

67

Chapter 6

FTSE: The FNP-Like TCAM Searching Engine

6.1 Introduction

As described in [28], most signatures in NIDSes are ASCII codes while network

traffic is composed in binary data and signature matches rarely happen in real-world

traffic. The more bytes we can skip during searching signatures in packets, the more

performance we gain. In this chapter we propose a FNP-based [28] algorithm which

utilizes Ternary CAM (Content Addressable Memory) as a pre-filter and achieves

multiple gigabit performance in a relative low cost.

General memory components like SDRAM or SSRAM take an address as input

and then return corresponding data stored in specified address. On the other hand,

CAM components take data as its input and then return the location where the data

stored. Besides, CAM simultaneously compares the desired information against an

array of data, achieving a search time far less than with RAM-based algorithms. There

are two basic forms of CAM: binary and ternary. Binary CAMs support storage and

searching of binary bits, zero or one (0,1). Ternary CAMs (TCAM) support storing of

zero, one, or don't care bit (0,1,X). Ternary CAMs are presently the dominant CAM

since longest-prefix routing is the Internet standard.

Targeting to run in multiple gigabit per second, this design utilizes a small-size

TCAM (2.25 Mbits) to be a filter, as FPGA/ASIC to process packets, and a DDR

SDRAM to store the whole signature database. Although TCAMs are relatively

expensive than SSRAMs and DDR SDRAMs, we will show that the cost/performance

ratio is still excellent compared to use a high-end general purpose CPU with software

algorithms. In our simulation, the performance of the proposed FTSE engine could be

68

up to 6Gbps or 8Gbps.

6.2 FTSE Algorithm

 The pattern matching algorithm of FTSE, as its name, is very like to FNP. Both

algorithms are designed to find the prefixes of signatures as potential matches. Please

note the following used denotations can be referenced from Chapter 4.

...

...

* ...

* ...

* * ...

* * ...

* * ...

* * ...

*

*

...

G0

G1

G2

Gw-1

...

0
0a 0

1a 0
2a 0

1−wa

0
2−wa

0
3−wa

1
0a 1

1a 1
2a 1

1−wa

1
2−wa

1
3−wa

0
0a

0
0a

1
0a

1
0a

1
0a

0
0a

0
1a
1
1a

Figure 23. An example of signature layout in FTSE TCAM

The TCAM is a perfect component to achieve the goal finding the prefix of a

pattern. The value w could be set to the width of the TCAM. First we divide the

TCAM entries by w and therefore the TCAM contains w group of entries from G0 to

Gw-1. The Group G0 stores the first w-byte prefixes of the ruleset. The Group G1 stores

the conjunction of a “don’t care” byte and w-1 bytes prefixes of the ruleset. The

Group G2 stores the conjunction of two “don’t care” bytes and w-2 bytes prefixes of

the rulset, and so on. Figure 23 shows an example of the internal layout of the TCAM.

The matching procedure of the proposed FTSE algorithm is quite simple.

Initially PSW is aligned with the first byte of the incoming payload. The string within

69

the PSW S (t0…tw-1) then is fetched and lookup in the TCAM. If S matches an entry in

G0, then S obviously matches with a w-byte prefix of a pattern and an exact match

could be performed. On the other hand, if S matches an entry in Gx, 1 ≤ x ≤ w-1, the

PSW will be shifted by x bytes for further processing. On the other hand, if there is no

match in this round, then S can be skipped totally and the PSW will be shifted by w

bytes. Figure 24 shows an example of the matching scenario. Initially the PSW is

aligned with t0 and therefore S is “123445555”. Lookup S in the TCAM and we find a

match in G6 so that the GSW is shifted by 6 bytes and S is “555576543” then. By

repeating the lookup-and-shift operation we find an exact match with only four

lookups. However, it needs 29 (the length of T) lookups if the brute-force algorithm

(continuously lookup and shift one byte) is applied.

