

21

Chapter 3

TCP Ambiguity Scrubber Engine

3.1 Evasion Technique against TCP Protocol

Stateful TCP filtering is widely deployed in both commercial and open source

network filtering devices like firewalls and network intrusion detection systems

(NIDSes) [16, 32, 42]. Most researches before focus on the integrity check of header

fields, maintenance of TCP states, and protocol normalization. In recent years the

network security devices not only inspect network layer and transport layer (in our

case, IP and TCP headers) but also dig into the application layer. One of the

well-known methods in NIDSes is misuse detection which adapts a technique called

“signature matching” [13]. Signature matching uses pattern-matching algorithms to

detect a certain string within a payload stream. For example, an NIDS will try to find

the string “big@boss.com” in a SMTP connection to detect the SoBig worm. A

signature matcher which detects malicious string in a per-packet basis without paying

attention to packet ordering and segment overlapping works in many cases if the

attackers don’t use any evasion technique to interfere the NIDS. However it’s very

easy to evade such systems by reordering the packet sequences, chopping a large

packet into several small ones, and so on [40]. The TCP filtering engine proposed by

this dissertation focuses on providing shaped data stream to the signature matcher and

eliminating ambiguities to keep from attack evasion. In the following we will describe

why per-packet-basis signature matcher cannot detect malicious data in many

circumstance and how can we overcome these problems by proposed methodologies.

22

…R O O T

1st packet 2nd packet

…

e
1 2 3

4

“ROOT＂
Matched

R
O O

T

… R OO T …

1st packet w/ SEQ = 200 2nd packet w/ SEQ = 100

…O T

1st packet w/ SEQ = 200

R O…

2nd packet w/ SEQ = 100

Figure 7. (a) Pattern occurs in packet boundary and (b) packet comes out of order

The first obvious problem happens when the target string occurs in packet

boundaries. For example, Figure 7 (a) shows a string “root” divided by two packets.

This string cannot be detected if these two packets are processed separately without

keeping any information about their relation. If the pattern-matching engine is

automata-based, then one apparent solution is to keep the corresponding state of the

first packet and set it to the initial state of the second packet instead of starting from

state ε.

The second problem happens if the packets arrive out of order. As demonstrated

in Figure 7 (b), if the packets are not reassembled correctly, the target string cannot be

detected still.

…

R O

O T

1st packet

2nd packet

… X R O… X …T

R O… O …T

A “favour-old＂system will overwrite the
overlapping part of 2nd packet by 1st packet.

A “favour-new＂system will overwrite the
overlapping part of 1st packet by 2nd packet.

Reassembly

Figure 8. Attackers try to evade the NIDS by retransmitting different data.

One of the reasons regarding that TCP protocol is relatively robust than other

stateless protocol is its retransmission mechanism. This method is quite useful when

packets lost in the way from the source to the destination, and the source will resend

the identical data again. However, some attackers might fool the NIDSes by

23

retransmitting packets with different data. In Figure 8, the last three bytes of the first

packet is “ROX” while the first two bytes of the second packet are “OT”, and there is

one byte overlapping between these two packets. The end system which receives

these two packets either considers it as “ROOT” or “ROXT” depending on whether

its operation system is a “favour-new” system or a “favour-old” one. In the next

section we will introduce how we deal with both these two kinds when retransmission

occurs. The packet boundary issue arises again as far as retransmission is concerned.

As discussed above, an automata-based pattern matcher can still detect target string in

packet boundaries by memorizing the state of last byte of previous packets. However,

retransmission doesn’t have to start from the previous packet boundaries. It’s

impossible to know which state should be kept to concatenate with the first byte of the

transmission packets. This design resolves this issue by collecting the previous

MAX_PATTERN_LENGTH – 1 bytes to append to the head of the retransmission

packet payload, where MAX_PATTERN_LENGTH is the maximum length of signature

patterns.

3.2 Related Works in Segment Reassembly

The evasion technique against the NIDSes is well-studied in many researches [31,

32, 40]. However, how to manipulate packet buffer to present an unambiguous stream

for signature matching has not been discussed a lot. Among them, [55] proposed two

practical mechanisms to make sure the end systems see the same thing as the NIDS.

The first is dropping any out-of-order packets to prevent from ambiguity. The second

one is to store all the unacknowledged packets, and when it finds an overlapping

between the stored packets and the incoming new packet, it overwrites the new one by

the stored data. By the way it can eliminate the ambiguity successfully. However, the

drawback of this mechanism is its data movement operation. Coping data is always

24

less desirable because of its impact on system performance. Another defect is its only

ability to decode favour-old-type attack. If the attack is targeted on a favour-new

system, it can only stop this attack but cannot decode it successfully.

