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Multi-Pattern Matching Algorithms for Networks 

 

ABSTRACT 

 

In-depth packet inspection engines, which search the whole packet payload to 

identify packets of interest that contain certain patterns, are urgently required. The 

searching results from the inspection engines can be utilized in the network equipment 

for varied application-oriented management. The most important technology for fast 

packet inspection is an efficient multi-pattern matching algorithm, which performs exact 

string matching between packets and a large set of patterns. This study discusses 

state-of-the-art pattern matching algorithms and proposes three efficient multi-pattern 

matching algorithms for networks: a hierarchical multi-pattern matching algorithm 

(HMA), an enhanced hierarchical multi-pattern matching algorithm (EHMA), and an 

Aho-Corasick with Magic Structures (ACM) algorithm. 

HMA and EHMA are built based on hierarchical and cluster-wise matching 

strategies. The hierarchical matching strategy of HMA and EHMA can efficiently reduce 

the number of external memory (L2) accesses and the amount of memory space. EHMA 

contributes modifications to HMA and includes the ideas of Sampling Windows and a 

Safety Shift Strategy. The Safety Shift Strategy can significantly speed up the scanning 

process of packet inspection. HMA and EHMA improve the average-case performance of 
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multi-pattern matching, and are useful for the network equipment that locates at the 

general network environment.  

Moreover, the proposed ACM presents a novel Magic Structure based on the 

Chinese Remainder Theorem. ACM needs only a small amount of memory space and 

does not increase computational time complexity. ACM has better worst-case 

performance than state-of-the-art algorithms, and is suitable for the network equipment 

that usually suffers heavy attacks or requires guaranteed performance.  

In this study, the analyses and simulation results show that the proposed algorithms 

in this study outperform others. HMA and EHMA successfully reduce the average 

number of L2 memory accesses to about only 0.06–0.37 per code, and improve the 

performance to about 0.89–1161 times better than the state-of-the-art algorithms. The 

overall cost of ACM is about 1.1–459 times better than the existing implementations. In 

particular, HMA, EHMA, and ACM use only simple and easy instructions, and no special 

hardware is required. Therefore, the proposed multi-pattern matching algorithms are easy 

to be implemented in both hardware and software. Consequently, the proposed 

multi-pattern matching algorithms can be efficiently applied to packet inspection 

engines for network equipment. 
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1 INTRODUCTION 

Many applications run over the Internet today create a high demand on in-depth 

network management. Low-layer network equipment checks specified fields of the packet 

headers, such as layer 2/3 switches and layer-4 firewalls. Checking only packet headers is 

insufficient for application-oriented management, owing to the increasing amount of 

information stored in packet payloads. Network management systems urgently need 

efficient and in-depth packet inspection engines for high-layer network equipment. The 

packet inspection engine is used to find packets of interest over the network.  

A packet inspection engine in the high-layer network equipment, such as an intrusion 

detection system (IDS), anti-virus appliance, application firewall or layer-7 switch, 

typically contains a policy or rule database. In the database, every rule consists of several 

patterns (or signatures) and a matching action (or a series of actions). These patterns 

describe the fingerprints of traffic flows. A packet inspection engine applies the 

pre-defined patterns to identify or manage packets of interest over the network. The 

pattern form depends on the application of the network equipment. However, the patterns 

have similar features: (1) a database generally contains a few thousand patterns, of various 

lengths, and (2) the patterns may appear anywhere in any packet payload.  

For instance, Snort is an open-source network-based intrusion detection system 

(NIDS), which is adopted to listen in packets on a network link, identify anomalous 

intruder behavior with a set of patterns, and generate logs and alerts through predefined 

actions [1]. Snort describes one pattern of the Nimda worm as “GET 

/scripts/root.exe?/c+dir” [2], [3]. If the Snort inspection engine detects a packet with this 
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pattern in its payload, then it generates appropriate alerts to warn network administrators. 

Pattern matching is known to be the most resource-intensive task in the Snort [4], [5], [6]. 

It has been shown that the pattern matching routine of Snort needs 31% of the total 

execution time, which is the most expensive routine [7]. Therefore, the emerging 

high-layer network equipment needs an efficient packet inspection engine to search the 

entire packet headers and payloads for pattern matching. This study focuses on the 

nascent issues of payload inspection, and proposes three fast multi-pattern matching 

algorithm. 

The most important component of an inspection engine is a powerful multi-pattern 

matching algorithm, which can efficiently perform exact string matching to keep up with 

the growing data volume in the network. However, conventional string-matching 

algorithms are impractical for packet inspection [1], [8]. Because of the large pattern 

database, an effective inspection engine must be able to simultaneously search for a set of 

patterns, rather than iteratively performing the single-pattern matching. The performance 

of processing packets is not only affected by the computation time, but also strongly 

affected by the number of external memory accesses.  

It is well known that the rate of improvement in processor speed exceeds the 

improvement in memory speed. The gap has been the largest problem for system builders. 

For example, the latency of one external memory access is about 150–250 times more 

than the time of one instruction cycle in the Intel IXP2x00 network processor systems [9]. 

Therefore, a high-speed multi-pattern matching algorithm should aim to minimize the 

number of external memory accesses.   
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This study proposes three efficient multi-pattern matching algorithms for in-depth 

packet inspection: a hierarchical multi-pattern matching algorithm (HMA), an enhanced 

hierarchical multi-pattern matching algorithm (EHMA), and an Aho-Corasick with 

magic structures (ACM) algorithm. These three algorithms can simultaneously search the 

packet payload for all patterns in a set. HMA, EHMA and ACM are proposed for different 

network situations. HMA and EHMA have better average-case performance, while ACM 

has better worst-case performance than the state-of-the-art algorithms. Usually, 

algorithms of good average-case performance work well in the general network systems. 

However, algorithms of good worst-case performance are very important especially for 

the equipment in the core and edge network requiring guaranteed services. Consequently, 

HMA and EHMA are useful for general network applications, and ACM is suitable for 

reliable network applications. 

The increasing problem of network security threats means that NIDSs have become 

essential network applications [20], [23]. NIDSs protect network infrastructure from 

attacks and intrusions without modifying end-user software. To ensure effective 

protection, NIDSs must be capable of real-time packet inspection, and be fast enough to 

keep up with the ever-increasing data volume over the network. Hence, this study 

illustrates HMA, EHMA and ACM with the promising NIDS that makes use of a set of 

patterns describing known intrusions.  

The rest of this study is organized as follows. Section 2 presents the background of 

pattern matching algorithms and the motivation of the proposed HMA, EHMA and ACM 

algorithms. From Section 3 to Section 5, the details of the proposed algorithms: HMA, 

EHMA and ACM, are described respectively, and the analyses and experimental results 
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are also shown and discussed. Finally, Section 6 gives the conclusions and the future 

works of this study. 
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2 BACKGROUND 

This section describes the background of the exact string matching algorithms. The 

fundamental definitions and notations used in this study are firstly presented. Then the 

related works are discussed in this section.  

2.1 General Definitions and Notations 

An array is adopted to represent a string of characters from an alphabet set Λ. 

