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Chapter 6  

FTSE: The FNP-Like TCAM Searching Engine 

6.1 Introduction  

As described in [28], most signatures in NIDSes are ASCII codes while network 

traffic is composed in binary data and signature matches rarely happen in real-world 

traffic. The more bytes we can skip during searching signatures in packets, the more 

performance we gain. In this chapter we propose a FNP-based [28] algorithm which 

utilizes Ternary CAM (Content Addressable Memory) as a pre-filter and achieves 

multiple gigabit performance in a relative low cost. 

General memory components like SDRAM or SSRAM take an address as input 

and then return corresponding data stored in specified address. On the other hand, 

CAM components take data as its input and then return the location where the data 

stored. Besides, CAM simultaneously compares the desired information against an 

array of data, achieving a search time far less than with RAM-based algorithms. There 

are two basic forms of CAM: binary and ternary. Binary CAMs support storage and 

searching of binary bits, zero or one (0,1). Ternary CAMs (TCAM) support storing of 

zero, one, or don't care bit (0,1,X). Ternary CAMs are presently the dominant CAM 

since longest-prefix routing is the Internet standard. 

Targeting to run in multiple gigabit per second, this design utilizes a small-size 

TCAM (2.25 Mbits) to be a filter, as FPGA/ASIC to process packets, and a DDR 

SDRAM to store the whole signature database. Although TCAMs are relatively 

expensive than SSRAMs and DDR SDRAMs, we will show that the cost/performance 

ratio is still excellent compared to use a high-end general purpose CPU with software 

algorithms. In our simulation, the performance of the proposed FTSE engine could be 
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up to 6Gbps or 8Gbps. 

6.2 FTSE Algorithm 

 The pattern matching algorithm of FTSE, as its name, is very like to FNP. Both 

algorithms are designed to find the prefixes of signatures as potential matches. Please 

note the following used denotations can be referenced from Chapter 4. 
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Figure 23. An example of signature layout in FTSE TCAM 

The TCAM is a perfect component to achieve the goal finding the prefix of a 

pattern. The value w could be set to the width of the TCAM. First we divide the 

TCAM entries by w and therefore the TCAM contains w group of entries from G0 to 

Gw-1. The Group G0 stores the first w-byte prefixes of the ruleset. The Group G1 stores 

the conjunction of a “don’t care” byte and w-1 bytes prefixes of the ruleset. The 

Group G2 stores the conjunction of two “don’t care” bytes and w-2 bytes prefixes of 

the rulset, and so on. Figure 23 shows an example of the internal layout of the TCAM. 

The matching procedure of the proposed FTSE algorithm is quite simple. 

Initially PSW is aligned with the first byte of the incoming payload. The string within 
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the PSW S (t0…tw-1) then is fetched and lookup in the TCAM. If S matches an entry in 

G0, then S obviously matches with a w-byte prefix of a pattern and an exact match 

could be performed. On the other hand, if S matches an entry in Gx, 1 ≤ x ≤ w-1, the 

PSW will be shifted by x bytes for further processing. On the other hand, if there is no 

match in this round, then S can be skipped totally and the PSW will be shifted by w 

bytes. Figure 24 shows an example of the matching scenario. Initially the PSW is 

aligned with t0 and therefore S is “123445555”. Lookup S in the TCAM and we find a 

match in G6 so that the GSW is shifted by 6 bytes and S is “555576543” then. By 

repeating the lookup-and-shift operation we find an exact match with only four 

lookups. However, it needs 29 (the length of T) lookups if the brute-force algorithm 

(continuously lookup and shift one byte) is applied. 
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Figure 24. An example of the PSW movement 

There’re surely patterns whose sizes are greater than w. The full signatures are 

stored in another DDR SDRAM or SDRAM which are cheaper than TCAMs. The 

FTSE are two-staged. The first stage is the TCAM pre-filter which finds the w-byte 

prefix match and then pass the matched location and pattern ID to the second stage. In 

second stage an exact match will then be performed to make sure whether or not the 
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resting part is still matched. 

6.3 Proposed Multiple-Pattern Matching Architecture 
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Figure 25. The hardware architecture of FTSE 

Figure 25 shows an example of the hardware architecture of FTSE. Our algorithm 

is implemented into the FTSE Processing Module (FPM) which can be a FPGA or an 

ASIC. The FPM connects to a Network Processor which has multiple Packet 

Processing Engines (in this example, four) through a 32-bit SRAM interface or SPI-4 

interface. Besides, the FPM attaches a TCAM and a DDR SDRAM for signature 
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storage. 