Snort [48, 49] is the most well-known open source NIDS. Originally Snort operated

in the per-packet basis without supporting the concept of data stream. The

Preprocessor Stream4 [48] was then developed to accommodate the requirement of

stream-based processing. However, since Snort is not an inline IDS, the design of

Steram4 is not suitable for inline processing due to its lack of real-time reaction. Their

design first copies and stores all the received packets in a binary tree. Every time it

receives an ACK packet, it verifies whether the offset from last un-scanned point to

least acknowledged byte exceeds a randomized number. If the offset does exceed the

randomized number, it will collect packets from the binary tree and reassemble them

into a data stream and then perform a pattern matching. The randomized offset is to

avoid the packet boundary problem. Since the attacker has no idea the boundary

between each scanning, it’s impossible to evade the detection in this way. However

the Snort may still miss the pattern if it does occur in scan boundaries. Besides, the

whole operation involves a lot of data movement, and therefore the system

performance is downgraded. Moreover, the reassembly operation is triggered by the

ACK packets. It implies when the attacking data may arrive the end system already.

Bro [39], another open-source NIDS, also handles the stream reassembly issue well.

If the incoming packet is in order (its sequence number is the sum of the sequence

number and the length of previous packet), it will be scanned immediately. On the

other hand, if the packet arrives out of order, it will then be queued until there is no

gap between the previously processed one and itself. However, this design cannot

solve the packet boundary problem comprehensively still.

25

3.3 The Design and Implementation of the Ambiguity Scrubber

Engine

The purpose of the proposed TCP engine is to be a Normalizer which can

accomplish the following tasks: maintaining TCP state machine, checking the

correctness of SEQ and ACK numbers in TCP headers, keeping packet processed

in-order, eliminating the ambiguity of the overlapping parts of data segments, and

locating the malicious data even they’re exactly on the packet boundaries.

Figure 9 shows the packet flow of the TCP engine. First the incoming packet is

classified, as long as it’s a SYN packet (or others if TCP Cold Start is enabled) a TCP

SYN Flood check is performed. After passing the check, a space for recording and

tracing this connection is allocated. To detect a SYN Flood event, a threshold for each

guarded server is set. Once the number of SYN packets targeted to a guarded server

exceeds the threshold in a certain time, we start to drop the first SYN packet of every

connection, and enable the semi-transparent-gateway mechanism. We showed in

previous chapter that the combination of these two policies mitigate the SYN Flood

significantly in a very little cost.

On the other hand, if the packet under processing belongs to an established

connection, we will do the header field sanity check. It first verifies the correctness of

header control fields, and then checks whether its TCP acknowledgement and

sequence numbers are legitimate. The TCP option and PAWS are also taken into

consideration. The guideline to check the TCP control flags is shown in [16] while the

range of expected sequence and acknowledgement numbers are defined in [42].

26

Flow Classification

New
Connection

SYN Flood Detection

Build a New TCP
State Entry

Sanity Check

TCP Entry State
Transition

State ==
EST?

TCP Stream
Reassembly Process

Forward

YesNo

Yes

No

Figure 9. The processing flow of the TCP Ambiguity Scrubber Engine

The state transition diagram of our TCP engine is illustrated in Figure 10. Just

like [42], the guideline of this transition diagram is “Never assume anything: the state

administration should only be based on facts”. There’re two state records for client

and server side respectively. Every time we receive a packet, only the state of the

sender of this packet is changed. For example, when we receive a SYN packet from

the connection initiator, we will set its state to SYN_SENT but the state of another

side remain unchanged. We will set the state of responder to SYN_RECEIVED only

after it responds with a SYN/ACK packet. Please note some packets which violate the

27

state transition diagram will be discarded and cannot go on to the reassembly process.

EMPTY

SYN_SENT

SYN_RECEIVED

ESTBLISHMENT CLOSE_WAIT

FIN_WAIT

LAST_ACK

BOTH_CLOSE

SYN

SYN/ACK

SYN

ACK

FIN

SYN/ACK1

ACK

FIN

FIN

ACK
ACK2

FIN

ACK3 ACK

1. It happens when we have a simultaneous open.
2. When the state of another side is FIN_WAIT.
3. When the state of another side is beyond CLOSE_WAIT.

The state of the sender of a RST packet will transit to CLOSE_WAIT no matter what state it is now.
Figure 10. Proposed TCP state transition diagram.