Namely, an element of string T at the position i is T[t], where T[t]∈Λ. The absolute value 

of an object signifies the size of the object. For instance, |T| represents the length of the 

string T, and |Λ| is the number of elements in the set Λ. Define a function sub(T, t, B), 

which is the substring of T that starting from T[t] to T[t+B−1]. A string can also be given 

as a set of B-grams, where a gram is defined as a group of characters, and B is the number 

of grouped characters in a gram. For exampe, the string “green” can be translated into a 

set of grams {‘gr’, ‘re’, ‘ee’, ‘en’} when B=2.  

Let P = {pi} denote a set of distinct patterns, where pi is a pattern with an 

identification number (ID) i. Note that in the set P, pi≠pj when i≠j. Assume that the 

payload of an input packet T and each pattern pi ∈P are both strings drawn over Λ.  

A search request (|P|=1) in a conventional exact string matching algorithm generally 

only contains one pattern. A single-pattern matching algorithm is used to search a string 

(or text) T for the first occurrence or all occurrences of one given pattern. A multi-pattern 

matching algorithm is adopted to search the input T for all occurrences of any pattern 

pi∈P where |P|≠1, or to confirm that no pattern of P is in T. That is, the goal of the 
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multi-pattern matching is to find all the matched patterns in T, say PM ⊂ P, such that PM = 

{ pi | ∀ pi ⊂ T and pi∈P}. PM can be applied to any high-level decision policy, such as the 

high-priority-win, first-matched-win or other state-concerned rules.   

The notation e.f denotes the value of the field (or offset) f at the entry (or address) e. 

If e is a table, then e.f means all fields named f of the table e. 

2.2 Previous Works 

Single-pattern matching algorithms were originally proposed to perform text 

searching in computer systems. In single-pattern matching, Boyer-Moore-based 

algorithms provide the best average-case performance in terms of computation 

complexity, which is sublinear to the input string [8], [13], [21]; while the Aho-Corasick 

algorithm has the best worst-case performance, which is linear to the input string [1], [31]. 

Since algorithms with better average-case performance typically work better in the real 

world, Boyer-Moore-based algorithms are widely used in the practical implementations. 

Some multi-pattern matching algorithms that modify the Boyer-Moore-based algorithms 

have been proposed for the IDSs in [21], [27], [29], [36]. The details are as follows.    

2.2.1 The Boyer-Moore-Like Algorithms 

For single-pattern matching, the Boyer-Moore algorithm (BM) [13] employs a bad 

character heuristic and a good suffix heuristic to build a skip table and a shift table 

respectively. The Boyer-Moore-Horspool algorithm (BMH), which is a variant of BM, 

slightly modifies the bad character heuristic to build a single skip table [21]. The tables of 

the Boyer-Moore-based (BM-based) algorithms are precomputed, and are used to obtain 

the number of safety shifts of every character during the searching process [13], [21].  



Chapter 2 

 17 

Table 1. Comparisons of single-pattern matching for cmputers and multi-pattern matching for 
network packets. 

 Single-pattern Searching Multi-pattern Matching 
Pattern Length Long Many patterns are very short. 
Pattern Database 1. One pattern 

2. | |
1| |i

P
i p=∑ < |T|. 

1. Hundreds of patterns 
2. Usually, | |

1| |i

P
i p=∑ > |T| 

Memory Requirement Small Large 

 

Therefore, some characters of the input text T can be skipped during the matching process. 

In other words, the safety shift (jump) of each alphabet a∈ Λ when searching a single 

given pattern p, say J(a, p), is precomputed, and J(a, p) ≤ |p|. The BM-based algorithm, 

while scanning T to verify the existence of p, checks J(a, p) to locate the next character of 

T to scan after the input character T[t] = a is scanned. This shift method speeds up the 

searching process.  

Some algorithms apply the BM-based algorithms iteratively for each pattern to solve 

the multi-pattern matching problem. However, these algorithms were originally designed 

for single-pattern matching. BM-based approaches are not applicable for packet 

inspection, because of the different pattern length, scale of the pattern database and 

memory capacity. Table 1 shows these differences. 

Although BMH is the best average-case algorithm for general pattern lengths in the 

single-pattern matching, several studies have concluded that the Brute Force method 

outperforms the BM-based approaches in the extreme cases of pattern length less than 

three characters or close to the length of the input string [8], [22], [31]. Generally, the 

patterns in many network systems are very short. For example, 13.7% of the patterns in 

the Snort pattern set have pattern lengths of less than three characters, and the range of 

pattern lengths is 1–122 bytes. Conventional single-pattern searching algorithms are 

designed for text file searching in computers, where the length of an input string is  
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Figure 1. The memory architecture of WM-PH, where the prefix size D = 3. 

 

typically larger than that of a pattern string. However, the input string for multi-pattern 

matching across a network is a packet, whose length is much smaller than the sum of the 

length of all patterns. Moreover, the pattern set (|P|) is generally very large in a network 

system. Notably, the required amount of memory are very important, especially in a 

hardware-based design. For single-pattern searching, the table size of BM-based 

algorithms is O(|Λ |). However, for multi-pattern matching, the table size of BM-based 

algorithms rises significantly to O(|P|× |Λ |). 

To search for a set of patterns, Snort runs a BM-based algorithm iteratively for each 

pattern. In this case, the time complexity is O(| |
1| |

i

P
i p=∑ +|P|× |T|) for one input string T [5], 

[31]. BM-based algorithms obviously have poor packet inspection performance due to the 

large pattern set in the network. The complexity of implementing the conventional 

matching algorithm has been cited as a reason why it has not been adopted extensively in  
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Table 2. Comparing the shifts of BM-based, FV, WM, and WM-PH algorithms. 
 Shift Value Maximum Shift 
BM-based  J(a, p) |p| 
FV min{J(a, pi) |∀ pi∈P} min{|pi| |∀ pi∈P} 
WM min{J(g, pi) | g⊂ pi, ∀ pi ∈P}, where |g| = D min{|pi| | ∀ pi∈P}–D+1 
WM-PH min{J(x, pi) | sub(pi, 1, D) = x, ∀ pi ∈P}  D 

 

multiple-pattern matching [7], [21]. Markatos’s approach promoted Snort by using a 

bitmap filter before BMH, but still searching for only one pattern in each iteration [29]. 

Several modifications to BM-based algorithms have been developed to solve the 

multiple-pattern matching problem. Fisk and Varghese’s method (FV) groups all patterns 

to precompute the safety shifts [7]; Wu and Manber’s algorithm (WM) groups D-grams of 

the prefixes of all patterns to build a shift table based on the bad gram heuristic, where 

each entry contains the safety shift of each D-gram [36]; Liu et al. presented an algorithm 

(WM-PH) that groups the prefixes of all patterns to build a large hash table, where the 

length of the prefix is D [27]. Figure 1 displays the memory architecture of WM-PH. 

Notably, WM-PH has to duplicate the patterns of length smaller than D in the hash table to 

avoid a miss. Table 2 presents the shift values of BM-based, FV, WM and WM-PH 

algorithms.  

