

 4

Chapter 2
Related pattern-matching algorithms

Generally, pattern-matching algorithms can be classified into two different

approaches- Wu-Manber algorithm and automata data structure [6-7]. Wu-Manber

algorithm [8] has better performance in average case, but it is very slow in worst case.

Choosing automata approach to solve our problem is the suitable way to avoid the

bottleneck with low performance in worst case.

2.1 Aho-Corasick pattern-matching algorithm
Aho-Corasick pattern-matching algorithm is a famous automata approach for

multi-pattern matching [9-12]. In AC algorithm, it could check other patterns simply

when a mismatching event occurs during matching. AC algorithm matching automata

for a given finite set P of patterns are the finite automata G, accepting the set of all

words containing a word of P as a suffix. G consists of the following components.

 Finite set Q of states

 Finite alphabet A

 Transition function g: Q x A -> Q + {fail}

 Failure function h: Q -> Q + {fail}

 Initial state q0 in Q

 A set F of final states

The transition function

Let g: Q × A -> Q + {fail} denote the transition function of deterministic finite

automaton (A, Q, init, g, T), where A is an input alphabet, Q is a finite set of states,

init is the initial state, and T is the set of terminal states. The value g(q,a) is the state

 5

reached from state q by the transition labeled by the input symbol a.

The failure function

Let Q be the set of states of Aho-Corasick automaton and let h: Q -> Q + {fail}

denote the failure function. Let q, q' be states of Q and h (q) = q' iff among the states

of Q, q' delivers the longest true suffix of path (q)

For example, an AC automata for patterns = {ab, ba, bab, bb} is illustrated in

Figure 2-1.

 Figure 2-1 An example of AC automata.

a

b

b

b

a

b

Transition path

Failure path

Final state

 6

2.2 EGREP matching algorithm
 AC algorithm could only handle “exactly matching” operations but there are

more and more complex operations and relationships between patterns in Snort rules.

We need something to process those rules with complex operations written in Snort

rule format or Regular Expression. EGREP is an extension version of GREP which is

custom for pattern-matching in Unix System [13]. It could handle extension Regular

Expression patterns and report if any of those patterns is matched in input string.

 The data structure in EGREP is linear encoding of NFA and every node in

automata consists of one byte-length operation-code (op-code), two byte-length

pointers, and an optional operand if necessary. There are two main functions in

EGREP – one is regcomp, which compiles input rules and patterns then constructs

automata, and the other is regexec, which executes matching process in automata.

 All functions in regcomp:

 Figure 2-2 Function diagrams of EGREP compiling

regcomp

reg

regtail regbranch regoptail

regpiece

regatom reginsert

regnode regc

 7

 All functions in regexec:

 Figure 2-3 Function diagrams of EGREP matching

 PCRE [14] is another Regular Expression version that Perl language supports.

Although there are some formats different from standard Regular Expression, it also

uses GREP kernel to process Regular Expression matching, just like EGREP. In Snort

rules, those content patterns started at “pcre:” mean that this pattern is written in

PCRE.

2.3 Comparison between AC and EGREP
Some comparisons between AC and EGREP are illustrated in Table 1.

Table 1 Comparisons between EGREP algorithm and AC algorithm

 EGREP AC

Algorithm DFA AC

regexec

regtry

regmatch

regnext regrepeat

 8

Regular Expression Support Not support

Multi-pattern Not good Good and easy

Performance Better Worse

low relativity data Smaller size Bigger size

high relativity data Bigger size Smaller size

And there are some examples below to show the differences in the constructed

data structure between AC and EGREP when input the same rule.

If patterns = {abc, abd}, the automata built for EGREP and AC automata are

depicted as Figure 2-4.

(a) Automata in EGREP

(b) Automata in AC

 Figure 2-4 Examples of EGREP and AC automata

If rules = { a?b, abb, abbbc} and input = { aaaa, abbbb, abab, a, b, babbbc},

EGREP will find inputs 2, 3, 5, 6 matched and AC will only find inputs 2, 6 matched.

Branch a b
d

a b
c

Branch

a b

c

d

 9

The data structures in EGREP and AC are shown in Figure 2-5.

(a) Data structure in EGREP

(b) Data structure in AC

 Figure 2-5 Examples of data structure in EGREP and AC automata

EGREP has ability to handle Regular Expression and its data structure is like

linked-list chain. The data structure in AC algorithm is tree-like, for multi-pattern

matching, and it only handles “Exactly Matching”. We need an algorithm that

supports Regular Expression and could do multi-pattern matching with high

performance and low storage space requirements.

? a

Exactly abb

Exactly b

Branch Exactly abbbc END

Branch

Branch 1 : a?b

2 : abb

3 : abbbc

START a
?

b

b

b b c

