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1 Definitions and interpretation

1.1 Units

Throughout this semester, we will use the integer-valued variable n as the time variable
for discrete-time signal processing; that is, n = −∞, ...,−1, 0, 1, ...,∞. In this convention,
the unit of n is dimensionless, but be aware that in reality the sampling period is 1/fs,
where fs denotes the sampling rate. In some text books, 1/fs is denoted as T , and its
unit is second. In this course we do not do this, thereby favoring conciseness of notations.

1.2 Definition of DTFT

The discrete-time Fourier transform (DTFT) of a discrete-time signal x[n] is a function
of frequency ω defined as follows:

X(ω)
∆

=

∞
∑

n=−∞

x[n]e−jωn. (1)

Conceptually, the DTFT allows us to check how much of a tonal component at fre-
quency ω is in x[n]. The DTFT of a signal is often also called a spectrum. Note that
X(ω) is complex-valued. So, the absolute value |X(ω)| represents the tonal component’s
magnitude, and the angle ∠X(ω) tells us the phase of the tonal component.

Also note that Eq. (1) defines the DTFT as the inner product between the signal and
the complex exponential tone e−jωn. Because complex exponentials {e−jωn, ω ∈ [−π, π]}
form a complete family of orthogonal bases for (practically) all signals of interest, what
Eq. (1) essentially does is to project x[n] onto the space spanned by all complex exponen-
tials.

Remarks:

A little bit about notations — unless mentioned otherwise, we will use
lowercase variables (e.g., x and y) to denote signals in the time domain,
and their uppercase counterparts (i.e., X and Y ) to denote their spectra.
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1.3 Inverse transform

Sometimes we are given the Fourier transform X(ω) and need to reconstruct the signal
in the time domain. This can be done by calculating the following integral:

x̂[n] =
1

2π

∫ π

−π

X(ω)ejωndω. (2)

Intuitively, Eq. (2) does three things:

• take X(ω) as the coefficient along the dimension ω;

• multiply X(ω) with the basis function ejωn;

• gathering all terms by integrating with respect to ω.

The statements above can be understood intuitively, but we must prove that Eq. (2) is
indeed the inverse of Eq. (1). A sketch of the proof is given as follows,

x̂[n] =
1

2π

∫ π

−π

X(ω)ejωndω (3)

=
1

2π

∫ π

−π

(

∞
∑

m=−∞

x(m)e−jωm

)

ejωndω (4)

=
1

2π

∞
∑

m=−∞

x(m)

∫ π

−π

ej(n−m)ωdω (5)

Because the integral on the right-hand side of Eq. (5) vanishes except when m = n, the
equation can be simplified as

x̂[n] =
1

2π
x[n]

∫ π

−π

ej·0·ωdω

=
1

2π
x[n] · 2π

= x[n].

Remarks:

Note that the range of integral is from −π to π — because we follow a
convention which defines time as a dimensionless quantity, the frequency
becomes dimensionless, too.

2 Properties of discrete-time Fourier transform

2.1 Periodicity in frequency

Note that if ω is replaced by ω + 2π in Eq. (1), the DTFT of a signal remains the same;
that is, for any signal x[n], its DTFT X(ω) has the following property:

X(ω + 2π) = X(ω) (6)
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at any ω. In other words, the spectrum is periodic. If we convert back to the time-
frequency units in reality, this means that a signal DTFT repeats at a period of fs in the
frequency domain.

What does this mean?

Recall that DTFT is a projection onto the space spanned by complex exponentials.
Equation (6) tells us that frequency ω + 2π is indistinguishable to the frequency ω (as-
suming 0 < ω < π). So, if an analog signal is sampled at a rate of fs, that any spectral
component at a frequency f higher than fs would be considered by the system as if its
frequency were f ′ = mod (f, fs). This is called aliasing and is undesired for most ap-
plications — think of a system that converts ultrasounds to low frequency sounds, for
instance. So, in the design of an analog-to-digital (A/D) converter, one must prevent
aliasing by introducing a low pass analog filter before sampling the analog signal in time.
Such a filter is called an anti-aliasing filter.