Obviously, grouping a large number of patterns leads to a small average shift. The 

valid shift decreases as the size of pattern set grows. Additionally, the maximum shift 

value of the FV and WM must be less than the minimum pattern length in P in order to 

avoid missing any pattern. Hence, FV and WM are unfeasible for the inspection engines 

when the pattern set includes single-symbol patterns. The required memory space of the 

table for WM and WM-PH is O(|Λ|D). Generally, D = 3, and the table requires 16M entries 

when the alphabet size is 256. These large tables must be held in the external memory, 

which leads to long access delay during the matching process. Furthermore, because the 
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safety shift of a D-gram g in the BM-like algorithms relates to all patterns containing g, it 

is a very complicated process to derive the shifts and updating the tables when the pattern 

set is changed. The BM-like inspection engines must be suspended for table update, even 

when only one pattern is added or removed.  

2.2.2 The Aho-Corasick-Based Algorithms 

The Aho-Corasick (AC) algorithm is a well-known algorithm that provides the best 

worst-case computational time complexity [1], [31]. AC is an automaton-based algorithm. 

By using a simple data structure, the memory space required to store the transition 

matrixes of the states is in the order of O(|Λ|× S), where S is the number of states of the 

automaton. Using a compressed structure, Tuck et al. modified AC (named AC-C), and 

lowered the required memory to about 2% of the original AC [34]. However, the data 

structure of AC-C is still too large to be cached in the on-chip cache of general chips. 

Although the AC-based algorithms have the best worst-case computational time 

complexity, the latency of external memory access dominates the processing performance 

rather than the computational time. Even in the best-case scenario, AC still needs at least 

two memory references per character. Additionally, even when only one pattern is 

removed, AC must rebuild the failure table since AC’s failure table is built by correlating 

the entire pattern set. AC-C also needs to rebuild the entire state machine when it adds or 

deletes a pattern, because the structures of AC-C are compressed. Consequently, the 

AC-based inspection engine has to be suspended for pattern update, and the suspended 

time is proportional to the total length of all patterns in P [1]. 
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Coit et al. proposed a matching algorithm for Snort by combining AC and BM [15]. 

However, their algorithm requires three times the memory of the standard version, and 

may yield inconsistent results. 

2.2.3 Other Approaches 

In the case of hardware solutions, Li et al. developed an FPGA-based inspection 

engine for NIDSs, using the internal content addressable memory (CAM) to speed up 

multi-pattern matching [28]. Because the size of an internal CAM of FPGA is not large 

enough to store all patterns, Li et al.’s engine dynamically reloads a block of patterns into 

the CAM, resulting in long latency. Moreover, Li et al.’s approach does not solve this 

problem while the patterns of varied lengths complicate the formulation of a CAM for 

exact matching.  

Additionally, Dharmapurikar et al. adopted Bloom Filters (BFs), and Kim et al. 

employed mask filters in the FPGA-based packet inspection [17], [24]. However, these 

two methods only act as filters and have to cooperate with another string matching 

algorithm to verify a match. Furthermore, this Bloom-Filter-based algorithm can be used 

only in the case that all patterns are longer than a certain length.  

Lu et al. used several binary CAMs and BFs to implement parallel compressed 

deterministic finite automata (DFAs), and Dharmapurikar et al. combined AC with BFs 

for packet inspection [18], [22]. Both approaches utilize parallel BFs, and assume that a 

BF can execute one query every clock cycle. However, these architectures and 

assumptions are only valid in specific hardware implementations. BFs are inefficient in 

software implementations, because one BF is composed of several hash functions, which  
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Figure 2. The architecture of a network processor. 

 
 

generally have long computation times in software [19], unless hash functions are 

carefully selected for different CPUs. 

A Piranha algorithm, based on the idea that a pattern can be identified from its least 

popular D-gram of a pattern, has been presented [11]. A least popular gram of a pattern is 

selected as an index key of a pattern. However, the Piranha algorithm cannot handle 

patterns with lengths smaller than D, and require a large memory space (O(|Λ|D)).   

2.3 Motivations 

Generally, there are three ways to improve the performance of a real-life appliance: 

(1) reduce the number of required instructions for a task (computation complexity); (2) 

reduce the memory requirement (space complexity); (3) reduce the number of memory 

references, especially the external memory references (access latency).  

2.3.1 Network Processors and Micro-processors 

Programmable chips, such as network processors, FPGAs, networking on chips 

(NOCs) or system-on-a-programmable-chips (SOPCs), are increasingly used in 
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implementations in order to have the performance and flexibility at the same time [6], 

[12]. Although microprocessors are slower than general CPUs, microengine clusters 

using pipeline or parallel technologies have been proposed to overcome this shortage. A 

network processor system generally consists of microengines, on-chip memory (L1 

cache), external memory (L2 memory), and packet control modules (Figure 2). Due to the 

cost and power consumption issues, programmable chips generally have small on-chip 

cache. For example, the Intel IXP2x00 network processor has only a 4 KB instruction 

cache and a 2 KB data cache in each microengine, while the Vitesse IQ2000 network 

processor has a 4 KB data cache [22], [35]. Nevertheless, the required memory capacity of 

the existing multi-pattern matching algorithms for Snort’s database is usually larger than 

300 KB. Because the number of patterns is still growing, the on-chip cache of general 

programmable chips is typically too small to store the tables and patterns for the existing 

algorithms. Therefore, the pattern content and lookup tables built by matching algorithms 

have to be stored in the external memory. 

However, frequently accessing the external memory (to read patterns or tables) 

significantly decreases the matching efficiency due to the long and indeterminable access 

latency of the external memory. It has been pointed out that processor speed doubles 

every 18 months, while the memory latency improves by only 7% per year. For example, 

Intel IXP2x00 needs about one cycle for one basic instruction, but about 150 cycles for 

one access from SRAM (or 250–300 cycles from DRAM) [9]. While considering 

implementation issues, the system performance is strongly affected by memory latency. 

Therefore, reducing the number of required external memory accesses is more important 

than reducing the amount of computational time [34]. 
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(a) Spectrum of 1-gram. 

 
(b) Spectrum of 2-gram. 

Figure 3. The pattern spectrum when |P| = 1200 from Snort’s rule set. 

 

The proposed three multi-pattern matching algorithms: HMA, EHMA and ACM, all 

try to lower the number of external memory accesses, and reduce the amount of required 

memory space at the same time. 

2.3.2 Hierarchical Architectures 

As shown in Section 2.2 (and later shown in Table 7 and Table 13), every existing 

algorithm uses a large index table for multi-pattern matching. To reduce the number of 

external memory accesses, the idea of HMA and EHMA is to use hierarchical 

architectures: hierarchical memories and hierarchical matching strategies.  

The hierarchical architecture is a common idea and has been used to solve many 

problems. However, how to obtain a small first-tier table is the major point for a fast and 
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efficient multi-pattern matching algorithm. This study will propose novel methods to 

obtain smaller index tables.  

2.3.3 Pattern Spectrum 

Firstly, Snort’s patterns are analyzed, because index tables of matching algorithms 

are constructed by the patterns. Figure 3 plots the pattern spectrum of the Snort patterns. 

The pattern spectrum indicates the occurrence frequency of grams of patterns. Figure 3 (a) 

shows the distribution of 2-grams of patterns, and Figure 3 (b) is the distribution of 

characters of patterns.  

As shown in the figures, they are not normally or uniformly distributed, and have 

several peaks, which mean that some grams obviously occur more frequent than others. 

Hence, the idea of finding a small first-tier table is possible. 

