memory are usually traffleé@mcompare the overall costs

of these three algorithms, we define an evaludtiontionC: C = Cy x Ct. The higheC

means the more cost is required in the implememtstiThe total cost for ACM, ACB and
ACO is labeledc*“™ CA°B, andC*“© respectively.

For easy comparison, we show the normalized c&ta=") of each algorithm in
Table 17.

Table 17 demonstrates that the cost of ACM is sn#tlan others. Even requiring a
littte more memory than ACB, ACM has better overdficiency, which is about 3.4-3.7

times better than ACB. Although the theoretic exiecutime of ACO is shorter than that

119

Chapter 5

of ACM, the overall cost of ACM is about 1.1-2 tisnemaller than ACO. For realistic
implementations, we can see that the overall cb8CM is about 322—-459 times better
than that of ACO-100. Therefore, we can say thaMAE€ a time- and memory-efficient
algorithm for IDSs, and the Magic Structure is @ént for the automaton-based

algorithms.

120

Chapter 6

6 CONCLUSIONSAND FUTURE WORKS

The increasing variety of network applications atekes held by various users are
creating a strong demand for fast in-depth packepection. The most important
component of in-depth packet inspection is an ieificmulti-pattern matching algorithm.
This study has proposed three novel multi-patteatching algorithms for network
content inspection: laierarchical multi-pattern matching algorithtliMA), anenhanced
hierarchical multi-pattern matching algorithf(EHMA), and anAho-Corasick with
Magic Structures(ACM) algorithm. HMA and EHMA have better averagase
performance, while ACM has better worst-case paréorce than the state-of-the-art
algorithms. This study also has discussed and ateducurrent multi-pattern matching
algorithms for NIDSs.

HMA applies the most frequent-commooadeso quickly filter out innocent packets,
and to reduce memory accesses. The frequent-conuodes are used to build small
hierarchical index tables for simple and fast clsedihe hierarchical scheme improves
the matching performance significantly by reducthg average number of external
memory accesses to only 10%—-37%. The required meofiétMA is only about 350 KB
including the 1200 patterns of Snort rules. Pakdidy, HMA use simple architecture and
functions, and it can be easily implemented in ksafiware and hardware. Simulation
results have shown that HMA performs about 0.9-d®@s better than others. HMA
significantly improves the best-case and average-geerformance, and also provides
moderately worst-case performance of the multigpattmatching. Moreover, an

incremental pattern update mechanism has also pedpior HMA.

121

Chapter 6

Improving HMA, EHMA applies the frequent-commarams obtained by the
proposed GFGS to narrowing the searching scop#oamaickly filtering out the innocent
packets. The matching process then focuses ontigeomost suspected packets. EHMA
concentrates the patterns into a small on-chitaid performs simple and fast checks.
Additionally, EHMA uses the frequency-based badngrheuristic to speed up the
scanning process. The hierarchical matching sicanifly reduces the average number of
external memory accesses to only 6%-19%, thus mmgdhe matching performance.
The required memory of EHMA is only about 40KB thdétional to the pattern contents
of Snort rules. Particularly, EHMA is very simplecacan be easily implemented in both
software-based and hardware-based platforms. Simmlaesults have shown that
EHMA performs about 0.89-1161 times-better tharehEven under real-life intense
attack, EHMA significantly outperforms others. EHM#so works well for the systems
with larger minimum pattern size, such’ as viruediébn systems. Consequently, HMA
and EHMA facilitate the creation -of efficient andst-effective packet inspection
engines.

In this study, an efficient Magic Structure (MS)r fonulti-pattern matching
algorithms has been proposed in ACM, and the prexgbasgorithm ACM contributes
better worst-case performance of pattern deteioNIDSs. The MS is based on an idea
behind congruence systems, and uses a magic nuwabeed from Chinese Remainder
Theorem. The analysis and simulation results hdmvs that ACM can efficiently
reduce the required amount of external memory acc®€M is an automaton-based
algorithm, and it features fast traversing betwdle®m nodes in the state machine.

Furthermore, ACM uses only simple instructions othiean specific operations or

122

Chapter 6

hardware. Therefore, ACM can be easily implemeitedardware and software. The
results have shown that ACM outperforms others. dherall cost of ACM is about
1.1-459 times better than the existing implememati Consequently, ACM enables an
efficient IDS that can survive under heavy attacks.

