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Do sounds have a height? 

Not necessarily
• 樂音 vs. 噪音

• 語音 vs. 呢喃之音

• Let’s focus on sounds that do have pitch.

• Questions:

• Definition of pitch?

• How does the human auditory system encode the pitch?
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Definition of musical pitch
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first note around that of F3 (or approximately = 175 Hz)?  

(f) [Optional] Continuing from above, how about after the first note? Do you think those 17 

notes in the glissando were accurately played on pitch? Why or why not? 

[Hint] Watch the   famous   conductor   L.   Bernstein’s   1976   live   recording   for   some   clues: 

http://tinyurl.com/ee3660-hw3-gershwin  
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Do-Re-Mi vs. C-D-E

• Note name: ABCDEFG. A4 = 440 Hz.

• Solfège: 教唱歌的唱法
• 簡譜 1234567

• Musical Key: Every key can serve as the “Do”.

• E.g. D-flat major.

• Major vs. minor scale

• Do-Re-Mi-Fa-Sol-La-Ti-Do (全全半全全全半)

• La-Ti-Do-Re-Mi-Fa(#)-Sol#-La (全半全全？？全)
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Distance between adjacent semitones

• There are 12 semitones per octave

• So, in modern music, the semitones are “well-tempered”, 

meaning that:

• the frequency of C# is 21/12 times that of C, and so on.

• 21/12 is approximately _____?

• In some literature, 21/1200 is called a cent.

• How well can human tell a pitch is off ?
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思考討論題
why 12 semitones per octave?

• Why not 10, 14, or other numbers?
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Musical intervals

• major 5th = 7 semitones apart.

• Frequency ratio = 2 7/12, or approximately 3/2.

• Major 4th = 5 semitones apart.

• Frequency ratio approx. 4/3.

• Major 3rd = 4 semitones, approx. 5/4.

• Minor 3rd = 3 semitones, approx. 6/5.
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Fig. 2. Middle C, followed by the E and G above, then all three notes to-
gether—a C Major triad—played on a piano. Top pane shows the spectrogram;
bottom pane shows the chroma representation.

B. Harmony

While sequences of pitches create melodies—the “tune”

of a music, and the only part reproducible by a monophonic

instrument such as the voice—another essential aspect of

much music is harmony, the simultaneous presentation of

notes at different pitches. Different combinations of notes

result in different musical colors or “chords,” which remain

recognizable regardless of the instrument used to play them.

Consonant harmonies (those that sound “pleasant”) tend to

involve pitches with simple frequency ratios, indicating many

shared harmonics. Fig. 2 shows middle C (262 Hz), E (330 Hz),

and G (392 Hz) played on a piano; these three notes together

form a C Major triad, a common harmonic unit in western

music. The figure shows both the spectrogram and the chroma

representation, described in Section II-E below. The ubiquity

of simultaneous pitches, with coincident or near-coincident

harmonics, is a major challenge in the automatic analysis of

music audio: note that the chord in Fig. 2 is an unusually easy

case to visualize thanks to its simplicity and long duration, and

the absence of vibrato in piano notes.

C. Time–Frequency Representations

Some music audio applications, such as transcribing perfor-

mances, call for explicit detection of the fundamental frequen-

cies present in the signal, commonly known as pitch tracking.

Unfortunately, the presence of multiple, simultaneous notes in

polyphonic music renders accurate pitch tracking very difficult,

as discussed further in Section V. However, there are many other

applications, including chord recognition and music matching,

that do not require explicit detection of pitches, and for these

tasks several representations of the pitch and harmonic infor-

mation—the “tonal content” of the audio—commonly appear.

Here, we introduce and define these basic descriptions.