2.4 The Sketches of the Proposed Algorithms 

Generally, an algorithm of better average-case performance performs better in 

real-life applications. However, some applications working in special situations require 

guaranteed performance and reliable systems, such as core routers. In this case, an 

algorithm of better worst-case performance is demanded. Consequently, this study 

proposes three algorithms for different requirements. The hierarchical-based algorithms, 

called HMA and EHMA, have better average-case performance; while the 

automaton-based algorithm, called ACM, has better worst-case performance than the 

state-of-the-art algorithms.  
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2.4.1 HMA 

The hierarchical multi-pattern matching algorithm (HMA) for in-depth packet 

inspection simultaneously searches the packet payload for all patterns in a set. A small 

first-tier table from the most frequent common-codes of patterns is used to narrow the 

searching scope. HMA significantly reduces external memory accesses and pattern 

comparisons by two-tier and cluster-wise matching strategies. HMA requires much less 

memory space than current state-of-the-art multi-pattern matching algorithms [12], [21], 

[27], [34], [36]. For instance, HMA requires less than 350 KB to import the Snort 

database of 1200 patterns and it reveals small-scale and cost-effective implementations. 

The average number of external memory accesses in HMA is about only 0.1–0.37 per byte, 

which efficaciously improves the performance of the inspection engine. Simulation 

results demonstrate that HMA performs about 0.9–410 times better than the 

state-of-the-art algorithms [21], [27], [34]. HMA has better best-case and average-case 

performance, and also manageable worst-case performance. HMA furthermore has an 

incremental pattern update mechanism to make it reliable and appropriate for on-line 

network equipment. Consequently, HMA is a very cost-effective and efficient mechanism 

that can be employed in fast network content inspection. 

2.4.2 EHMA 

The Enhanced Hierarchical Multi-pattern Matching Algorithm (EHMA) for fast 

in-depth packet inspection can simultaneously searches the packet payload for a set of 

patterns. EHMA contributes modifications to HMA [38], and introduces the idea of a 

sampling window and a Safety Shift Strategy in addition. EHMA is a two-tier and 

cluster-wise matching algorithm, and can perform fast skippable payload scan. Based on 
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the occurrence frequency of grams, this study discovers a small set of signatures from the 

patterns themselves to narrow the searching domain. A Min-Max strategy is used in the 

EHMA. The hit rate of the first-tier table in the EHMA is minimized, while the spread of 

patterns in the second-tier table is maximized. Accordingly, EHAM significantly reduces 

the number of memory accesses and pattern comparisons. EHMA can skip unnecessary 

payload scans by applying the proposed Safety Shift Strategy, which is based on a 

frequency-based bad gram heuristic. The frequency-based bad gram heuristic is a 

modification of the bad grouped character heuristic of Wu-Manber algorithm (WM) [36]. 

Therefore, EHMA has the advantages of both HMA and WM.  

The memory space and the number of external memory accesses required by the 

proposed EHMA are much smaller than those required by the state-of-the-art 

multi-pattern matching algorithms. EHMA needs less than 40KB memory space to 

construct required tables for the Snort of 1200 patterns, and therefore enables small-scale 

and cost-effective hardware implementations. Using only 768 bytes on-chip memory, 

EHMA reduces the average number of external memory accesses to 0.06–0.19, and thus 

significantly improves the matching time of the detection engine. Simulation results 

reveal that the matching performance of EHMA is about 0.89–1161 times better than 

other matching algorithms [12], [21], [27], [34], [36], [38]. Even under real-life intense 

attack, EHMA still outperforms others. Because employing only basic instructions and 

two small index tables, EHMA is very simple for hardware and software implementations. 

Consequently, the proposed EHMA is a very cost-effective and efficient mechanism for 

real-life network detection systems. 



Chapter 2 

 28 

2.4.3 ACM 

Guaranteed performance is very important especially for the equipment in the core 

and edge network. The AC algorithm has the best worst-case computational time 

complexity for multi-pattern matching, where the number of state transitions for each 

input symbol is at most two [1], [19]. However, as for realistic implementations, the 

performance of an algorithm is not only affected by the computation time, but also 

strongly affected by the number of required memory references. Because using the 

conventional simple structures to implement the AC algorithm requires a large amount of 

memory, the performance of AC in a realistic implementation is not good as the 

theoretical value. Therefore, this study proposes a Magic Structure based on the property 

of Chinese Remainder Theorem and contributes modifications to the AC algorithm 

(named ACM) for fast in-depth packet inspection. 

The Magic Structure needs only a small amount of memory and features fast 

traversing schemes. This study uses NIDSs to illustrate the performance of ACM. The 

results show that ACM has better worst-case performance than others. The overall cost of 

ACM is about 1.1–459 times better than the existing implementations. The performance 

of the Magic Structure is analyzed, which shows that the Magic Structure performs very 

well especially for sparse graphs.
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3 THE HIERARCHICAL MULTI-PATTERN MATCHING 

ALGORITHM (HMA) 

Based on the concept of hierarchical and cluster-wise matching, the proposed HMA 

can effectively reduce the number of external memory accesses and string comparisons 

without sacrificing the memory space. HMA comprises two stages: the off-line 

preprocessing stage and the on-line matching stage. The off-line stage constructs two 

small tables for the on-line stage.  

A frequent common-code searching algorithm (FCS) and a cluster balancing 

strategy (CBS) are proposed for the table construction. To obtain smaller index tables and 

narrow the searching scope, an idea of frequent common-codes of patterns is used. FCS is 

proposed to find out the frequent common-code set F, which is used to build the first-tier 

table: H1; the F and CBS are used to build the balanced second-tier table: H2. H1 and H2 

act as two filters to avoid unnecessary external memory accesses and pattern comparisons, 

and thereby pass the innocuous packets quickly in the on-line matching stage. The 

second-tier matching activates only after the first-tier gets a match, and H2 indicates a 

small cluster of patterns that are similar to the input packet for real comparisons. HMA 

compares only a few selected patterns of P with the suspected substrings of a packet, 

rather than comparing all patterns with all substrings of a packet. Consequently, HMA 

significantly improves the matching performance. The FCS and CBS algorithms and the 

on-line hierarchical matching stage of HMA are described in the following subsections.  
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 FCS Algorithm 
 Input: A set of patterns P. 
 Output: A set of frequent common-codes F. 
1 Initialize: F ← ∅ ; 
2 For each pattern pi of P, 0≤ i<|P| do 
3 __Transfer the first | pi |-1 codes of pi into a vector M by setting mj = 1 if j∈pi; otherwise mj = 0, for all j, 

0≤ j< |Λ|; 
  If pi is a single-code pattern, set mj = 1 if j=p i. 

4 __Read M. For each mj = 1, set the elements of matrix R: r jk = r jk + mk, for all k, 0≤ k<|Λ|; 
5 While r ii ≠ 0, 0≤ i< |Λ| do 
6 __Find a frequent common-code f, where rff = max{r ii |∀ i, 0≤ i< |Λ|}; 
7 __Add this code into F : F = F ∪ { f}; 
8 __For 0≤ i< |Λ | do       /* refresh R*/ 
9 ____r ii = r ii – rfi, if r ii >rfi; otherwise, r ii = 0; 
10 Return;  

 
Figure 4. The FCS algorithm. 