1 2 3 4 4 5 5 5 5 5 7 6 5 4 3 2 1 2 3 4 5 5 5 6 7 8 8 8 8

1 2 3 4 4 5 5 5 5 5 7 6 5 4 3 2 1 2 3 4 5 5 5 6 7 8 8 8 8

1 2 3 4 4 5 5 5 5 5 7 6 5 4 3 2 1 2 3 4 5 5 5 6 7 8 8 8 8

1 2 3 4 4 5 5 5 5 5 7 6 5 4 3 2 1 2 3 4 5 5 5 6 7 8 8 8 8

5 5 5 6 7 8 8 8 8

* 5 5 5 6 7 8 8 8

* * 5 5 5 6 7 8 8

* * * 5 5 5 6 7 8

* * * * 5 5 5 6 7

* * * * * 5 5 5 6

* * * * * * 5 5 5

* * * * * * * 5 5

* * * * * * * * 5

G0

G1

G2

G3

G4

G5

G6

G7

G8

Prefix Sliding Window (PSW)

Lookup in TCAM and an
entry in G6 matches. Shift

PSW by 6 bytes then.

Lookup in TCAM and no
entry matches. Shift PSW

by 9 bytes then.

Lookup in TCAM and an
entry in G5 matches. Shift

PSW by 5 bytes then.

Find a matched entry in G0.

FTSE TCAM
Content

Figure 24. An example of the PSW movement

There’re surely patterns whose sizes are greater than w. The full signatures are

stored in another DDR SDRAM or SDRAM which are cheaper than TCAMs. The

FTSE are two-staged. The first stage is the TCAM pre-filter which finds the w-byte

prefix match and then pass the matched location and pattern ID to the second stage. In

second stage an exact match will then be performed to make sure whether or not the

70

resting part is still matched.

6.3 Proposed Multiple-Pattern Matching Architecture

TCAM DDR SDRAM

72-bit
CBUS

16-bit

PPE
A

PPE
B

PPE
C

PPE
D

Network Processor

FNP-Like TCAM Searching Engine

Dispatcher Module Post-Processing
Module

32-bit
RBUS

16-bit
IBUS

Figure 25. The hardware architecture of FTSE

Figure 25 shows an example of the hardware architecture of FTSE. Our algorithm

is implemented into the FTSE Processing Module (FPM) which can be a FPGA or an

ASIC. The FPM connects to a Network Processor which has multiple Packet

Processing Engines (in this example, four) through a 32-bit SRAM interface or SPI-4

interface. Besides, the FPM attaches a TCAM and a DDR SDRAM for signature

71

storage.

The TCAM size is commercial-available 2.25Mbit so that the TCAM could be

configured into 72-bit * 32K, where 72-bit is the width while 32K is the depth of the

TCAM. Under this placement we can handle up to 3,640 signatures (32K/9) and it’s

quite sufficient since there is only 2K plus rules in current snort ruleset. The TCAM

could be configured into different sizes like 144-bit * 16K surely. Since an exact

match will be performed if the pre-filter finds the w-byte prefix match, the larger the

width, the more accuracy the pre-filter is. However we will show later the 72-bit

configuration is accurate enough while 36K depth can accommodate even the largest

NIDS ruleset.

The FPM comprises two engines which controls the TCAM module and DDR

SDRAM module respectively. The Dispatcher Module in FPM receives the packet

payloads from the external network processor and stores the payloads into internal

shared packet buffers. The FTSE engine supports multiple requests (packets) in the

same time. The Dispatcher Module controls the PSW for each packet buffer and

performs the lookup operation to the TCAM module. The Dispatcher module

monitors the RBUS (Result Bus) of the TCAM after performing the lookup operations,

and shifts the PSW of each buffer according to the returned results. Please note that

the multiple buffer design serves several requests simultaneously and can be used to

hide the TCAM latency as well. Figure 26 demonstrates how the Dispatcher Module

performs TCAM search by round robin lookup. Dispatcher Module always issues

“wrcmp” (write and compare) commands on IBUS (instruction bus) and the PSW for

each packet is put onto CBUS (Comparand Bus). The lookup result for a packet will

be returned on RBUS before its next search so that even the latency of the TCAM is

three clocks we can still continuously keep it running. Another advantage of this

pipelined process is to serve multiple requests in the same time. This tricky design