What is the bandwidth of an ideal anti-aliasing filter?

2.2 Symmetry

Below are two theorems that reflect the time-frequency symmetry of DTFT. The first
theorem is good to know because we mostly deal with real-valued signals. The second
theorem is the first theorem in its time-frequency dual form.

THEOREM (Symmetry in frequency):

If x[n] is real, then X(−ω) = X∗(ω) for all ω.

Proof:

X∗(ω) =

(

∞
∑

n=−∞

x[n]e−jωn

)

∗

=

∞
∑

n=−∞

x∗[n]ejωn (7)

Because x[n] is real, i.e., x∗[n] = x[n], it is straightforward to check that
the right-most term in the equation above is indeed equal to X(−ω).

Remarks:

This theorem enables us to reconstruct a real signal if we only know its
DTFT from 0 to π.

THEOREM (Symmetry in time):

If x[n] is real and x[−n] = x[n] for all n, then X(ω) is real.
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Proof:

X(ω) =

∞
∑

n=−∞

x[n]e−jωn

= x[0] +
∞
∑

n=1

(

x[n]e−jωn + x[−n]ejωn
)

= x[0] +
∞
∑

n=1

x[n]
(

e−jωn + ejωn
)

= x[0] +

∞
∑

n=1

x[n] · 2 cos(ωn)

∈ R

2.3 Shift in time

The shift theorem states that a delay in the time domain is equivalent to a linear phase
shift factor in the frequency domain.

THEOREM Shift:

Let y[n] be the delay of x[n] by m samples, i.e.,

y[n] = x[n−m]

for all n. Then,
Y (ω) = e−jmω ·X(ω).

The proof is left as an exercise.

3 Properties of Linear Time-Invariant Systems

3.1 Definition

A system is said to be Linear time-invariant (LTI) if the relation of its input and output
satisfies the following criterion,

• Linearity: if a stimulus x1[n], n = 0, 1, 2, ... causes response y1[n], and x2[n] causes
y2[n], then ax1[n] + bx2[n] causes ay1[n] + by2[n].

• Time-invariance: if x[n], n = 0, 1, 2, .... causes a response y[n], then x[n−m], where
m is a fixed integer, causes y[n−m].

4



The impulse response is simply an LTI system’s response to the Dirac impulse function
δ[n].1 An LTI system is completely characterized by its impulse response h[n] in the sense
that, given any arbitrary input x[n], the system’s response y[n] can be calculated via
convolution of x[n] and h[n]:

y[n] = x[n] ∗ h[n]
∆

=

∞
∑

m=−∞

x[m] · h[n−m]. (8)

Remarks:

Note that convolution is commutative, e.g., x ∗ h = h ∗ x. (How?)

3.2 Causality

Usually (I bet 99% of time in my career) we only deal with LTI systems that are causal,
i.e., we assume that h[n] = 0 for all n < 0. In this case, Eq. (8) can be re-written as

y[n] =
n
∑

m=−∞

x[m] · h[n−m]. (9)

Remarks:

How do we interpret the equation above?

3.3 The convolution theorem

The convolution theorem states that convolution in the time domain is equivalent to
multiplication in the frequency domain. Conceptually, we can regard one signal as the
input to an LTI system and the other signal as the impulse response of the LTI system.
Then, the output spectrum can be calculated by multiplying the input spectrum with the
transfer function of the LTI system.

THEOREM (Convolution):

Let x1[n] and x2[n] be two discrete-time signals. If

y[n] = x1[n] ∗ x2[n]

then
Y (ω) = X1(ω) ·X2(ω).

1The Dirac impulse function δ[n] in discrete-time is defined as follows: δ[n] = 1 for n = 0 and δ[n] = 0
otherwise.
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Proof:

Y (ω) =

∞
∑

n=−∞

y[n]e−jωn

=

∞
∑

n=−∞

(

∞
∑

m=−∞

x1[m] · x2[n−m]

)

e−jωn

=

∞
∑

m=−∞

x1[m]

(

∞
∑

n=−∞

x2[n−m]e−jωn

)

=
∞
∑

m=−∞

x1[m]
(

e−jωmX2(ω)
)

= X2(ω)
∞
∑

m=−∞

x1[m]e−jωm

= X2(ω)X1(ω).

