

 37

Chapter 4
Automata for Regular Expression

In newly Snort rules, more and more rules are written in Regular Expression.

Single-pattern algorithms such as GREP and PCRE are employed in Snort. This is a

direct solution but may not good enough. It is interesting that if an automata can do

multi-pattern matching not only for common strings but also for Regular Expressions,

then we have the chance to improve the performance of handling Regular Expression.

4.1 The architecture in Regular Expression automata
In our Regular Expression automata, the architecture is partitioned into three

parts, a compiler for compiling all the entered rules, a data-chain in EGREP for

handling those Regular Expression patterns output by the compiler, and the main

automata in AC algorithm for doing multi-pattern matching, as shown in Figure 4-1.

.

 Figure 4-1 Overview of Regular Expression Automata

Compiler

1 2 3 4

Linked-list

1st 2nd 3rd 4th
EGREP
chain blocks

AC

Regular
Expression

Normal
symbol

 38

With this new automata, we then could process some complex rules in Regular

Expression by EGREP and doing multi-pattern matching in AC automata with better

performance. This new automata has both the efficiency of AC algorithm and the

ability of EGREP to solve Regular Expression.

For demonstration, the data structure in Regular Expression automata for two

rules = {ab[i-k]+d, cd[i-k]+a} is shown in Figure 4-2.

Figure 4-2 An example of data structure in Regular Expression Automata

In matching phase, the input is processed in AC automata step by step. When

enters a Regular Expression state (green one in the AC automata of Figure 4-2), which

means this operation is a complex one in Regular Expression, link to EGREP data

structure for processing this special operation. Then go back to AC automata after the

EGREP is walked through and finish the rest steps accordingly.

Init

Class [i-k]

a

c

b

d [i-k]+

[i-k]+ d

a

Branch Nothing Back

AC

EGREP

 39

4.2 Automata in automata
The idea mentioned above is similar as “automata in automata”. Every node in

automata may be another small automata structure and those automata have their own

partial jobs to process. For example, the concept of automata in automata is shown in

Figure 4-3. With scalability, we could change those detailed automata with the same

big automata architecture when we want to add some new operations or functions.

Figure 4-3 Concept and example of automata in automata.

4.3 Implement Regular Expression automata
In the implementation, the whole system is divided into two steps: Compiling

and Matching. In the first step, the input rules are compiled into unique format, and

the corresponding automata from these rules is constructed. After all the rules are

compiled, build all failure paths in the automata to support multi-pattern matching.

For the second step (matching step), take every symbol of data as the input of the

transition function in automata. For unmatched input, the failure path is used to check

Automata 3

Automata 1 Simple & Fast

Powerful & Useful

Automata 2

 40

other patterns. After matching process is completed, obtains the results of those

matched rule IDs.

The compiling and matching flowcharts of our Regular Expression automata are

depicted in Figure 4-4 and Figure 4-5, respectively.

 41

Start

If get EOF or ‘\n’

If get Regular

Expression

Handle Normal

Symbol

Handle Regular

Expression with EGREP

Put operator into Stack

until handle whole pattern

If get ‘()’

Parse this line Position in root node

T

T F

F

TF

(max,min)=(-1,-1) Get (max,min) value

Check if there already exist

correspond node in automata

 42

 Figure 4-4 Compiling Flowchart of Regular Expression automata

If node exist

Allocate a node and

add it into automata

in the position

Through the node

and update the

position

Already parse this pattern

Already parse this rule

Build transition path

TF

Already parse all rules and

build transition path

Build failure path

Check every node in BFS order

Build failure path with AC algorithm

Compiling is done

 43

Start

Now_chain has only root node element

If now_chain isn’t

empty

If input is not empty

or EOF

T

F

T
F

 44

 Figure 4-5 Matching Flowchart of Regular Expression automata.

If this node in

failure path isn’t

root node

Matching is done

Check the node if there

are any matched nodes in

transition path correspond

to input

Add the child nodes in

next_chain
Check failure path

Now_chain=next_chain

T F

T
F

 45

4.4 Compiler and Optimization
 In order to save data space and make our automata as tiny as possible, a good

compiler is required to optimize the data structure and reuse them while parsing. Thus,

when a Regular Expression pattern or normal pattern is parsing, we need to check if

there exists the same structure to reuse. Then consider the way to divide a long

complex Regular Expression pattern to make a corresponding smaller and efficient

structure. Some optimizing processes are also applied after the automata is

constructed. There are several articles addressed the ways for optimizing

pattern-matching algorithm [16-20] or automata [21-24] to save storage space and

raise the performance.

4.5 Experiments and comparisons between Regular

Expression automata and EGREP
 To evaluate the performance of the proposed Regular Expression automata, some

experimental tests are designed. The data size conducts by the automata with some

random short rules is evaluated on a PC with 400 MHz CPU.

For some low-relativity patterns P = {abcdef, ghghklnl, opkahqw, nkloif, Hlna},

the data size of EGREP is 70 bytes, and that of Regular Expression automata is 1140

bytes. For high-relativity patterns P = {aaaaaaaaaaaaaaaaaaaaaaaabc,

Aaaaaaaaaaaaaaaaaaaaaaaaaaade, aaaaaaaaaaaaaaaaaaaaaaaaafg, aaaaaaaaaaaaaaaajk,

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalm}, the data size of EGREP is 176 bytes and

that of Regular Expression automata is 1644 bytes. But for more high-relative

patterns: 18 rules which all begin with ‘aaaaaaaaaaaaaaa’, the data size of EGREP is

688 bytes and that of Regular Expression automata is 1752 bytes.

 46

Form this trend, we can see that if there are more high-relativity patterns, one

day the size of EGREP may be bigger than that of Regular Expression automata. If

input patterns are high-relativity or there are lots of rules, using our Regular

Expression automata is the better choice. Otherwise, using EGREP could support RE

and save more space.

 Then we test Regular Expression automata with those rules only include content

parts which our automata support. If we input 79 k bytes-length string as rules mixed

with normal words and Regular Expressions, the data size of EGREP is 129 k bytes

and that of Regular Expression automata is 230.6 k bytes.

 Then different lengths of strings are input to test the matching time of the

proposed Regular Expression automata and EGREP. The result is shown in Table 5

and Figure 4-6. We can see that our Regular Expression automata is faster than

EGREP. This is because that the Regular Expression automata has the ability to do

multi-pattern matching in the same time, but EGREP just does matching in sequence.

Therefore, Regular Expression automata is the more suitable solution to process

Regular Expression patterns, especially in our hardware design as a Regular

Expression engine.

Table 5 Comparison of matching time (Regular Expression vs. EGREP).

Input length (bytes) Matching Time (time ticks)

 Regular Expression
Automata

EGREP

100 80 120

200 270 341

300 341 481

400 501 671

 47

500 600 810

600 701 991

700 821 1122

800 910 1302

900 1052 1492

1000 1182 1612

1100 1242 1803

1200 1362 1953

1300 1482 2042

1400 1623 2233

1500 1702 2364

 48

80

270
341

501

600

701

821

910

1052

1182
1242

1362

1482

1623
1702

120

341

481

671

810

991

1122

1302

1492

1612

1803

1953

2042

2233

2364

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Input length (bytes)

M
at

ch
in

g
tim

e
(t

im
e

tic
ks

)

Regular

Expression

Automata

EGREP

 Figure 4-6 Comparison of matching time for different data sizes