 

3.1 The FCS Algorithm 

Since the packet payload T and the patterns in P are strings drawn over the same 

alphabet set Λ, and in addition the patterns may appear anywhere in the packet payload, to 

recognize the packets that have the patterns is difficult. HMA assumes that a small set of 

signatures can be found from the patterns themselves, and then by using the signatures, 

distinguishing the suspicious substrings of T will become easier. A set of significant codes 

is defined as representatives of a pattern set P, given by ℑ ⊂Λ. A pattern of P may exist 

in the payload only when at least a significant code exists. In other words, for each pattern 

pi ∈P, at least one character of pi occurs in ℑ . Many innocent characters of T that do not 

belong to ℑ  can be skipped without further processing when scanning the input T. 

Obviously, smaller ℑ  leads to fewer pattern comparisons, and thus faster pattern 

matching. The FCS is proposed to find the smallest ℑ  from P. 

Define Pc as a subset of P, and all patterns in Pc contain a common-code c, which 

means Pc = {pi | c∈pi and pi ∈P}. Obviously, if there is a common-code that appears in 
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distinct patterns more frequently than other codes, and it is selected as one of ℑ , then a 

smaller ℑ  is found. Based on this inference, FCS is designed to find the frequent 

common-code set of a given P, denoted F = {fi | fi ∈Λ}, such that F is the minimum set of 

significant codes to represent the pattern set P, where fi is a frequent common-code.  

The FCS algorithm is presented in Figure 4, using a |Λ| vector M = (mi) and a |Λ|× |Λ| 

matrix R = (r ij) as temporary memory, where 0≤ i, j< |Λ|. M is a bit-map recording the 

occurrence of each character in a pattern. R is used to record the occurrence frequency, 

where r ij, i ≠ j, indicates the relations of concurrent occurrence between two alphabets ai 

and aj in P, and r ii records the frequency of an alphabet ai ∈Λ occurring in different 

patterns. For example, r ij=2 means that currently two patterns in P contain both ai and aj. 

Firstly, the FCS algorithm records the character occurrence of each pattern in the bit-map 

M, and then accumulates the elements of M into the corresponding elements of R 

respectively (lines 2-4). Secondly, FCS finds the largest occurrence frequency r ff, and 

consequently the corresponding alphabet af is selected to be one of F. Then the elements 

of R relating to af are subtracted accordingly to renew R (lines 6-9). FCS repeats until all 

elements on the diagonal of R become zero.  

After FCS finds out F from P, F is used to construct a small index table, called the 

first-tier table (H1). To speed up the process, H1 uses a direct index table of |Λ| entries. 

The ath entry of H1 is denoted H1(a), where each entry has two fields: the frequent code 

ID, say H1(a).fid; and the single-symbol pattern ID, H1(a).pid. That is H1(a).fid = { i | a= fi 

∈F}, and H1(a).pid = { i | |pi| = 1, pi= ‘a’ and pi ∈P}. The unused fields of H1 are set as 

NULL. Since H1 is a small table, e.g. only 256 entries in the case of one-byte coding, it 

can be stored in the on-chip cache. Later, H1 acts as a first-tier filter in the on-line stage to 
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quickly discover whether a packet contains a pattern. Namely, HMA makes use of F to 

narrow the searching scope to the most likely subset of patterns (clusters). 

3.2 The Cluster Balancing Strategy (CBS) 

Generally, most packets are innocent and a harmful packet may contain only few 

patterns. Hence, comparing all of the patterns in the large P with each input packet is time 

consuming. If the patterns in P can be distributed into different small clusters based on 

their similarity, then only the patterns in few clusters that are most similar to the input 

need to be compared. Therefore, the efficiency of the matching process is improved. This 

subsection presents strategies to attain this goal. First, the method of clustering a set P 

based on the similarity of patterns is described. Then a cluster balancing strategy (CBS) is 

used to balance the cluster size, and finally a second-tier table (H2) for on-line matching 

based on the clustering results is built. 

Define the clustering pivots as the keys used to distribute patterns, where each 

clustering pivot is a common-code of patterns defined previously. Two common-codes 

are employed as a pair of clustering pivots, called a pivot pair and noted as (a, b), where 

the first pivot is a frequent common-code of F, and the second pivot is the code following 

the frequent common-code. Let Pa,b represent a cluster of selected patterns (a subset of 

patterns) with the pivot pair (a, b), which means that Pa,b = {pi | ‘ab’ ⊂ pi, a∈F and b∈Λ}, 

where ‘ab’ is the combination of two strings a and b, and is a substring of pi. Notably, a 

pattern is assigned to only one cluster in the clustering strategy, although a pattern may 

have more than one pivot pair. That is, the clusters have the following properties: any 

cluster Pa,b⊂ P, ∪ all a, b Pa,b= P and ∩ all a, b Pa,b=∅ . Since a pattern may have several 
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opportunities to select a cluster, a better assignment can lower the maximum cluster size, 

and thereby improving the worst-case performance of HMA. 

In order to lower the worst matching time, CBS is employed to balance the size of 

clusters. In CBS, an |F|× |Λ| matrix N = (na,b) is used to record the current size of a cluster 

Pa,b. The algorithm is as the followings. Firstly, CBS reads one pattern at a time from P 

and scans the pattern. According to FCS, for any given pi, there exists a character such that 

pi[k]∈F, where 1≤ k<|pi|. To balance the cluster size, CBS finds the smallest na,b among 

all available pivot pairs of pi, say (a, b), where a∈F and ‘ab’ ∈pi. After group pi into the 

smallest cluster Pa,b, the corresponding na,b is then incremented. All patterns are 

distributed sequentially into the designate clusters in the same way.   

The second-tier table H2 is constructed based on the cluster assignments. H2 contains 

the pattern contents and the patterns’ formatted information for fast on-line matching. Let 

H2(a, b) denote an entry of H2, storing the head pattern of a cluster Pa,b , and defined as 

H2(a, b) = h(a)× |Λ| +b, 

where h(a) = H1(a).fid. Each entry H2(a, b) consists of five fields: the pattern size H2(a, 

b).size, the pattern content H2(a, b).data, the position of the frequent common-code in the 

pattern H2(a, b).offset, the pattern ID H2(a, b).pid, and a pointer H2(a, b).next to the entry 

of the next pattern in the same cluster or the fragmented content of the current pattern. 

Transferring the information of patterns into a predefined format can accelerate the 

matching procedure. The patterns in the same cluster are linked by the linked-list structure 

to optimize the memory utilization.  

For example, if pi is clustered to Pa,b and H2(a, b) is empty, then the information of pi 

is saved into H2(a, b), where H2(a, b).size = |pi|, H
2(a, b).data = pi, H

2(a, b).offset = k if 
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Figure 5. The hierarchical index table of HMA. 

 

 pi[k] = a, H2(a, b).pid = i, and H2(a, b).next is NULL. If the pattern size of pi is larger than 

the width of data field, pi is fragmented and the remaining part is saved in a free entry 

H2(a’, b’) in the shared memory pool. H2(a’, b’).size is H2(a, b).size minus the width of 

the data field, and H2(a, b).next is pointed to H2(a’, b’). Similarly, if another pj is also 

clustered to Pa,b, then a free entry is also assigned to pj, and pi and pj are linked by a 

pointer. 

