

# Psychoacoustics and *two kinds of* perceptual audio coding

Duality between data compression and Watermarking

Yi-Wen Liu, Ph.D.

EE6641: Analysis and Synthesis of Audio Signals Nov. 30, 2010 Last updated Dec. 21, 2015

#### Outline

- Data Compression
  - Psychoacoustic modeling in mp3, iTune, etc.
  - Quantization and round-off error
  - Noise hiding principle
- Digital Watermarking
  - Applications
  - Dual to data compression
  - Games between embedder and attackers
  - Useful for *digital right management*?

#### MP3 removes the in-audible,...



# and also considers psychoacoustic *masking*



frequency

#### Basilar membrane as a spectrum analyzer



#### Images downloaded from: http://www.vimm.it/cochlea/cochleapages/theory/

Spatial excitation of pure tones along basilar membrane is approximately a constant, triangular shape.

- *M*(*z*), called *spreading function*,
  - $dM/dz \approx 27$ dB/Bark (or 1dB / 50  $\mu$ m) on the low-frequency side.
- Frequency z is measured in Barks.
  - $\Delta z = 1$  (Bark) corresponds to ~1.3mm on basilar membrane



#### More about masking

- Tonal vs. noise masker
- Forward masking
- Pre-masking

## Is audio data compression all about removing the inaudible?

- In this example, 3 out of 7 tones are removed. So, compression ratio is approximately 42%.
- To compare,
  - MP3: >80% (5:1), AAC\*: > 90% (10:1),

with "good" sound quality.

\*AAC is Apple's audio format.



#### *Noise shaping* in audio coding:

Quantization error  $X^{(q)}[k] - X[k]$  to be masked



#### **Binary Representation of Numbers**

- Step 1: Determining number of bits (N) to use
- Step 2: Divide full signal range ±R by 2<sup>N</sup> equally spaced *quantization points* (QP).
  - Each QP uniquely represented by binary string of length N.
- Step 3: For any floating-point number, find nearest QP.

2

#### More on quantization

| Range | Ν | Quantiz.<br>Pts. | Step-<br>size | Decimal | Approx. | Binary  |
|-------|---|------------------|---------------|---------|---------|---------|
| ±32   | 6 | 64               | 1             | 20.79   | 21      | 010 101 |
| ±32   | 5 | 32               | 2             | 20.79   | 20      | 010 10  |
| ±32   | 4 | 16               | 4             | 20.79   | 20      | 010 1   |
| ±32   | 3 | 8                | 8             | 20.79   | 24      | 011     |

Statistically, each additional bit improves signal-to-noise ratio (SNR) by 2-fold.

#### SNR = 6 dB/bit



Sound Pressure Level

frequency

#### Remarks on the excitation pattern

BM



#### 電生理、細胞組織結構、與流體方程之 整合模型 (Liu and Neely, 2010)



#### Work done at Boys Town, and continuing at Tsinghua (Hsinchu, Taiwan)

- Liu, Y.-W., Yu, L.-M., Wu, P.-J. (2014). "Close-loop simulation of the medial olivocochlear (MOC) antimasking effects," to appear in *Proc. the 12<sup>th</sup> Int. Mechanics of Hearing Workshop*, Attica, Greece.
- Liu, Y.-W. (2014). "Stationary noise responses in a nonlinear model of cochlear mechanics: Iterative solutions in the frequency domain," submitted to *J. Acoust. Soc. Amer.*
- Liu, Y.-W., and Neely, S.T. (2013). "Suppression tuning of distortion-product otoacoustic emissions: Results from cochlear mechanics simulation," *J. Acoust. Soc. Am.* **133**, 951-961.
- Liu, Y.-W. and Neely, S.T. (2012a). "Quasilinear cochlear responses to noise can result from instantaneous nonlinearities," in *What Fire is in Mine Ears: Progress in Auditory Biomechanics*, C. A. Shera and E. Olson (Eds.). New York: American Institutes of Physics, pp. 218-223.
- Liu, Y.-W., and Neely, S. T. (2010). "Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells," *J. Acoust. Soc. Am.* **127**, 2420-2432.
- Keefe D. H., Fitzpatrick D., Liu, Y.-W., Sanford C. A., and Gorga, M. P. (2010). "Wideband acoustic reflex test in a test battery to predict middle-ear dysfunction," *Hear. Res.* **263**, 52-65.
- Liu, Y.-W., and Neely, S.T. (2009). "Outer hair cell electromechanical properties in a nonlinear piezoelectric model," J. Acoust. Soc. Am. **126**, 751-761.
- Sanford, C.A., Keefe, D.H., Liu, Y.-W., Fitzpatrick, D.F., McCreery, R.W., Lewis, D.E., and Gorga, M.P. (2009) "Sound-conductance effects on DPOAE screening outcomes in newborn infants: Test performance of wideband acoustic transfer functions and 1-kHz tympanometry," *Ear & Hearing* 30(6): 635-652
- Liu, Y.-W., Sanford, C.A., Ellison, J.C., Fitzpatrick, D.F., Gorga, M.P., and Keefe, D.H. (2008). "Wideband absorbance tympanometry using pressure sweeps: System development and results on adults with normal hearing," *J. Acoust. Soc. Amer.* **124**, 3708-3719.

#### MP3 vs. AAC

- MPEG-1 Layer III
  - Finalized in 1992
  - Known as MP3
  - Good at 128 kbits/s, per channel.
- MPEG-2/4 Advanced Audio Coding (AAC)
  - Finalized in 1997
  - Known as the Apple iTune music format.
  - Good at 128 kbits/s, per stereo.
  - Not compatible to MP3
    - Its old name: MPEG-2 NBC (Non-Backward Compatible).