As in other audio-related applications, the most popular

tool for describing the time-varying energy across different

frequency bands is the short-time Fourier transform (STFT),

which, when visualized as its magnitude, is known as the

spectrogram (as in Figs. 1 and 2). Formally, let be a dis-

crete-time signal obtained by uniform sampling of a waveform

at a sampling rate of Hz. Using an -point tapered window

(e.g., Hamming for

) and an overlap of half a

window length, we obtain the STFT

(1)

with and . Here, determines

the number of frames, is the index of the last unique

frequency value, and thus corresponds to the window

beginning at time in seconds and frequency

(2)

in Hertz (Hz). Typical values of and

give a window length of 92.8 ms, a time resolution of 46.4 ms,

and frequency resolution of 10.8 Hz.

is complex-valued, with the phase depending on the

precise alignment of each short-time analysis window. Often it

is only the magnitude that is used. In Figs. 1 and 2,

we see that this spectrogram representation carries a great deal

of information about the tonal content of music audio, even in

Fig. 2’s case of multiple, overlapping notes. However, close in-

spection of the individual harmonics at the right-hand side of

that figure—at 780 and 1300 Hz, for example—reveals ampli-

tude modulations resulting from phase interactions of close har-

monics, something that cannot be exactly modeled in a magni-

tude-only representation.

D. Log-Frequency Spectrogram

As mentioned above, our perception of music defines a log-

arithmic frequency scale, with each doubling in frequency (an

octave) corresponding to an equal musical interval. This mo-

tivates the use of time–frequency representations with a sim-

ilar logarithmic frequency axis, which in fact correspond more

closely to representation in the ear [5]. (Because the bandwidth

of each bin varies in proportion to its center frequency, these rep-

resentations are also known as “constant-Q transforms,” since

each filter’s effective center frequency-to-bandwidth ratio—its

—is the same.) With, for instance, 12 frequency bins per oc-

tave, the result is a representation with one bin per semitone of

the equal-tempered scale.

A simple way to achieve this is as a mapping applied to

an STFT representation. Each bin in the log-frequency spec-

trogram is formed as a linear weighting of corresponding

frequency bins from the original spectrogram. For a log-fre-

quency axis with bins, this calculation can be expressed in

matrix notation as , where is the log-frequency

spectrogram with rows and columns, is the original

STFT magnitude array (with indexing columns and

indexing rows). is a weighting matrix consisting of

rows, each of columns, that give the weight of STFT

bin contributing to log-frequency bin . For

instance, using a Gaussian window

(3)

where defines the bandwidth of the filterbank as the frequency

difference (in octaves) at which the bin has fallen to

of its peak gain. is the frequency of the lowest bin

and is the number of bins per octave in the log-frequency

axis. The calculation is illustrated in Fig. 3, where the top-left

image is the matrix , the top right is the conventional spectro-

gram , and the bottom right shows the resulting log-frequency

spectrogram .

Physics of the (struck) string

instruments in a nutshell



延伸討論

Why certain chords (和絃) sound more “harmonic” than 

other?

Consonance vs. dissonance 
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Fig. 2. Middle C, followed by the E and G above, then all three notes to-
gether—a C Major triad—played on a piano. Top pane shows the spectrogram;
bottom pane shows the chroma representation.
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延伸討論2: Timbre

• Why do different instruments sound different?

• Why do different people’s voices sound different?
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Frequency-to-place mapping in the 

auditory system
• Cochlea, the spectral analyzer

• Auditory nerve

• Auditory brainstem

• Midbrain – thalamus – (primary) auditory cortex
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http://www.vimm.it/cochlea/cochleapages/theory/

Tonotopic organization in the Cochlea

http://www.vimm.it/cochlea/cochleapages/theory/
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Ruggero et al.

(1997)

Tip-To-Tail Gain

Selectivity of cochlear frequency responses



Tonotopic organization in auditory nerves, and beyond
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http://pronews.cochlearamericas.com/2013/02/cochlear-nucleus-electrodes-maximize-performance/

http://www.cns.nyu.edu/~david/course

s/perception/lecturenotes/localization/



Tonotopic organization in the central auditory system
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http://www.cns.nyu.edu/~david/courses/perception/lectu

renotes/localization/

Cochlear nucleus Inferior colliculus



Tonotopic organization in the auditory cortex
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Bendor and Wang. (2005). Nature 436: 1161-65.

• Single-unit extracellular recordings.