Figure 5 illustrates the logical architecture of the index tables of HMA, assuming the 

alphabets are 26 English letters. This example has six patterns as shown in Figure 1. Since 

‘e’ and ‘a’ are the most frequent common-codes that both occur in three different patterns, 

FCS discovers F = {e, a} as the signatures of these six patterns. Since H1 has only |Λ| (= 

26) entries, it can be stored in the on-chip cache. The fid fields of H1 are pointing to the 

corresponding offsets of H2. Since the first pattern ‘a’ is a single-pattern, its pid (= 1) is 
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stored in the H1 table. As the pattern ‘red’ has ‘e’∈F and the pivot pairs (e, d), ‘red’ is 

grouped to the cluster Pe,d according to CBS. The remainders of the patterns follow the 

same clustering strategy. 

3.3 The On-line Hierarchical and Cluster-wise Matching 

The off-line stage of HMA constructs two tables H1 and H2, holding the index and 

pattern information in the cache memory and external memory respectively. These two 

tables are regarded as the two-tier filters and as indices for the on-line matching. In this 

subsection, the on-line stage of HMA are presented in detail. Notably, HMA is designed 

for multi-pattern matching, where the pattern lengths are varied from one character to 

hundreds of characters. HMA has no constratnt on the minimum length of patterns.  

In a packet inspection engine, an input packet is a given object and forwarded to the 

engine for multi-pattern matching. Then the inspection engine returns the searching 

results of matched patterns PM. This study focuses on the payload inspection and assumes 

that every input is a packet payload T. To reduce the times of external memory accesses, 

HMA uses a hierarchical matching scheme. The matching process of HMA is divided into 

two tiers: the first-tier matching and the second-tier matching. 

3.3.1 The First-tier Matching 

In the matching stage, T is scanned from left to right, and each character T[t] is used 

as the index key to fetch the entry H1(T[t]) in H1. H1 acts as the first-tier filter of HMA, 

using to check weather T contains any pattern of P. Since H1 is small enough to be kept in 

the embedded memory of microengines, the latency of accessing H1 is much less than that 

of accessing external memory.  
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In the first-tier matching, if H1(T[t]).pid is not NULL, then T[t] is a single-symbol 

pattern, and this matched pattern will be added into PM. Whether H1(T[t]).pid is NULL or 

not, then the first-tier matching procedure checks the fid field.  

If H1(T[t]).fid is NULL, i.e., T[t]∉F, T[t] will be skipped with no pattern comparison, 

and thereby no external memory is necessary. Then the on-line matching stays in the 

first-tier matching, proceeding to the next character T[t+1] and checking the 

H1(T[t+1]).pid as previous steps. Since |F| is much smaller than |Λ|, most characters of T 

can gain the skips and avoid the second-tier matching. Consequently, both the number of 

character comparisons and costly memory accesses can be reduced.  

If T[t]∈F, T may contain a pattern pi ∈P, where T[t]∈pi. That is, as H1(T[t]).fid is not 

NULL, T may have a pattern (or more than one) belonging to the cluster PT[t],T[t+1]. Then 

the second-tier matching is activated to identify the pattern.  

3.3.2 The Second-tier Matching 

After the first-tier matching, as long as H1(T[t]).fid is not NULL, the matching 

procedure proceeds to the second-tier matching. H2(T[t], T[t+1]) indicates the location of 

the corresponding cluster PT[t],T[t+1] according to the input T. As a cluster-wise matching, 

HMA checks only the patterns in the small cluster PT[t],T[t+1], which are most similar to T.  

In the second-tier matching, firstly the pid field of H2 is checked. If H2(T[t], 

T[t+1]).pid is NULL, it means the cluster PT[t],T[t+1] has no pattern. Afterward, the next 

character T[t+1] is scanned, and the matching procedure returns to the first-tier matching. 

Otherwise, if H2(T[t], T[t+1]).pid is valid, it means the cluster PT[t],T[t+1] has patterns 

similar to T. Then, HMA compares the pattern content in H2(T[t], T[t+1]) with the 

suspected part of T, sub(T, T[t-H2(T[t], T[t+1]).offset], H2(T[t], T[t+1]).size). If the 
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 Procedure OnlineMatching(T, H1, H2) 
 Input: Packet payload T, two preprocessed indexing tables: H1 and H2 
 Output: The matched pattern set of T: PM, and its corresponding pid PIDM 
1 Load the input payload into buffer T; 
2 Initialize: PM←∅ ; 
3 For each T[t] do 
4 __If (k←H1[T[t]].pid) ≠ NULL then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k};  /* First-tier matching*/ 
5 __If (k←H1[T[t]]. fid) ≠ NULL && t < |T| then  
6 ____Load data from the external RAM at entry H2(T[t], T[t+1]) to a local buffer LB; 
7 ____While (k← LB.pid) ≠ NULL do                                      /* Second-tier matching*/  

8 
______Compare the substring start at T[(t-LB.offset)] with the pattern LB.data of length LB.size;  /* 
Assume no fragmentation here*/ 

9 ______If the comparison is matched then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k}; 
10 ______If LB.next≠ NULL  then 
11 ________Load data from the external RAM at entry LB.next to the local buffer LB; 
12 Else 
13 Break; 
14 Return; 

 
Figure 6. The on-line matching procedure of HMA. 

 

pattern size H2(T[t], T[t+1]).size is larger than the width of a data field, the next fragment 

of the pattern at H2(T[t], T[t+1]).next is fetched and compared only when the current 

fragment gets a match. If the next field of the last pattern fragment points to a valid next 

pattern, say at H2(a, b), similarly the pattern in H2(a, b).data is compared with the 

substring of T starting at T[t-H2(a, b).offset]. All matched patterns are added to PM.  

Notably, if a pattern pi exists in T, then all characters of pi will appear in T. Definitely, 

the clustering pivot pair of pattern pi, say pi[k] and pi[k+1], will be found in T, say at T[t] 

and T[t+1], where T[t] = pi[k] ∈F. When T compares with the patterns in the cluster 

PT[t],T[t+1] during the matching procedure, pi will be recognized. Consequently, no patterns 

in the payload T will be missed.  

The on-line matching procedure of HMA is presented in Figure 6. Obviously, only 

few suspected patterns are loaded from external memory, and the number of string 

comparisons is decreased. HMA can scan the packets rapidly by using H1 and H2, since 
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Figure 7. Examples of HMA on-line matching, where the input strings are ‘pink’ and ‘black’. 
 

 

most packets in the network are generally innocent and the obtained F narrows the 

searching scope.  

Figure 7 demonstrates the on-line matching of HMA. Assume the H1 and H2 tables 

have been constructed as Figure 5, where F = {e, a}. HMA scans the input T from left to 

right. If T = ‘pink’, after checking T with the on-cache H1 for four times and finding that 

all characters of T do not belong to F, HMA knows that T contains no pattern and no 

external memory access is required. If T = ‘black’, HMA stays in the first-tier matching 

until ‘a’ is scanned, and finds that ‘a’∈F (H1(a).fid is valid) and ‘a’ is a single-symbol 

pattern (H1(a).pid = 1). Then, ‘a’ and its following ‘c’ are used as the index keys (pivot 

pair), and the second-tier matching loads an entry from H2(a, c) for further checks. 