The TCAM size is commercial-available 2.25Mbit so that the TCAM could be 

configured into 72-bit * 32K, where 72-bit is the width while 32K is the depth of the 

TCAM. Under this placement we can handle up to 3,640 signatures (32K/9) and it’s 

quite sufficient since there is only 2K plus rules in current snort ruleset. The TCAM 

could be configured into different sizes like 144-bit * 16K surely. Since an exact 

match will be performed if the pre-filter finds the w-byte prefix match, the larger the 

width, the more accuracy the pre-filter is. However we will show later the 72-bit 

configuration is accurate enough while 36K depth can accommodate even the largest 

NIDS ruleset. 

The FPM comprises two engines which controls the TCAM module and DDR 

SDRAM module respectively. The Dispatcher Module in FPM receives the packet 

payloads from the external network processor and stores the payloads into internal 

shared packet buffers. The FTSE engine supports multiple requests (packets) in the 

same time. The Dispatcher Module controls the PSW for each packet buffer and 

performs the lookup operation to the TCAM module. The Dispatcher module 

monitors the RBUS (Result Bus) of the TCAM after performing the lookup operations, 

and shifts the PSW of each buffer according to the returned results. Please note that 

the multiple buffer design serves several requests simultaneously and can be used to 

hide the TCAM latency as well. Figure 26 demonstrates how the Dispatcher Module 

performs TCAM search by round robin lookup. Dispatcher Module always issues 

“wrcmp” (write and compare) commands on IBUS (instruction bus) and the PSW for 

each packet is put onto CBUS (Comparand Bus). The lookup result for a packet will 

be returned on RBUS before its next search so that even the latency of the TCAM is 

three clocks we can still continuously keep it running. Another advantage of this 

pipelined process is to serve multiple requests in the same time. This tricky design 
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makes FTSE preferable for multiple core processors like Network Processors. On the 

other hand, if a match occurs in G0, the Dispatcher will send a signal to 

Post-Processing module. The Post-Processing module performs the exact matching 

between potential signatures and payloads since the TCAM can guarantee the 9-byte 

prefix match only. Please note that the lookup-and-shift operation never ends unless it 

reaches the end of the payload. The Dispatched module and Post-Processing module 

run in parallel. We will show later that the post comparison happens rarely so that the 

processing time of post comparison can be ignored in terms of performance. 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp wrcmp
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Figure 26. The lookup latency could be hidden by pipelined processing 

Furthermore, some commercial TCAMs can be partitioned into different blocks 

and the TCAM lookup could be performed in specified blocks only and we can make 

use of this characteristic to improve the performance. We can partition the signatures 

by their protocols or layer-4 port numbers and therefore we can put signatures into 

different TCAM blocks accordingly. Every time when FTSE receives a packet, it 

doesn’t have to search the whole TCAM but the corresponding block only. Since only 

the partial set is searched instead of the whole signature set, the average shift amounts 

should be increased by this way and therefore the performance is gained. Figure 27 

shows an example of the entry layout in an eight-block TCAM. The signatures are 
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divided into eight blocks while each block still comprises nine groups to perform the 

lookup-and-shift operation. 
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Figure 27. Using port group to enhance throughput. 

6.4 Experiments of FTSE 

To verify the effectiveness of the proposed FTSE algorithm, a simulation 

program running on a general PC is developed. We observed its efficiency and 

performance based on the behavior under certain packet traces and ruleset. The 

current Snort ruleset, containing 2,111 rules, was employed as the default searching 

pattern. To be simplified we employ all the patterns into a big table without dividing 

into groups. The full-packet traces can be derived from the “Capture the Capture The 
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Flag” (CCTF) project held in DEFCON [10] annually. DEFCON holds a “Capture 

The Flag” contest every year for hackers to compromise the prepared target servers. 

CCTF is named because DEFCON sniffs and captures the packets during the contest. 

We believe that the packet traces tend to match more signatures comparing to others 

by nature. 

 Table V shows the total payload sizes and number of pattern-matched events of 

different packet traces. As we mentioned before, matched events rarely happen, and it 

stands true even in CCTF packet traces. The highest matching rate in our experiments 

is about the packet trace “defcon_eth2.dump4” where there’re plenty of repetitious 

identical packets. Even so the matched rate is still only two percent. The assumption 

is very important because the FTSE comprises two stages and the exact matching 

operation in DDR SDRAM should be as less as possible so that its latency could be 

hidden when the lookup-and-shift operation in TCAM keeps running. Therefore the 

overall performance of the FTSE relates to the lookup-and-shift stage only. 