The final stage of the TCP processing engine is stream reassembly process.

Figure 11 shows the process in detail. We need two queues for each side

(initiator/responder) in this process. Out-of-order Packet Queue (OPQ) stores the

packet pointers of those packets which come out of order. OPQ performs packet

buffering so that we can scan packets in sequence order. After-Scanned Queue (ASQ)

stores the packet pointers of the packets which have been scanned already but not

acknowledged by the opposite side. We keep these pointers to resolve the evasion

problem by retransmitting an overlapping segment with different data and the pointers

where a pattern locates in packet boundary. Every time when a packet of an

established connection comes, we first release packet pointers in the ASQ of opposite

side according to its ACK number. Since we will drop any further packets which have

been acknowledged, it’s not necessary to keep the packet pointers anymore. Then we

evaluate its sequence number along with the sequence number and payload length of

28

SEQ <=
EXPT_SEQ?

If this packet is new,
then Insert PacketPtr

to OPQ

Collect preceding
(N-1) bytes data from
ASQ

Combined
Stream
Clean?

Insert PacketPtr to
ASQ

Fetch PacketPtr w/
minimal SEQ from

OPQ

Report

Yes

No

Yes

No

Update EXPT_SEQ

Release PacketPtrs
whose SEQ < ACK
from ASQ of
opposite direction

Figure 11. The flow of reassembly process

the previous packet of the same connection in the same direction. There are three

possibilities:

SEQ > SEQprev + LENprev, (1)

SEQ = SEQprev + LENprev, (2)

SEQ < SEQprev + LENprev. (3)

29

SEQprev indicates the sequence number of the last processed packet of the same

connection in the same direction, and LENprev indicates its payload length. Case (1)

means current packet is out-of-order and we will then insert this packet into OPQ for

later processing. The reason we want to keep packet scanned in order will be

described later. Case (2) means the current packet follows the previous one exactly

without overlapping. As mentioned earlier, if the adapted pattern matching algorithm

is automata-based, we can continue to compare from the last matching state.

Packet 1
(100, 100)

Packet 2
(200, 200)

Packet 3
(400, 50)

Packet 4
(200, 300)

ASQ

New

Favour Old

Packet 1
(100, 100)

Packet 2
(200, 200)

Packet 3
(400, 50)

Packet 4
(450, 50)

Favour New

Packet 1
(100, 100)

Packet 2
(200, 300)

Packet to be
Scanned

Packet to be
Scanned

Figure 12. Processing flow for favour-new and favour-old systems

Case (3) means there is an overlapping between the pervious packets and current

one. As mentioned above, we shall have different mechanism for both favour-old and

favour-new end systems. If the end system is favour-new we will scan the overlapping

part of current packet, not the previous ones, and the overlapping data in ASQ will be

30

released. On the other hand, if the destination system is favour-old, then the

overlapping part of the new coming packet should be overwritten by the old data

stream collected from ASQ, and the TCP checksum needs to be recalculated as well.

Generally data movement/copy operation is less desirable because of its impact on

system performance. However, this copy operation makes sure the end system sees

the same packet as the NIDS. Even the overlapping part of new packets and saved

stream are different, they are eventually synchronized. In both case (favour-new and

favour-old), we will collect the preceding MAX_PATTERN_LENGTH – 1 bytes from

ASQ to append to the head of the packet payload to solve the “pattern occurs in

packet boundary” problem. Figure 12 shows how we reassemble packet segments for

favour-new and favour-old end systems respectively. At completing the reassembly

stage, a pattern match operation will be performed to find the malicious data. If the

packet doesn’t contain any improper data, the packet then will be inserted to the ASQ

in case we have another case (3) again later. The reassembly flow will be executed

iteratively until case (1) happens.

3.4 Experiments over the TCP Scrubber Engine

Attacker Fragrouter Device Under Test Victim

Figure 13. The setup of the experiments over the TCP Scrubber Engine

We implemented the scrubber engine on pSOS+ real-time operating system.

Besides, a pattern-matching engine (implemented as [30]) is also developed to find

the malicious data from the reassembled stream. Every TCP packet will be checked

and reassembled into meaningful stream and provide to the pattern-matching engine

31

for detection. Figure 13 shows the setup of our experiments over the TCP scrubber

engine. The attacker will send the test-cgi exploits (CVE ID: CVE-1999-0070) to the

victim web server to discover its file list. The exploit packets will be sent to the

Fragrouter first to be chucked into small pieces for evasion. The device under test

(DUT) should be able to reassemble those small pieces into a stream and detect the

test-cgi exploits before it arrives to the victim.

