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The time-frequency uncertainty principle states that the product of the temporal and frequency extents

of a signal cannot be smaller than 1=ð4�Þ. We study human ability to simultaneously judge the frequency

and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than

tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity

and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple

‘‘linear filter’’ models of early auditory processing, and highlight timing acuity as a central feature in

auditory object processing.
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Fourier transformation turns signals ‘‘inside out’’, in the
sense that low frequencies dictate what happens at long
times, while high frequencies create fine temporal detail.
This property is demonstrated by Fourier’s uncertainty
theorem, which states that considering the absolute value
squared of a signal xðtÞ as a probability distribution in time,

PðtÞ ¼ jxðtÞj2
R1
�1 jxðt0Þj2dt0 (1)

and the absolute value squared of its Fourier transform ~xðfÞ
as a distribution in frequency,

PðfÞ ¼ j~xðfÞj2
R1
�1 j~xðf0Þj2df0 (2)

then the product of the standard deviations

�t ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
varðtÞp

and �f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðfÞ

q
(3)

is bounded from below [1]:

�t�f � 1

4�
; (4)

whence it is inferred that short signals require many fre-
quencies for their representation.

The theorem refers to the original signal and its Fourier
transform. In time-frequency analysis one attempts to
describe a signal in the two-dimensional time-frequency
plane, akin to a musical score where time is the horizontal
axis and frequency the vertical axis. Here the uncertainty
principle begets the Gabor limit [1,2]. This remapping
emphasizes the uncertainties as a property of the transform
itself, rather than the signal. In time-frequency analysis, it
has been proven that linear operators cannot exceed the
uncertainty bound [2]. Nonlinearity does not by itself
confer any acuity advantage, and in fact most nonlineari-
ties are merely distortions and thus deleterious. However,

by the above theorem, any carefully crafted analysis that
can beat this limit must necessarily be nonlinear. For
instance, precise frequency information can be obtained
about a sine wave by measuring the time between two
adjacent zeros of the waveform, a clearly nonlinear opera-
tion. The nonlinear distributions can be classified in fam-
ilies according to their degree of nonlinearity or history
dependence, such as the quadratic (Cohen’s class) distri-
butions like Wigner-Ville [3] and Choi-Williams [4], and
higher-order ones, such as multitapered spectral deriva-
tives [5,6], the Hilbert-Huang distribution [7], and the
reassigned spectrograms [8–12]. To understand how they
differ we need to make an important distinction between
resolution and precision. Resolution refers to our ability to
distinguish two objects, while precision refers to our ability
to track the parameters of a single object, given prior
knowledge it is only one component. This distinction is
well established in optics, where it is known the wave-
length of light limits resolution: two glass beads cannot be
resolved as different in a microscope if they are closer
together than a wavelength. Precision is not limited, since
a single bead can be tracked with nanometer accuracy.
All the above distributions achieve higher precision than
the Gabor limit when applied to isolated signal compo-
nents, yet give interfering results when two signals are
closer together than an uncertainty envelope. Our experi-
mental test is designed to directly measure precision, not
resolution.
A key goal in neuroscience is to establish which algo-

rithms the brain uses to process perceptual information.
Psychophysics, by establishing tight bounds on the per-
formance of our senses, may rule out entire families of
perceptual algorithms as candidates when they cannot
achieve the expected performance [13,14].
We shall show below that human subjects can discrimi-

nate better, and occasionally much better, than the uncer-
tainty bounds. This categorically rules out any first order
operators, such as the standard sonogram, from considera-
tion, and puts a stringent bound on the performance of any
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candidate algorithm, demonstrating that the nonlinearities
in the cochlea constitute are integral to the precision of
auditory processing.

Our results are relevant both in the scientific and tech-
nical areas (e.g., Ref. [15]), as many high-level models of
auditory processing assume an underlying representation
of the earliest steps in auditory information homologous to
a bank of linear filters [16,17]. Others use one implicitly,
by estimating receptive fields from the reverse correlation
method (revcor) or by projecting auditory signals onto a
basis of more ‘‘natural’’ filters than the Fourier basis. In
many applications such as speech recognition or audio
compression (e.g., MP3 [18]), the first computational stage
consists of generating from the source sound sonogram
snippets, which become the input to latter stages. Our data
suggest this is not a faithful description of early steps in
auditory transduction and processing, which appear to
preserve much more accurate information about the timing
and phase of sound components [12,19,20] than about their
intensity.