Remarks:

By duality, multiplication of two signals in the time domain is also
equivalent to convolution in the frequency domain. This will be impor-
tant when we discuss finite-impulse-response (FIR) filter design using
the window method [1].

3.4 Magnitude spectrum, phase spectrum, and the group delay

In audio as well as other fields, given h[n] the impulse response of a LTI system, its Fourier
transform H(ω) is often plotted in log-scale; the magnitude

M(ω) = 20 log10 |H(ω)|

is the magnitude spectrum of the system in dB, and the phase spectrum is defined as

φ(ω) = ∠H(ω).

A useful thing to know, though harder to prove, is that the partial derivative of φ with
respect to ω defines a latency called the group delay,

τg(ω) = −
∂φ(ω)

∂ω
,

and its unit is number-of-samples. When calculating τg(ω), one needs to unwrap the phase
so as to avoid phase discontinuity.

3.5 Energy of a deterministic signal

In engineering and physics, energy equals power integrated over time. Power is often
proportional to the square of a physical quantity such as voltage, current, particle velocity,
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etc. For example, given a time-varying voltage V (t) that is applied to a resistor R, the
heat dissipation H can be calculated as follows:

H =

∫

[V (t)]2

R
dt. (10)

In discrete-time signal processing, we borrow the energy concept from physics by defining
the energy F of a signal x[n] as x2 summed over time:

F =

∞
∑

n=−∞

(x[n])2. (11)

The following theorem tells us that the energy can be calculated either in the time domain
or in the frequency domain.

THEOREM (Parseval’s theorem):

Let x[n] be a real-valued, discrete-time signal and X(ω) be its
DTFT. Then, the following equation always holds:

∞
∑

n=−∞

x2[n] =
1

2π

∫ π

−π

|X(ω)|2.

Proof:
First, construct the autocorrelation function

y[m]
∆

=
∞
∑

n=−∞

x[n] · x[n−m].

Note that y[n] = x[n] ∗ x[−n], and in particular, y[0] =
∑

∞

n=−∞
x2[n].

Applying the convolution theorem, y[n]’s Fourier transform of Y (ω) can
be expressed in terms of X(ω) as follows,

Y (ω) = X(ω) ·

(

∞
∑

n=−∞

x[−n]e−jωn

)

= X(ω) ·X∗(ω) = |X(ω)|2 .

Calculating the inverse DTFT at time 0, then we reach that

∞
∑

n=−∞

x2[n] = y[0] =
1

2π

∫ π

−π

Y (ω)ejω·0dω

=
1

2π

∫ π

−π

|X(ω)|2dω.
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Remarks:

Parseval’s theorem tells us that the DTFT is a linear transform that
preserves the norm of a signal (up to a factor of

√

1/2π). Therefore,
we can think of Fourier transform as a rotation in the infinitely-many
dimensional space.

4 Exercises

Please do as much of the following exercises as you could. Some of them might be selected
as questions for future quizzes.

1. Prove the shift-theorem.

2. Describe artifacts that one might hear when playing back an audio signal that is
sampled from an analog acoustic signal without anti-aliasing filtering.

3. What does it mean to have a non-causal system? Is it possible to have a non-causal
system physically?

4. Argue that the output an LTI system produces indeed has to be the convolution of the
impulse response and an input.

5. *Calculate the DTFT of h[n] = u[n]e−βn cos(ω0n), where β > 0 and u[n] = 0 for n < 0
and u[n] = 1 otherwise. Write a MATLAB script to plot the magnitude spectrum |H(ω)|
and phase spectrum ∠H(ω).

6. *Continued from above, argue that h[n] is the impulse response to a second-order
system whose input-output relation can be defined as y[n] = a1y[n−1]+a2y[n−2]+x[n].
Find out coefficients a1 and a2 in terms of β and ω0.

7. *Continued from above, what factors determine the sharpness of resonance at ω0 and
the slope of phase accumulation at ω0? Are they correlated?
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