As the proposed EHMA has nice average-case perfarenand the ACM has good
worst-case performance, combining this two algarghfor a powerful and adaptive
multi-pattern matching algorithm is worthy of fueth research in the future.
Furthermore, the proposed Magic Structures maybte ta apply to different network
applications, such as tri-based algorithms andotikup algorithms. In this study, the
proposed three algorithms are applied to in-depitket inspection in wired intrusion
detection systems. The multi-pattern-matching algms can also be applied to other
research areas, such as wireless network secseagrching engines, etc. Therefore,

extending the use of the proposed ideas is:alsdable issue.

123

References

REFERENCES

[1] Snort, http://www.snort.org.

[2] Brian Caswell, Jay Beale, James C. Foster, andnyeffaircloth, "Snort 2.0 Intrusion
Detection,"SyngressFeb, 2003.

[3] CERT/CC. "The Nimda worm has the potential to dffeoth user workstations
(clients) running Windows 95, 98, ME, NT, or 200@daservers running Windows NT
and 2000.CERT Advisory CA-2001-26ep. 2001.

[4] Spyros Antonatos, Kostas G. Anagnostakis, and Ealasd®. Markatos, "Generating
realistic workloads for network intrusion detectgystems, ACM Workshop on Software
and Performancepp. 207-215, 2004.

[5] Martin Roesch, "Snort — Lightweight Intrusion Ddten for Networks,'Proceedings
of the 13th Systems Administration Confereppe 229-238, 1999.

[6] Tomoaki Sato and Masa-aki Fukase, "Reconfiguraldedidare Implementation of
Host-based IDS,'the 9th Asia-Pacific Conference on Communicatidol. 2, pp.
849-853, Penang, Malaysia, Sept. 2003.

[7] Mike Fisk and George Varghese, “Fast Content-B&satket Handling for Intrusion
Detection,”"UCSD Technical Report CS2001-06R0ay 2001.

[8] Alfred V. Aho and Margaret J. Corasick, "Efficiestring matching: an aid to
bibliographic search,Communications of the AGMWol. 18, Np. 6, pp. 330-340, June

1975.

[9] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, LarHuston, and Uday Naik,
"Network Processor Perfromance Analysis Methodalblpel Technology Journavol.
6, Aug. 2002.

[10] Ricardo A. Baeza-Yates, "Improved String SearcBdftware — Proctice and
ExperienceVol. 19, No. 3, pp. 257-271, March 1989.

[11] Spyros Antonatos, Michalis Polychronakis, P. Akligi Kostas G. Anagnostakis,
Evangelos P. Markatos, "Piranha: Fast and memdigiesft Pattern Matching for
Intrusion Detection,'Proceedings of the 20th IFIP International Infornmat Security
ConferencdSEC2005), pp. 393-408, May 2005.

[12] Gordon Brebner and Delon Levi, "Networking on Chigth Platform FPGAs,"
Proceedings of 2003 IEEE _International Conference &ield-Programmable
Technologypp. 13-20, Dec. 2003.

[13] Robert S. Boyer and Strother -J. Moor, "A Fast §trBearching Algorithm,"
Communications of the AGMWol.-20,"No.-10, pp. 762—-772, October 1977.

[14] Crispin Cowan, “Defcon Capture the Flag: Defendiunerable Code from Intense
Attack,” Proceedings of DARPA Information Survivability Ganehce and Exposition,
Washington DCvol.2, pp. 71-72, April 2003.

[15] C. Jason Coit, Stuart Staniford, and Joseph McalrfiTowards Faster String
Matching for Intrusion Detection or Exceeding th@e&d of Snort,Proceedings of the
2nd DARPA Information Survivability Conference dxposition vol.1, pp. 367-371,

2001.

125

[16] Thomas H. Cormen, Dartmouth College, Charles Esdrebn, Ronald L. Rivest,
and Clifford Stein, "Introduction to Algorithms -nd@ Edition,” MIT Press and
McGraw-Hill, Sep. 2001.