We followed the test items of NSS test group and the Open Security Evaluation

Criteria (OSEC) to fragment the exploits. These two are the most professional and

reputable organizations which conduct NIDS tests to generate trustworthy reports.

Table II shows the test items regarding the TCP segment evasion in NSS while Table

III shows the test items in OSEC.

Table II. Test items in NSS TCP Segment Evasion.

Item
Number

Description

2.2.9 Ordered 1 byte segments, interleaved duplicate segments with invalid
TCP checksums

2.2.10 Ordered 1 byte segments, interleaved duplicate segments with TCP
control flags

2.2.11 Ordered 1 byte segments, interleaved duplicate segments with requests to
resync sequence numbers mid-stream

2.2.12 Ordered 1 byte segments, duplicate last packet
2.2.13 Ordered 2 byte segments, segment overlap (favour new)
2.2.14 Ordered 1 byte segments, interleaved duplicate segments with

out-of-window sequence numbers
2.2.15 Out-of-order 1 byte segments
2.2.16 Out-of-order 1 byte segments, interleaved duplicate segments with faked

retransmits
2.2.17 Ordered 1 byte segments, segment overlap (favour new)
2.2.18 Out-of-order 1 byte segments, PAWS elimination (interleaved dup

segments with older TCP timestamp options)
2.2.20 Ordered 16 byte segments, segment overlap (favour new (Unix))
2.2.21 Ordered 16 bytes segments, segment overlap (favour old (Win32))

32

The test 2.2.9, 2.2.10, 2.2.11, 2.2.14, 2.2.16, 2.2.18 are TCP sanity check

problems in essence. By following the rules defined in [16] and [42], all of these

ambiguous packets will be detected and dropped properly. On the other hand, the test

2.2.12, 2.2.13, 2.2.15, 2.2.17, 2.2.20, and 2.2.21 can be overcome by the design of

OPQ and ASQ.

Table III. Test items in OSEC TCP Segment Evasion.

Item
Number

Description

F. 7 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 1-byte increments
with one fragment sent out of order.

F. 8 The attack connection 3-way-handshake is completed normally, a
simulated disconnection is made (with bad TCP checksum), and then
the attack is fragmented and sent in ordered 1-byte increments.

F. 9 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 1-byte increments
with one fragment (the second to last of each packet) duplicated.

F. 10 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 1-byte increments
with one fragment (the second to last of each packet) repeated, but with
null data content.

F. 11 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 2-byte
increments. Each fragment is preceded by a 1-byte, null data segment
that overlaps the latter 2-byte segment.

F. 12 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 1-byte
increments. Each fragment is followed by a 1-byte, null data segment
that has a far out-of-window sequence number.

F. 13 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent out-of-order.

F. 14 The attack connection 3-way-handshake is completed normally, and
then the attack is fragmented and sent in ordered 1-byte
increments. Each fragment is followed by a repeat SYN for the
connection.

33

F. 15 The attack connection 3-way-handshake is preceded by null data sent
in ordered 1-byte segments as if a connection had already completed,
then the handshake occurs with the same connection parameters;
finally, the attack is fragmented and sent in ordered 1-byte increments.

F. 16 The attack connection 3-way-handshake is completed and immediately
closed with a valid RST. Another connection with different ISN is
made otherwise with the same parameters, and the attack is sent in
ordered 1-byte segments.

The test F. 8, F. 12, F. 13, F. 14, F. 15, and F.16 are TCP field sanity check

problems and TCP state checking issues in essence. By following the TCP state

transition tables in Figure 13 and rules defined in [16] and [42], all of these

ambiguous packets will be detected and dropped properly. On the other hand, the test

F.9, F.10, and F.11 can be overcome by the design of OPQ and ASQ. All the

out-of-order packets will be kept in proper order, and the overlapping part will be

clarified in both favour-old and favour-new ways. The exploit was detected by our

engine in all of the tests.

In summary, this design erases the ambiguities of TCP evasion packets in several

ways: header field sanity check, state transition check, out-of-order handling, and

overlapping resolution. Our design can pass the evasion test of both NSS and OSEC

which are the most reputable and professional NIDS test. This design hardly copies

data and its memory consumption is relatively lower than the others since we don’t

need a stream buffer for each connection but a low-cost tree structure. Moreover, it

can be easily integrated into existing NIDS implementations since it fulfills the

general layer-4 functions comprehensively.