We shall carefully distinguish between the physical
attributes of the stimulus and the analogous psychological
quantities. Most relevant will be the distinction between

�t and �f, the physical uncertainties defined by Eqs. (1)
and (2), versus �t and �f, the psychological limens of
discrimination. It would be trivial to violate the theorem by
using an incorrect definition of �t and �f or an incorrect
evaluation of the bound. The limens are defined to carry the
meaning of a standard deviation, so that the actual number
is directly comparable to the equivalent physical attribute.
It is standard in the literature to define limens through a
same-different paradigm. For reasons detailed below, but
particularly because same-different is unlike the standard
deviation definition of the physical �t and �f, we shall
operatively define �t and �f through a two-alternative
forced choice above or below paradigm (illustrated by
the right panel of Fig. 2), and then regress by maximum
likelihood the performance data against a psychometric
curve in the form of an error function; the standard devia-
tion parameter of this error function is our limen.
We test for both limens simultaneously, as shown in

Fig. 1. Figure 2 demonstrates how we increase difficulty
and extract limens of perception. Prior work in the area
(e.g., Refs. [21–23]) has always compared measurements
of frequency discrimination limens �f against the physical
temporal duration of the sound packets, �t. This is inade-
quate for our purposes on two grounds: first it treats the
quantities in the inequality differently, contradicting the
‘‘spirit’’ of the uncertainty principle, and, second, because
it fails to verify human ability in an important and eco-
logically relevant domain, timing acuity.
We use two test stimuli [24]. The first is a Gaussian

packet, for which 4��t�f ¼ 1, attaining the bound in the
theorem; our study shows that many subjects display
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FIG. 1 (color online). Stimulus and task. (a) In our final task 5,
subjects are asked to discriminate simultaneously whether the
test note (red) is higher or lower in frequency than the leading
note (green), and whether the test note appears before or after the
flanking high note (blue). For each instance of the task, two
numbers are generated (Dt and Df) and two Boolean responses
(left-right, up-down) are recorded. (b) Tasks 1 through 4 lead to
this final task: task 1 is frequency only (uses two flanking notes),
task 2 timing only, task 3 is frequency only but with the flanking
high note (blue) as a distractor, and task 4 is timing only, with the
leading (green) note as a distractor [24].

FIG. 2 (color online). (a) Measurement strategy. As task 5
proceeds, the numbers Df and Dt are drawn as Gaussian random
numbers with variances pref and multf. The smaller these vari-
ance, the harder the task. The variances are independently con-
trolled by a 2D1U (two down, one up) procedure: when two
responses in a row are correct, the variance is reduced and the task
is made harder; the variance is increased for every wrong re-
sponse. This procedure converges to a demanding regime, where
the subject makes frequent mistakes, but fewer than 50%. Data
shown are from subject qr3zb [24]. (b) Datum definition. We
show in red the time responses of subject qr3zb; horizontal axis
is Dt, vertical axis is 0 (for before) or 1 (for after); we have slightly
offset the data by random amounts from 0 or 1 to better visualize
the density of points at any given Dt. In blue, the psychometric
curve which maximizes the likelihood of the data. The procedure
described in 1(b) has converged to a high density of tests around 0,
spanning the steepest area of the psychometric curve.
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limens such that 4��t�f � 1. In most of the subjects, the
overall increase in performance comes from substantial
increases in timing accuracy. One of our subjects, ar4tl,
when tested with notes of �t ¼ 35 ms, attained a limen
of �t ¼ 3 ms, while frequency performance degraded,
�f >�f. In our second test we use a wave packet with a
notelike envelope characterized by a rapid rise and a slow
exponential decay. Such envelopes are suboptimal accord-
ing to the uncertainty principle, having a product 4��t�f
greater than unity; in our case, 4��t�f ¼ 5:7079.
However, the performance of our subjects on such packets
is just as good, if not better, than on the Gaussian packet,
yielding broad implications for understanding early audi-
tory processing.

The results from task 5 are summarized in Fig. 3 and
available in Ref. [24]. Each dot corresponds to a simulta-
neous limen measurement as outlined above. Some sub-
jects performed several different measurements, never on
the same week. Two extremes are worth discussing in
detail. The lowest blue dot at the bottom center of the
plot displays the greatest violation of the principle in our
records, by a factor of about 13. The subject qr3zb dis-
played in equal measure a marked increase in frequency

acuity as well as temporal acuity, and hence the measure-
ment is below and to the left of the physical values of �t,
�f for the Gaussian note (indicated by the black lines).
The subject is a professional musician. The second point to
consider is the leftmost point, at the center left of the
diagram, from subject ar4tl. This is the smallest �t
limen in our records; at 3 ms, the subject was able to
discriminate the relative timing of two notes a factor of
13 better than their widths; it should be noted that 3 ms is
barely more than a single period of the test note, 2.27 ms.
However this subject was unable to estimate frequency
better than its physical extent, which is indicated by the
dot being above the black line indicating the Gaussians
�f, so overall this measurement beats the uncertainty
principle only by a factor of 10. The subject is an electronic
musician who microcomposes and works in precision
sound editing.
We can now examine some implications of these data.

