

 1

Chapter 1
Introduction

Until recently, the more complex network environment becomes, the more kinds

of rules in Intrusion Detection System (IDS) or firewall we have to handle. However,

the bottleneck of performance in those network inspection devices is still their rule

matching algorithm [1] [2]. According to the evolution of Snort rules, there are more

rules which focus on content checking, especially the relationships between some

keywords in content. The facts show us in trend the rules in IDS or firewall will

become more detailed to detect various intrusions. Therefore we need a powerful and

efficient matching engine of rule-matching function to solve the problem in this

modern world.

1.1 Problem Statement
In traditional cases, for example, supposed that there are N rules with length L, it

has to take O (N*L) to check these rules linearly when a packet enters. Thus with the

increase of rule numbers, traditional IDS or firewall may waste lots of time to check

rules. If there is a faster rule-matching engine, it could save our time when comparing

all the rules.

Focus on the relationships between every keyword in content, IDS or firewall

usually handles them after picking those matched objects, like post processor does. It

is indeed a solution but not a good one when we have lots of complex rules to handle.

In facts, there are more and more rules about pattern-relationships and PCRE (Perl

Compatible Regular Expression) pattern-matching, such as newly Snort rules. It is

necessary to create a fast matching system with wide flexibility to process those rules

 2

which may be written in Regular Expression [3] [4].

Third, the size of data structure in rule-matching algorithms is also an important

considering factor, especially for implementation of hardware. If the size is small

enough, it is easier to store the whole data structure in smaller but faster memory

technology to upgrade the performance. Lower space requirements will bring us better

efficiency.

From those reasons mentioned above, it is desired to build a pattern-matching

system with the following characteristics [5].

 Faster Search Speed

 Low Storage Requirements

 Ability to handle complex matching, especially pattern-relationships and

Regular Expressions

To achieve these goals, first we survey several papers about pattern matching

algorithms and there are some introductions and comparisons in Chapter 2. After

determining which algorithm could be used to implement our automata system, the

tree data structure is used to construct our custom automata for processing Snort rules

and make some changes in data structure from original AC algorithm to match our

needs. Finally the proposed custom automata system is implemented for Snort rules in

software as simulation and make some experiments about comparisons between

custom automata and Snort system in Chapter 3. With the attractive characteristics of

the proposed custom automata system, a hardware architecture is also designed for

implementing it and raising the performance of our system. In order to develop a real

multi-pattern matching system, there are many special designs in our hardware

architecture and make custom automata suitable to implement in hardware. In Chapter

 3

4, we discuss how to process Regular Expression efficiently. The most common

solution is to use EGREP and PCRE as single-pattern matching algorithm. However,

there are more and more complex Regular Expression rules now and single-pattern

matching algorithm may not satisfy our needs. The AC algorithm and EGREP are

employed to construct Regular Expression automata as multi-pattern matching

algorithm in Chapter 4. In the comparisons between our Regular Expression automata

and EGREP, we find that Regular Expression automata are faster than EGREP. It

could handle multi-pattern matching of Regular Expressions easily and solve the

bottleneck of performance. Thus according to our design, custom automata hardware

system has good performance and powerful functionality. It is one of the best

solutions as being real-time IDS and our ideas could make everything of writing

intrusion rules or designing automata IDS easier. With low memory requirements and

nice performance, the custom automata hardware system is a good choice of

designing next generation IDS.