72

makes FTSE preferable for multiple core processors like Network Processors. On the

other hand, if a match occurs in G0, the Dispatcher will send a signal to

Post-Processing module. The Post-Processing module performs the exact matching

between potential signatures and payloads since the TCAM can guarantee the 9-byte

prefix match only. Please note that the lookup-and-shift operation never ends unless it

reaches the end of the payload. The Dispatched module and Post-Processing module

run in parallel. We will show later that the post comparison happens rarely so that the

processing time of post comparison can be ignored in terms of performance.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp

Spkt1 Spkt2 Spkt3 Spkt4 Spkt1 Spkt2 Spkt3 Spkt4 Spkt1

Rpkt1 Rpkt2 Rpkt3 Rpkt4 Rpkt1 Rpkt2

IBUS

CBUS

RBUS

Figure 26. The lookup latency could be hidden by pipelined processing

Furthermore, some commercial TCAMs can be partitioned into different blocks

and the TCAM lookup could be performed in specified blocks only and we can make

use of this characteristic to improve the performance. We can partition the signatures

by their protocols or layer-4 port numbers and therefore we can put signatures into

different TCAM blocks accordingly. Every time when FTSE receives a packet, it

doesn’t have to search the whole TCAM but the corresponding block only. Since only

the partial set is searched instead of the whole signature set, the average shift amounts

should be increased by this way and therefore the performance is gained. Figure 27

shows an example of the entry layout in an eight-block TCAM. The signatures are

73

divided into eight blocks while each block still comprises nine groups to perform the

lookup-and-shift operation.

PG0

G0
G1
G2
G3
G4
G5
G6
G7
G8

PG1

G0
G1
G2
G3
G4
G5
G6
G7
G8

PG7

G0
G1
G2
G3
G4
G5
G6
G7
G8

Figure 27. Using port group to enhance throughput.

6.4 Experiments of FTSE

To verify the effectiveness of the proposed FTSE algorithm, a simulation

program running on a general PC is developed. We observed its efficiency and

performance based on the behavior under certain packet traces and ruleset. The

current Snort ruleset, containing 2,111 rules, was employed as the default searching

pattern. To be simplified we employ all the patterns into a big table without dividing

into groups. The full-packet traces can be derived from the “Capture the Capture The

74

Flag” (CCTF) project held in DEFCON [10] annually. DEFCON holds a “Capture

The Flag” contest every year for hackers to compromise the prepared target servers.

CCTF is named because DEFCON sniffs and captures the packets during the contest.

We believe that the packet traces tend to match more signatures comparing to others

by nature.

 Table V shows the total payload sizes and number of pattern-matched events of

different packet traces. As we mentioned before, matched events rarely happen, and it

stands true even in CCTF packet traces. The highest matching rate in our experiments

is about the packet trace “defcon_eth2.dump4” where there’re plenty of repetitious

identical packets. Even so the matched rate is still only two percent. The assumption

is very important because the FTSE comprises two stages and the exact matching

operation in DDR SDRAM should be as less as possible so that its latency could be

hidden when the lookup-and-shift operation in TCAM keeps running. Therefore the

overall performance of the FTSE relates to the lookup-and-shift stage only.

Table V. The matched event rarely happens in our experiments

Trace Name Total Payload Size # of Matched Events Percentage

defcon_eth0.dump2 823104675 2108683 0.25%

defcon_eth0.dump3 807112191 288803 0.04%

defcon_eth2.dump3 166037560 1753897 1.06%

defcon_eth2.dump4 484240159 9674245 2.00%

defcon_eth2.dump5 483417572 1063797 0.22%

defcon_eth6.dump3 419584806 905018 0.22%

 Table VI demonstrates the efficiency of the proposed filter. For every packet

trace we measure the number of different shifts after TCAM lookups. In this

experiment the probability of shifting eight bytes and nine bytes is over 77% and the

75

overall expected shift value is 7.77. Please note that we believe it can be improved if

the packet traces are normal ones instead of CCTF since they tend to match signatures

in nature. This experiment demonstrates our approach has significant improvement

over traditional TCAM lookup and even the bloom filter since they all need N clocks

to handle an N-byte packet while FTSE only needs N/7.77 clocks to search. Modern

TCAMs can perform 100M searches per second. In our simulation, if we lookup

TCAM every 7.77 bytes, the estimated performance would be (7.77 * 8 * 100) =

6.216 Gbps. If a 133 MSPS (Million Searches Per Second) TCAM is chosen in our

design, the FTSE engine is able to achieve more than 8Gbps throughput which

surpasses any known software solutions so far.