#### Sound quality evaluation

- Judged by professional golden ears
- Played back in professional studio room
- Randomized, double-blinded R-A-B tests

| Quality | Impairment                    |  |  |
|---------|-------------------------------|--|--|
| 5       | Imperceptible                 |  |  |
| 4       | Perceptible, but not annoying |  |  |
| 3       | Slightly annoying             |  |  |
| 2       | Annoying                      |  |  |
| 1       | Very annoying                 |  |  |

 Good compression algorithm scores > 4.0 for European Broadcast Union's "Sound Quality Assessment Materials".

#### Speech coding vs. audio coding

- Speech coding:
  - Parametric, based on production model
  - Sampling rate 16 kHz is usually sufficient
  - Targeting data rate <10 kbps</li>
  - Not good for coding music
- Audio coding:
  - Non-parametric, based on perceptual model
  - Sampling rate 44.1 kHz or higher
  - Targeting data rate 128 kbps/stereo

### DETOUR TO A SPEECH CODING STANDARD (CELP)

#### Possible applications of LP

- **Speech synthesis**: By replacing e[n] with a template, speech compression achieves <8k bits/s.
  - Codebook excited linear prediction (CELP)
  - key technology for voice over internet and wireless networks.
- **Speech recognition**: From {a<sub>1</sub>,..a<sub>P</sub>}, we can estimate
  - Vocal tract constriction
  - Frequency-envelope; formant structure.



#### **Code-Excited Linear Prediction**



了不起的地方

• ¼ bit per sample x 8000 samples/sec = 2 kbps.

• Digital telephone land line = 64 kbps.

- 32:1 data compression, proposed in 1985!
  - At AT&T Bell Labs.
  - However...

#### Coding procedure was very expensive

"...It took 125 sec of **Cray-1** CPU time to process 1 sec of the speech signal."

Cray-1 (1975): 80-MHz
 "super computer".





http://en.wikipedia.org/wiki/Cray-1 24

#### **Topic II: Watermarking**



Bureau of Engraving and Printing, United States Department of the Treasury http://www.moneyfactory.com/

#### Digital watermarking

Adapted from: E. Lin et al. (2000). "Detection of image alterations using semi-fragile watermarks"





## Application #1: forgery detection



#### Application #2:

#### copy management

J.-P. Linnartz et al, "System aspects of Copy Management for digital video" (2000)



#### Application #3: automatic broadcast monitoring

J. Gertner, "Our Ratings, Ourselves", the New York Times Magazine, April 10, 2005

"Television and media will change more in the next 3 to 5 years than it's changed in the past 50."

∼ Bob Luff, chief technology officer, Nielsen Media

- TV on cellphone
- Radio on Web
- iPod, video-on-demand, PlayStation Portable...
  - It becomes difficult to measure people's exposure to media.

#### "Portable people meter" (PPM)

- Programs and commercials are embedded with acoustical watermarks
- A wearable device
  - Picks up the watermarks
  - Identifies programs
- System tested in Houston
  - By Arbitron Inc. (NYSE: ARB)



http://www.arbitron.com/portable\_people\_meters/home.htm

#### The principle of watermarking:

noise is signal and signal is noise.



W: Watermark

X: Watermarked signal

S: Signal

31

#### 浮印植入者與破壞者的賽局

The game between embedder and attacker



- W: Watermark
- S: Signal

X: Watermarked signal N: Noise Y: Corrupted copy of X

#### **Common misconception**

- audio watermarks are *useless* because
  - They are inaudible
  - MP3 removes everything inaudible
  - therefore, MP3 erases watermarks

#### **Rules of the Game**

- 1. Embedder plays first.
- 2. Attacker also needs to consider psychoacoustics.



#### **Optimal embedding strategy**:

Watermark is indistinguishable from signal, but decodable by *coherent detection* via a private key.



frequency

#### Quantization introduces noise; Watermark-to-noise ratio is improved by averaging.



- W: Watermark
- S: Signal
- Q: Quantization noise

 $\mathbf{Y} = \mathbf{S} + \mathbf{W} + \mathbf{Q}.$ 

#### Duality of data compression and watermarking

|                                    | Compression                                                  | Watermarking                                                  |
|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| Noise to be<br>hidden              | Quantization noise                                           | Watermarks                                                    |
| Information<br>theoretic<br>models | Source coding<br>(Rate-distortion<br>problem)                | Channel coding<br>(communication)                             |
| Rules                              | <ul> <li>Encoder: secret</li> <li>Decoder: public</li> </ul> | <ul> <li>Encoding: public*</li> <li>Decoder: blind</li> </ul> |

\* except for the crypto-key.

#### Usefulness of audio watermarking is still uncertain in future

- Apple relinquished **digital right management** (DRM) for iTune since Feb. 2009
  - DRM = Digital Restriction Management?
  - It does not help business.

- Microsoft licensed audio watermarking technology to Active Content Corp. in Aug. 2007
  - "Personalized" ads bundled to music

### Summary

- Audio Data Compression
  - Psychoacoustic masking enables 10:1 compression in AAC.
  - 6 dB SNR improvement for every extra bit.
  - Format is standard, but encoding is commercial secret.
- Audio Watermarking
  - Using psychoacoustics for data hiding
  - Robust to MP3
  - Future application is uncertain.