[17] Sarang Dharmapurikar, Praveen Krishnamurthy, Todcb@8l, John lockwood,
"Deep Packet Inspection using Parallel Bloom Hitellth Symposium on High
Performance Interconnectpp. 44-51, August 2003.

[18] Sarang Dharmapurikar and John Lockwood, "Fast aathBle Pattern Matching for
Network Intrusion Detection Systems,lEEE Journal on Selected Area in
CommunicationsVol. 24, No. 10, pp. 1781-1792, Oct. 2006.

[19] Ozgun Erdogan and Pei Cao, "Hash-AV: Fast Virusn&igre Scanning by
Cache-Resident FiltersProceedings of IEEE Global Telecommunications Qemnfes
Vol. 3, St. Louis, MO, Nov. 28, 2005.

[20] Mark Handley, Vern Paxson-and Christian Kreibiddetwork Intrusion Detection:
Evasion, Traffic Normalization, and-End-to-End Bl Semantics,Proceedings of the
9th USENIX Security Symposiua®00.

[21] R. Nigel Horspool, "Practical Fast Searching inir§js," Sofetware Practice and
ExperienceCol. 10, No. 6, pp. 501-506, 1980.

[22] Intel Network Processors,
http://www.intel.com/design/network/products/npféyfindex.htm

[23] Christopher Kruegel, Fredrik Valeur, Giovanni Vigrand Richard Kemmerer,
"Stateful Intrusion Detection for High-Speed Netkm) Poceedings of IEEE

Symposium on Security and Privapp. 285, May 2002.

126

[24] Sun Kim and Yanggon Kim, "A Fast Multiple Stringtfain Matching Algorithm,"
17th AoM/IAoM Interantional Conference on Compu8eienceSan Diego, CA, August,
19909.

[25] Vasilios Katos, "Network Intrusion Detection: Evating Clusterm Discriminant,
and Logit Analysis," Information Sciences 177, @%63-3073, 2007.

[26] Hongbin Lu, Kai Zheng, Bin Liu, Xin Zhang, and YwtLiu, "A Memory-Efficient
Parallel String Matching Architceture for High-Spdatrusion Detection,JEEE Journal
on Selected Area in Communicatiph'®l. 24, No. 10, pp. 1793-1804, Oct. 2006.

[27] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen and Q¥ Kao, "A Fast String
Matching Algorithm for Network Processor-Based Uisiobn Detection SystemACM
Transactions in Embedded Computing Sysfénis3, Issue 3., pp. 614—633, Aug. 2004.
[28] Shaomeng Li, Jim Torresen, and Oddvar SoraasemldiErg Reconfigurable
Hardware for Network SecurityProceedings of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machings. 292, 2003.

[29] Evangelos P. Markatos, Spyros Antonatos, Michatiydhronakis and Kostas
Anagnostakis, "Exclusion-based Signature Matchingr fintrusion Detection,”
Proceedings of IASTED International Conference am@unications and Computer
Networks (CCN 2002pp. 146-152, October 2002.

[30] Vern Paxson, "Bro: A System for Detecting Networkruders in Real-Time,"
Computer Networks/ol. 31, No. 23-24, pp. 2435-2463, 1999.

[31] Graham A. Stephen, "String Matching Algorithmdf;orld Scientific (ISBN

981-02-1829-X), 1994.

127

[32] Taeshik Shon and Jongsub Moon, "A Hybrid Machinearbang Approach to
Network Anomaly Detection,” Information Sciences 1pp. 3799-3821, 2007.

[33] Tzu-Fang Sheu, Nen-Fu Huang, Hung-Shen Wu, MingagGh&hih, and
Yuang-Fang Huang, "On the Design of Network-Prooe8ased Gigabit
Multiple-Service Switch,’Proceedings of IEEE ITRE 200H8sinchu, Taiwan, 2005.
[34] Nathan Tuck, Timothy Sherwood, Brad Calder, Gedrgeghese, "Deterministic
Memory —Efficient String Matching Algorithms forthusion Detection,Proceedings of
the IEEE Infocom Conferenc¥ol. 4, pp. 2628-2639, Hong Kong, March 2004.