Table VI. The number of shift bytes are greater than 7 in over 80% cases

 Shift = 1 Shift = 2 Shift = 3 Shift = 4 Shift = 5 Shift = 6 Shift = 7 Shift = 8 Shift = 9

defcon_eth0.dump2 2108683 154456 104394 449579 164982 1766720 4481566 33642128 56021300

defcon_eth0.dump3 288803 18625 491119 76339 44412 35180508 6377031 47577707 18307152

defcon_eth2.dump3 1753897 104576 127674 174747 755641 3521271 2824996 7170874 5603226

defcon_eth2.dump4 9674245 67977 74189 3024168 224238 898825 3138514 23459736 26791804

defcon_eth2.dump5 1063797 77641 85329 220704 186971 2572922 4324869 21396086 28701579

defcon_eth6.dump3 905018 30018 39806 202450 74022 2997209 2092225 16451913 27957458

Total 15794443 453293 922511 4147987 1450266 46937455 23239201 149698444 163382519

Percentage 3.89% 0.11% 0.23% 1.02% 0.36% 11.56% 5.72% 36.87% 40.24%

Table VII demonstrates the accuracy of the lookup-and-shift operation in TCAM

as a filter. This table lists the number of nine-byte prefix matches against the number

of real matches. It shows that when we have a nine-byte prefix match, we have over

90% probability that it’s a real match. This experiment indicates that our “72-bit *

32K” configuration is most suitable for the implementation of an NIDS since it can

76

accommodate the full ruleset and keep the high accuracy in the same time.

Table VII. The accuracy of the pre-filter is more than 90% in our experiment.

Trace Name # of prefix matches # of real matches Percentage

defcon_eth0.dump2 750842 784201 95.75%

defcon_eth0.dump3 91646 98997 92.57%

defcon_eth2.dump3 1169302 1245920 93.85%

defcon_eth2.dump4 2981885 3277422 90.98%

defcon_eth2.dump5 237316 367953 64.50%

defcon_eth6.dump3 448559 523599 85.67%

Total 5679550 6298092 90.18%

In summary, our experiments showed that the 2nd stage lookup happens rarely so

that its latency could be covered by keeping TCAM running in parallel. Our TCAM

lookup approach is shown to be very fast and efficient and the performance is 7.77

times faster comparing to bloom filter in our test. With the support of suitable

commercial- available TCAM we can achieve 6Gbps to 8Gbps by our design. On the

other hand, the accuracy of the FTSE filter is also quite good (over 90%) in the

experiment. These characteristics make FTSE a very practical and powerful engine

when applying in an NIDS.

FTSE comprises a TCAM to store signature prefix, a DDR SDRAM to store the

whole signature database, and an ASIC/FPGA where the main algorithm running. The

cost of this engine is relatively lower than high-end CPUs but the gain in performance

is better. There are two stages in FTSE, and the first stage is a pre-filter which filter

out the strings impossible to match while the second stage performs exact match

between a 9-byte matched candidate and the signature. These two processes work in

parallel. In our simulation, the probability of passing strings to second stage is only

77

0.2% to 2%, and the first stage runs seven-time faster than brute-force algorithm. On

the other hand, the accuracy of the pre-filter in first stage is over 90% in our test.

Furthermore, the FTSE utilizes pipelined processing for multiple packets to hide the

TCAM lookup latency and serves multiple PPEs in the same time. These

characteristics make FTSE engine very suitable for implementing the high-speed

NIDS by co-working with high-end Network Processors.