First, even though the notelike packet’s uncertainty product
is substantially above the minimum, subjects seem to be
able to discriminate with it just as well as with the Gaussian
packet, leading to two measurements (red dot at the bottom
of the graph and red dot on the black horizontal line)
that beat relative uncertainty by a factor of 50, �t�f �
ð1=50Þ�t�f, and absolute uncertainty by a factor of 10,
4��t�f � ð1=10Þ. Therefore, we may conclude that a
larger uncertainty product of the test note does not neces-
sarily affect the subjects’ acuity. Second, for the Gaussian
(blue) data, the plot shows a number of different strategies
that subjects use to discriminate, with a remarkable spread:
from those who do not achieve the physical limits in either
dimension (1), those who have better frequency but worse
timing (4), those with better timing and worse frequency
(10), and thosewho have both better timing as well as better
frequency discrimination than the physical values (8).
While the number of measurements in each category
undoubtedly reveals the underlying bias of our subject
population, the fact that there are many strategies should
be robust. However, there is a noticeable shift of the cloud
to the left of the reference notes, so that we can see on
median the subjects perform twice as well in timing dis-
crimination as the physical value: 80% of the Gaussian data
and 100% of the notelike data lie on the �t < �t half-plane.
It is important to stress where the difficulty of the task

lies. Our preliminary testing included nonmusicians, who
where often close in performance to musicians on tasks 1
and 2 (separate time and frequency acuity), but then found
tasks 3 and 4 hard, while musicians, trained to play in
ensembles, found them easy.
We further found that composers and conductors

achieved the best results in task 5, consistently beating
the uncertainty principle by factors of 2 or more, whereas
performers were more likely to beat it only by a few
percentage points. After debriefing subjects, it appears
that the necessity of hearing multivoiced music (both in

FIG. 3 (color online). Summary of main results: discrimina-
tion limens for each test. Each round dot is a completion of Task
5 by a subject on an individual day, with at least 100 presenta-
tions. There were 12 subjects totaling 26 individual sessions for
Gaussian and 12 sessions for notelike tests. Blue denotes a
Gaussian packet while red denotes a notelike packet. The two
solid lines are the locus of the relation �t�f ¼ �t�f; any dots
below these curves violate the corresponding uncertainty rela-
tion. Error bars in both dimensions were obtained by generating
1000 bootstraps from the raw data and plotting the 25–75%
quartiles. Raw data provided in the Supplemental Material,
Table S1 [24], see also Ref. [28].
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frequency and in time) in one’s head and coaching others to
perform it led to the improved performance of conductors
and composers.

Early last century a number of auditory phenomena,
such as residue pitch and missing fundamentals, started
to indicate that the traditional view of the hearing process
as a form of spectral analysis had to be revised. In 1951,
Licklider [25] set the foundation for the temporal theories
of pitch perception, in which the detailed pattern of action
potentials in the auditory nerve is used [26,27], as opposed
to spectral or place theories, in which the overall amplitude
of the activity pattern is evaluated without detailed
access to phase information. The ground-breaking work
of Ronken [21] and Moore [22] found violations of
uncertainty-like products and argued for them to be evi-
dence in favor of temporal models. However, this line of
work was hampered fourfold, by lack of the formal
foundation in time-frequency distributions we have today,
by concentrating on frequency discrimination alone, by
technical difficulties in the generation of the stimuli,
and not the least by lack of understanding of cochlear
dynamics, since the active cochlear processes had not yet
been discovered. Perhaps because of these reasons this
ground-breaking work did not percolate into the commun-
ity at large, and as a result most sound analysis and
processing tools today continue to use models based on
spectral theories. We believe it is time to revisit this
issue.

We have conducted the first direct psychoacoustical test
of the Fourier uncertainty principle in human hearing, by
measuring simultaneous temporal and frequency discrimi-
nation. Our data indicate that human subjects often beat the
bound prescribed by the uncertainty theorem, by factors in
excess of 10. This is sometimes accomplished by an
increase in frequency acuity, but by and large it is temporal
acuity that is increased and largely responsible for these
gains. Our data further indicate subject acuity is just as
good for a notelike amplitude envelope as for the Gaussian,
even though theoretically the uncertainty product is
increased for such waveforms. Our study directly rules
out many of the simpler models of early auditory process-
ing, often used as input to the higher-order stages in models
of higher auditory function. Of the plethora of time-
frequency distributions and auditory processing models
that have been studied, only a few stand a chance of both
matching the performance of human subjects and be
plausibly implementable in the neural hardware of the
auditory system (e.g., Refs. [6,7,12,27]), with the
reassignment method having the best comparative tempo-
ral acuity. Elucidation of which mechanism underlies our
subjects’ auditory hyperacuity is likely to have wide-
ranging applications, both in fields where matching human
performance is an issue, such as speech recognition, as
well as those more removed, such as radar, sonar, and radio
astronomy.
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