Because H2(a, c).pid (= 6) is not NULL, HMA compares the substring(s) of T with the 

pattern(s) in Pa, c, where H2(a, c).data = ‘black’, and a match is got. As H2(a, c).next is 

NULL, the on-line matching process returns to the first-tier matching as the previous steps. 
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Since ‘c’ and ‘k’∉F, the scanning process of this input is finished. For the input ‘black’, 

only one external memory access is required. The result of this case is PM={a, black}. 

 
 Procedure AddPattern(pi, |F|, H1, H2)  
 Input: A new pattern pi with pattern ID i, the current |F|, H1 and H2 
 Output: The new H1 and H2 
1 Initialize: flag ← FALSE; 
2 If |pi|== 1 && H 1(pi[1]).pid≠ NULL then  
3 __H1(pi[1]).pid ← i; 
4 Else 
5 __For each pi[j] && j<|pi| do 
6 ____If H1(pi[j]).fid ≠ NULL then 
7 ______flag ← TRUE; 
8 ______If H2[pi[j]][ pi[j+1]].pid==NULL then 
9 ________Save the information of pi to the entry H2(pi[j], pi[j+1]); /* Assume no fragmentation here*/ 
10 ________Return; 
11 __If flag==TRUE then                                   /* No empty cluster*/ 
12 ____Choose a random number r, 1≤ r<|pi|, such that pi[r] ∈F; 
13 ____Add the pattern pi to the cluster Ppi[r], pi[r+1]: Find the last entry of the cluster, say H2(a’, b’ ), and save 

the information of pi to an empty entry of H2, say H2(a’’, b’’); 
14 ____H2(a’, b’).next←H2(a’’, b’’);  
15 __Else 
16 ____Choose a random number r, 1≤ r<|pi|, set H1(pi[r]).fid←|F|++ and save the information of pi to the 

entry H2(pi[r], pi[r+1]); 
17 Return; 
 Procedure DelPattern(p, H1, H2) 
 Input: A pattern p to delete, the current H1 and H2 
 Output: The new H1 and H2 
1 Initialize: Set temporary registers prev←NULL and this←NULL;  
2 If |p|==1 &&  H1[p[1]].pid≠ NULL then   
3 __H1[p[1]].pid←NULL;  
4 Else 
5 __For each p[j] do 
6 ____If (k←H1[p[j]]. fid) ≠ NULL && j < |p| then  
7 ______Load data from the external RAM at entry this←H2(p[j], p[j+ 1]) to a local buffer B, and f←p[j]; 
8 ______While (k← B.pid) ≠ NULL do    
9 ________Compare the substring start at p[(j-B.offset)] with the pattern B.data of length B.size;  
10 ________If the comparison is matched then           /* Assume no fragmentation here*/ 
11 __________If prev≠ NULL then prev.next ←B.next; 
12 __________Clear the data of the entry at this and Goto Line 16; 
13 ________Else If (prev←B.next) ≠ NULL  then 
14 __________Load data from the external RAM at entry B.next to a local buffer B; 
15 ________Else Break; 
16 If for all a∈ Λ that H2(f, a) = NULL then H1(f).fid←NULL;     /* Check the frequent common-code 

after delete p*/  
17 Return; 

 
Figure 8. The incremental update of HMA. 
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3.4 The Incremental Update 

A packet inspection engine, just like most network equipment, must work 

persistently to avoid missing any packet. When an inspection engine suspends, even for 

only 30 seconds, millions of packets will cut through it without any inspection. 

Nevertheless, the pattern database of network equipment has to be updated frequently, 

because contents over networks change with each passing day. For example, when a new 

attacking scenario is discovered, the new patterns must be added to the databases of IDSs 

as soon as possible. However, the BM-like and AC-based algorithms have to suspend for 

a long time for pattern update. For the BM-based algorithms, they calculate the valid shift 

by correlating one pattern with others in P based on bad character and good suffix 

heuristics. For the AC-based algorithms, they build the fail tables by correlating the 

substrings of all patterns in P. Accordingly, BM-based and AC-based algorithms have to 

modify many entries of the lookup tables even when only a pattern is added or deleted. 

The number of the modified entries relates to the length of the updated patterns. 

Contrarily, the proposed HMA has the advantage of incremental update, with which at 

most three entries of the tables have to be updated for one changed pattern.  

The incremental pattern update mechanism is shown in Figure 8. The pattern 

insertion is similar to the table construction of HMA. To add a new pattern pi into the 

pattern set P, HMA has to modify at most one field: H2.next, H1.pid, or H1.fid; and add 

one entry. The new pi is scanned from left to right. (1) If there is a character pi[j] such that 

pi[j] ∈ F (i.e., H1(pi[j]).fid is valid), and cluster [ ], [ 1]i ip j p jP +  is empty (i.e., H2(pi[j], 

pi[j+1]).pid is NULL), then pi is added to the entry H2(pi[j], pi[j+1]). If there is no empty 

cluster for pi, then a random number r is chosen, such that pi[r]∈F. Thereupon, pi is added 
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to the cluster [ ], [ 1]i ip r p rP +  and saved in a free entry of H2, say H2(a'', b''). Then the next field 

of the last pattern of [ ], [ 1]i ip r p rP + , say H2(a', b').next, is modified from NULL to H2(a'', b''). 

(2) If there is no character of pi belongs to F, then a random character of pi, say pi[r], is 

chosen as a new frequent common-code and added to F. A new ID of frequent 

common-code is assigned and saved in H1(pi[r]).fid. If pi is a single-symbol pattern, i.e., 

|pi| = 1, then modify H1(pi[r]).pid to i; otherwise, pi is saved in the entry H2(pi[r], pi[r+1]). 

The size of the cluster is balanced by randomly choosing a cluster if the information of all 

cluster size (the matrix N) is not kept in the system. If the matrix N is kept in the system, 

the pattern insertion procedure is the same as the table construction.   

To delete a pattern pi, only one entry has to be cleared and at most two of H2.next, 

H1.fid, and H1.pid have to be modified. The first process is to find out the pattern pi in H2 

by using a matching process similar to the on-line matching. If |pi| = 1, then change 

H1(pi[j]).pid to NULL. If |pi|     ≠1 and pi is in the cluster [ ], [ 1]i ip j p jP + , then (1) when pi is not 

the only pattern in the cluster [ ], [ 1]i ip j p jP + , link pi’s previous entry and its next one in H2 

before clearing the entry of pi (H
2.next is modified); (2) when pi is the only one in the 

cluster [ ], [ 1]i ip j p jP + , check whether any pattern exists in the subset [ ]ip j FP ∈  after clearing 

the entry of pi. If no, it means the frequent common-code pi[j] = f is not used any more. 

Then, the code f can be removed from F and the field H1(f).fid is set to NULL. 

Obviously, the number of modified fields due to HMA’s pattern updates are constant 

(at most three), and thus the updating time is deterministic and negligible. Therefore, 

HMA provides more reliable inspection engines for real-time network equipment. 



Chapter 3 

 42 

3.5 An Example: Network Intrusion Detection System 

HMA can be used in many novel network applications to inspect packets, such as 

NIDSs, anti-virus appliances, and layer-7 switches, which search for a set of patterns in 

packets. The only difference between these applications is the pattern format. Most 

patterns of virus codes are binary codes; while most patterns of layer-7 switches are 

formed by English letters. The patterns in NIDSs are written in mixed plain text and hex 

formatted bytecodes. In this section, we illustrate an application of HMA with NIDSs.  