• Awake marmosets.

http://commons.wikimedia.org/wiki/F

ile:White-eared_Marmoset_3.jpg



音高之聽覺生理基礎。
MYSTERY EXPLAINED?
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A few hard things to explain

• Octave similarity

• 學習論

• 物理論

• Violation of pitch ranking

• 音高不見得具有絕對的高低順序
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Violation of pitch ranking: Shepard’s Tone

http://vimeo.com/34749558
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Comments on Shepard’s tone

• Sounds can be digitally manipulated so their pitch relation 

becomes circular.

• Algebraic structure of a modulo-12 system.

• Don’t try it at home.

• Pitch ranks can be context-dependent.

• Distance between C and F# is the farthest apart.
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A modified definition of the pitch

• Pitch is a percept that can be compared against that of a 

pure tone.

• It often is the fundamental frequency.

• Intentionally vague definition, so that A > B, B > C does not 

necessarily imply A > C.

• Question: What then is the physiological basis for pitch?

• Place coding vs. Time coding

• Time-place conversion
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Place coding vs. Time coding: 

the issue of harmonic resolvability

• Musical sounds are often periodic. 

Think of the vibration of a string.

• Signal consists of components at f0, 2f0, 

3f0, etc.

• Cochlear filter bandwidth increases 

from low to high frequency.

• Therefore, higher harmonics can 

fall into the same filter, thus 

becoming unresolved.
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http://hyperphysics.phy-astr.gsu.edu/hbase/waves/string.html



Being unresolvable actually enables time-coding

• When multiple harmonics pass through one cochlear filter, 

they can encode the fundamental frequency via the timing 

information in neural firing patterns.

• Can explain consonance and dissonance

-- In particular, octave similarity
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Example:

f0 = 150 Hz;

sum of harmonics

#8 to #10 (i.e., 1200,

1350, and 1500 Hz).



Psychological evidence of time coding: 

The case of missing fundamental

• Caution: Pitch percept could also be caused by “distortion product”
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Harmonic number =

10, 9, 8, 7, 6, 5, 4, 3.

Pure tone at 150 Hz Tone complex with 10 harmonics



How about in the cerebral cortex?

• Is pitch encoded by specialized neurons, or collectively by 

network oscillation?

• Grandma’s cell for every pitch?
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Pitch neurons in the auditory cortex!
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Bendor and Wang. (2005). Nature 436: 1161-65.



Pitch neurons: Stimulus and responses
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Harmonic resolvability is inversely 

proportional to cochlear filter bandwidth
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2 3 4 5 6 10

Osmanski, Song, and Wang. (2013).

J. Neurosci. 33:9161-69.



Comments on pitch neurons

• Now there are neurons that would specifically fire when 

the stimulus has a certain pitch.

• Regardless of the harmonic composition (or timbre).

• Pitch information must have been processed at earlier stages along 

the auditory pathway.

• But how?

• (Of interests to engineers, too.)
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Where and how do pitch neurons 

acquire the pitch information?

Time-to-place conversion

• Assume that time-coding would cause certain cochlear 

filter to fire at the rate of f0.

• It was suggested that the periodic temporal firing pattern 

can be converted to maximal output at a certain place.

• Might be achievable through time-delay coincidence detector

• Licklider, JCR (1959). Three auditory theories, In S. Koch (Ed.), 

Psychology: A study of a science. Study I, Vol. I (pp. 41-144).
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Time-to-place conversion by a coincidence detector
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http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/localization/



Summary: One pitch, two mechanisms

• Sounds with pitch are comprised of harmonics

• If f0 is high, all audible harmonics are resolved and pitch is 

place coded.

• Otherwise, higher harmonics could be un-resolved, 

enabling the pitch to be time-coded.

• Actually, at f0 < 500 Hz, pitch might solely rely on time coding.

• Existence of pitch neurons in the auditory cortex suggests 

time-to-place conversion happens somewhere.
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Open questions

• How does auditory system process multiple pitch?

• Computational modeling and engineering applications

• Measurement techniques?

• fMRI?

• MEG?

• Electrode array recording?

• Relation to other functions in speech and music 

processing

• Hemispheric difference
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Final comment: 

Pitch, the holy grail in auditory prosthesis
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