[35] Vitesse Network Processors, http://www.vitesse.com

[36] Sun Wu and Udi Manber, "A Fast Algorithm for MuRattern Searching,Tech.
Rep. TR94-17, Department of Computer Science, thily®f Arizona May 1994.

[37] Zhenwei Yu, Jeffrey J. P. Tsai and: Thomass Weidga, Automatically Tuning
Intrusion Detection System," IEEE Transactions gst&ns, Man and Cybernetics — Part
B: Cybernetics, Vol. 37, No. 2, pp. 373=384, AROI07.

[38] Tzu-Fang Sheu, Nen-Fu Huang and Hsiao-Ping Lee, Ndvel Hierarchical
Matching Algorithm for Intrusion Detection Systeth$froceedings of IEEE Global
Telecommunications Conferen@globecon), St. Louis, Nov. 2005.

[39] Yuke Wang, “New Chinese Remainder TheorenmSgnference Record of the
Thirty-Second Asilomar Conference on Signals, 8yst& ComputersVol. 1, pp.
165-171, Nov. 1998.

[40] Mikael Degermark, Andrej Brodnik, Svante Carlssand Stephen Pink, “Small
forwarding tables for fast routing lookups,” In Beedings ofSIGCOMM pages 3-14,

1997.

128

[41] W. Eatherton, Z. Dittia, and G. Varghese, “Treariaip: Hardware/software IP
lookups with incremental update®CM SIGCOMM Computer Communications Revie
34(2), 2004.

[42] Reetinder Sidhu and Viktor K. Prasanna, "Fast Ragbdkpression Matching using
FPGAs,” IEEE Symposium on Field-Programmable Custom Comguiachines
(FCCMO1), April 2001.

[43] Yuke Wang, “New Chinese Remainder Theorem$Hirty-Second Asilomar
Conference on Signals, Systems & Computéot 1, pp. 165-171, Nov. 1998.

[44] Saman Amarasinghe, Walter Lee, Ben Greenwald, fitheReduction of Integer

Division and Modulo OperationsM.1.T., 1999, http://www.cag.lcs.mit.edu/raw

[45] Torbjorn Granlund. Instruction Latencies and Thigugt for AMD and Intel x86

processors. http://swox.com/doc/x86-timing.pdf. SHD5.

129

TzU-FANG SHEU’ SPUBLICATION LISTS

(A) Journal Papers

[1]

[2]

[3]

[4]

Tzu-Fang Shey Nen-Fu Huang, and Hsiao-Ping Lee, “In-depth Pabkspection
Using a Hierarchical Pattern Matching Algorithm|EEE Transactions on
Dependable and Secure Computing, 2008 appear) El, SCI (2006 1IF=1.762),
8/82in subject categories COMPUTER SCIENCE, SOFTWARESENEERING)
Hsiao-Ping Lee,Tzu-Fang Sheu Yin-Te Tsai and Chuan-Yi Tang, "Finding
Homologous Sequences in Genomic Databasksjfnal of Computers- Special
issue on Bioinformatics and Computational Biologyl. 18, No. 3, October 2007.
Tzu-Fang Sheuy Nen-Fu Huang, and Hsiao-Ping Lee, “A Hierarchical
Multi-pattern Matching Algorithm for. Network Contemnspection,”Information
SciencesMar. 2008. El, SCI (2007:1F=2.147),10/92 in the subject categories
COMPUTER SCIENCE, INFORMATION SYSTEMS)

Shiann-Tsong Sheu and Tzu-Fang Shey “‘A bandwidth
allocation/sharing/extension protocol for multimediver IEEE 802.11 ad hoc
wireless LANs,”IEEE Journal on Selected Areas in CommunicatidS&AC), Oct.