Table V. The matched event rarely happens in our experiments 

Trace Name Total Payload Size # of Matched Events Percentage 

defcon_eth0.dump2 823104675 2108683 0.25% 

defcon_eth0.dump3 807112191 288803 0.04% 

defcon_eth2.dump3 166037560 1753897 1.06% 

defcon_eth2.dump4 484240159 9674245 2.00% 

defcon_eth2.dump5 483417572 1063797 0.22% 

defcon_eth6.dump3 419584806 905018 0.22% 

 Table VI demonstrates the efficiency of the proposed filter. For every packet 

trace we measure the number of different shifts after TCAM lookups. In this 

experiment the probability of shifting eight bytes and nine bytes is over 77% and the 
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overall expected shift value is 7.77. Please note that we believe it can be improved if 

the packet traces are normal ones instead of CCTF since they tend to match signatures 

in nature. This experiment demonstrates our approach has significant improvement 

over traditional TCAM lookup and even the bloom filter since they all need N clocks 

to handle an N-byte packet while FTSE only needs N/7.77 clocks to search. Modern 

TCAMs can perform 100M searches per second. In our simulation, if we lookup 

TCAM every 7.77 bytes, the estimated performance would be (7.77 * 8 * 100) = 

6.216 Gbps. If a 133 MSPS (Million Searches Per Second) TCAM is chosen in our 

design, the FTSE engine is able to achieve more than 8Gbps throughput which 

surpasses any known software solutions so far. 

Table VI. The number of shift bytes are greater than 7 in over 80% cases 

 Shift = 1 Shift = 2 Shift = 3 Shift = 4 Shift = 5 Shift = 6 Shift = 7 Shift = 8 Shift = 9 

defcon_eth0.dump2 2108683 154456 104394 449579 164982 1766720 4481566 33642128 56021300 

defcon_eth0.dump3 288803 18625 491119 76339 44412 35180508 6377031 47577707 18307152 

defcon_eth2.dump3 1753897 104576 127674 174747 755641 3521271 2824996 7170874 5603226 

defcon_eth2.dump4 9674245 67977 74189 3024168 224238 898825 3138514 23459736 26791804 

defcon_eth2.dump5 1063797 77641 85329 220704 186971 2572922 4324869 21396086 28701579 

defcon_eth6.dump3 905018 30018 39806 202450 74022 2997209 2092225 16451913 27957458 

Total 15794443 453293 922511 4147987 1450266 46937455 23239201 149698444 163382519

Percentage 3.89% 0.11% 0.23% 1.02% 0.36% 11.56% 5.72% 36.87% 40.24% 

Table VII demonstrates the accuracy of the lookup-and-shift operation in TCAM 

as a filter. This table lists the number of nine-byte prefix matches against the number 

of real matches. It shows that when we have a nine-byte prefix match, we have over 

90% probability that it’s a real match. This experiment indicates that our “72-bit * 

32K” configuration is most suitable for the implementation of an NIDS since it can 
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accommodate the full ruleset and keep the high accuracy in the same time. 

Table VII. The accuracy of the pre-filter is more than 90% in our experiment. 

Trace Name # of prefix matches # of real matches Percentage 

defcon_eth0.dump2 750842 784201 95.75% 

defcon_eth0.dump3 91646 98997 92.57% 

defcon_eth2.dump3 1169302 1245920 93.85% 

defcon_eth2.dump4 2981885 3277422 90.98% 

defcon_eth2.dump5 237316 367953 64.50% 

defcon_eth6.dump3 448559 523599 85.67% 

Total 5679550 6298092 90.18% 

In summary, our experiments showed that the 2nd stage lookup happens rarely so 

that its latency could be covered by keeping TCAM running in parallel. Our TCAM 

lookup approach is shown to be very fast and efficient and the performance is 7.77 

times faster comparing to bloom filter in our test. With the support of suitable 

commercial- available TCAM we can achieve 6Gbps to 8Gbps by our design. On the 

other hand, the accuracy of the FTSE filter is also quite good (over 90%) in the 

experiment. These characteristics make FTSE a very practical and powerful engine 

when applying in an NIDS. 

FTSE comprises a TCAM to store signature prefix, a DDR SDRAM to store the 

whole signature database, and an ASIC/FPGA where the main algorithm running. The 

cost of this engine is relatively lower than high-end CPUs but the gain in performance 

is better. There are two stages in FTSE, and the first stage is a pre-filter which filter 

out the strings impossible to match while the second stage performs exact match 

between a 9-byte matched candidate and the signature. These two processes work in 

parallel. In our simulation, the probability of passing strings to second stage is only 
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0.2% to 2%, and the first stage runs seven-time faster than brute-force algorithm. On 

the other hand, the accuracy of the pre-filter in first stage is over 90% in our test. 

Furthermore, the FTSE utilizes pipelined processing for multiple packets to hide the 

TCAM lookup latency and serves multiple PPEs in the same time. These 

characteristics make FTSE engine very suitable for implementing the high-speed 

NIDS by co-working with high-end Network Processors. 