2001, pp. 2065-2080 vol.10. (NSC89-2218-E-032-QER) SCI)

(B) Refereed Conference Papers

[5]

[6]

Tzu-Fang Shey Nen-Fu Huang, and Hsiao-Ping Lee, “A Time and Mgm
Efficient String Matching Algorithm for Intrusion&@ection SystemsProceedings
of IEEE Global Telecommunications Confere(@GeOBECOM’06), San Francisco,
USA, November 2006, pp. 1-5. (NSC-94-2752-E-007-BBE and

NSC-94-2213-E007-02XEI)

Tzu-Fang Shey Nen-Fu Huang, and Hsiao-Ping Lee, “A Novel Hiehacal

Matching Algorithm for Intrusion Detection SystefBroceedings of IEEE Global
Telecommunications Conferen€€LOBECOM’'05), St. Louis, Missouri, USA,
November 2005, Vol. 3, pp. 5-10. (NSC-94-2752-E-002-PAE)(EI)

[7] Tzu-Fang Shey Nen-Fu Huang, Hung-Shen Wu, Ming-Chang Shih, and
Yuang-Fang Huang, “On the Design of Network-Prooe&ased Gigabit
Multiple-Service Switch,” Proceedings of "8 International Conference on
Information Technology (ITRE 20Q05) Hsin-Chu, Taiwan, June 2005.
(NSC-94-2752-E-007-002-PAREI)

[8] Hsiao-Ping LeeTzu-Fang Shey Yin-Te Tsai, Chin-Hua Shih and Chuan-Yi Tang.
“Efficient Discovery of Unique Signatures on Whagenome EST Databases,”
Proceedings of the 20th ACM Symposium on Appliedgtiting(SAC 2005) pp.
100-104.(El)

[9] Hsiao-Ping Lee, Yin-Te Tsai; Chuan-Yi.Tang, Chinga5hih and zu-Fang Shey
"A Seriate Coverage Filtration Approach for Homogldgearch,' Proceedings of the
19th ACM Symposium on Applied Compuii84C 2004) pp. 180-184(El)

[10] Hsiao-Ping LeeTzu-Fang Shey Yin-Te Tsai, Chin-Hua Shih and Chuan-Yi Tang,
"An Efficient Algorithm for Unique Signature Discewy on Whole-Genome EST
Databases,Proceedings of the 3rd IEEE Computational SystemiBrmatics
ConferencgCSB2004,) pp. 650-651(El) (ISBN13: 9780769521937

[11] Hsiao-Ping Lee, Yin-Te Tsai, Ching-Hua Shitzu-Fang Sheuand Chuan-Yi Tang,
'‘An IDC-based Algorithm for Efficient Homology FHitition with Guaranteed
Seriate CoverageProceedings of the IEEE Fourth Symposium on Biomé&tics
and Bioengineering (BIBE2004) page 395-402, 2004. (EI)
(ISBN13:9780769521732

[12] Hsiao-Ping Lee, Yin-Te Tsai, Ching-Hua Shitzu-Fang Sheuand Chuan-Yi Tang,

‘A Novel Approach for Efficient Query of Single Neotide Variation in DNA
Databases.'The Eighth Annual International Conference on Redeain
Computational Molecular BiologyRECOMB 2004) Poster, San Diego, March,
2004.(El)

[13] Nen-Fu Huang, Han-Chieh Chao, Reen-Cheng Wang, -‘BtmaChen, and
Tzu-Fang Sheuy “The IPv6 deployment and projects in Taiwan,” 20EEE
Symposium on Applications and the Internet Worksi8AINT'03 Workshops)an
2003, pp. 157-160. (NSC-90-2219-E-007-001 and MOE§A04-1-4)

[14] Shiann-Tsong Shed,zu-Fang Shey Chih-Chiang Wu, and Jiau-Yu Luo, “Design
and implementation of a reservation-based MAC mualtéor voice/data over IEEE
802.11 ad-hoc wireless networksProceedings of the IEEE International
Conference on CommunicatiofCC); June 2001, pp. 1935-1939, vol.6. (ISSN
05361486)El)

[15] Shiann-Tsong Sheu andizu-Fang Shey “DBASE: a distributed bandwidth
allocation/sharing/extension protocol for multimedover IEEE 802.11 ad hoc
wireless LAN,” IEEE Proceedings of Twentieth Annual Joint Confeesof the
IEEE Computer and Communications Societfd$FOCOM), April 2001, pp.
1558-1567 vol.3. (ISSN 07431665

[16] Shiann-Tsong Sheu andizu-Fang Shey “A hybrid data/header interleaving

strategy for wireless ATM networksJEEE 1999 2nd International Conference on

ATM (ICATM '99) June 1999, pp. 1-6.