Two complementary techniques are used to cope with the intrusion detection 

problem: anomaly detection and misuse detection [25]. Anomaly detection techniques 

attempt to model normal behavior; while misuse detection techniques attempt to model 

abnormal behavior. Anomaly-based IDSs are deployed based on machine learning, data 

mining or statistical algorithms, which are more sensitive to new attacks than 

signature-based IDSs. However, anomaly-based IDSs usually trigger up to 99% false 

positive alarms, and their complex normal models result in poor performance. Several 

researchers have proposed new schemes to improve the anomaly detection [25], [32], [37]. 

Misuse detection is assumed to be more accurate and efficient than anomaly detection, 

and therefore signature-based IDSs are commonly used today. Some effort has focused on 

automatic signature generation to improve the robustness of the signatures [32]. An 

example of signature-based NIDSs using HMA is shown in this section.  

As network processors have been widely used to develop novel network equipment 

[33], a network processor platform is used to illustrate the HMA-base NIDS. A network 

processor development system usually consists of several on-chip multi-context 

processing engines, each with a small on-chip cache, one host CPU, external memory,  
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Figure 9. The architecture of a network-processor-based NIDS. 

 

built-in Ethernet MAC modules and queue modules, such as weighted fair queues (WFQs) 

[35]. A NIDS can be a sniffer for intrusion analyses, or can combine with an embedded 

queue module (as in Figure 9) to intercept malicious packets. To accelerate the 

performance of the network equipment, the network-processor-based systems generally 

divide the tasks into two paths: the control path and the data path. The host CPU 

processes the non-real-time tasks in the control path, including the table construction, the 

pattern set management, the log analyses, and the user interface control. The on-chip 

microengines handle the real-time tasks in the data path, including the packet parsing, 

header matching, content matching, decision control and queue management. The content 

matching engine utilizes the proposed HMA, which is usually the most resource-intensive 

element; while the header matching engine uses a hardware-supported classification 

module. The H2 table of HMA is stored in the external memory and H1 is in the on-chip 

cache of the content matching engines. 

When a packet comes in, the packet input module makes some standard checks and 

put it into a packet buffer. Because the intrusion detection rules have both the header and 
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payload patterns, one engine for header matching and two engines for content matching 

are employed to accelerate the processes. The header matching engine checks the packet 

headers; and in the meantime the content matching engines search for the patterns in the 

packet payloads. The matching results both forward to a decision procedure, which 

decides to drop the packet, to generate alerts/logs, or to send the packet to an assigned 

WFQ. A management procedure in the host CPU analyzes the logs and feedbacks to the 

decision procedure that controls the bandwidth of the suspicious flows by using the WFQs. 

Thereby, the HMA-based NIDS can efficaciously avoid attacks. Furthermore, the 

HMA-based NIDS can react fast to the new attacks with low false negative alarms when it 

is cooperating with proactive bandwidth management and analysis feedbacks. 

3.6  Performance Analyses 

The performance analyses of HMA are presented in this section. The input and 

patterns in worst, best and average formatted type are used to analyze the worst, best, and 

average performance of HMA respectively.  

3.6.1 Average Case  

Since the pattern database is usually predefined and static, assume the given patterns 

are uniformly distributed. First of all, the cluster organization is modeled. Assume that the 

occurrence probability of any alphabet in a pattern pi is an uniform distribution: 

Pr{ pi[j] = a | a∈Λ} = 
1

| |Λ
.                          (3-1) 

Based on the table construction procedure of HMA, the probability that any 

two-character substring, say ‘ab’, is a pivot pair, and also exits in a pattern pi is denoted 

Cpivots, where 
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Cpivots = Pr{‘ ab’ ⊂ pi and a F∈ , b∈Λ | ‘ab’ 2∈Λ  }  = ( ) 3

| |
1

| |
p

F−
Λ

,           (3-2) 

and p  is the average pattern size. In other words, Cpivots is the probability that a cluster 

Pa,b is one of the available clusters for a pattern pi. Thereby, the average number of pivot 

pairs in a pattern, denoted Npivots, can be derived by the following equation: 

Npivots = 
1

| || |

1

| || |
(1 )

p
k F k

pivots pivots
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Λ −
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where 
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  −

≡ . According to CBS, when a cluster, say Pa,b, is one of the available 

clusters of pi, and also is the smallest one, then pi is grouped to Pa,b. Since the patterns are 

uniformly distributed and CBS classifies the patterns as balance as possible, the 

probability that an available cluster is the minimum one is 1/Npivots. Consequently, the 

probability that a pattern is grouped to a designate cluster is 

Cp→cluster = pivots

pivots

C

N
.                           (3-4) 

As k patterns are grouped into the same cluster, the cluster size is k. Thus, the 

probability that the size of a cluster is k for a given pattern set P is   

Ck =
| || |

(1 )k P k
p cluster p cluster

P
C C

k
−

→ →
 

− 
 

.                    (3-5) 

Let Ncluster represent the average cluster size, which can be derived by the following 

equation: 

Ncluster = 
| |

1

P

k
k

kC
=
∑ .                               (3-6) 

Note that the structures of H1 and H2 depend on the predefined P, and additionally 

are controllable and balanced by HMA. Therefore, generally the tables will not be 
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constructed badly, whether the input string is the best, average or worst-case string for the 

algorithm. In fact, Ncluster can be reduced by increasing the size of H2, using B characters 

for the second pivot instead of one character. Then Cpivots-B is smaller than Cpivots, which is 

Cpivots-B = ( ) 2

| |
1

| | B

F
p +−

Λ
.                              (3-7) 

Reducing Ncluster by using the smaller Cpivots-B can improve the matching performance, 

but however will increase the required memory space. This is a trade-off between the 

matching performance and the memory cost. 

In the average case, assume that an input string T is drawn randomly from the 

alphabet set Λ. As defined previously, H1 is a direct indexing table for each character. The 

fid field of the entry H1(a) is assigned a valid ID, say i, for all a= fi ∈F. Thus, the 

probability that an entry of H1 has a valid fid is:  

Pr{H1.fid ≠ NULL} = 
| |

| |

F

Λ
,                         (3-8) 

where |F| is the number of frequent common-codes. In the matching process, if 

H1.fid ≠ NULL, the next step is to check the pid field of the indexed H2 in the external 

memory, and proceed to the second-tier matching. Accordingly, the probability that the 

on-line matching goes to the second-tier matching for any input character T[t]∈Λ is 

defined as 2
AVG
tierC , and 

2
AVG
tierC  = 

| | 1

0

1 | |

| | | |

FΛ −

×
Λ Λ

∑  = 
| |

| |

F

Λ
.                        (3-9) 

The first step of the second-tier matching is to fetch the entry and check the pid field, 

and thus one external memory access is required. If there is more than one pattern in the 

cluster, additional external memory access will be needed to fetch those patterns. We 
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assume every pattern can be loaded into microprocessors within one external memory 

access. Let AVG
RAMN  represent the average number of external memory accesses per one 

input character, and it is 

AVG
RAMN =

| |
| |

2
2

| |
1 ( 1) (1 )

P
AVG k P k
tier p cluster p cluster

k

P
C k C C

k
−

→ →
=

  
× + − −∑  

  
 

= ( )| || |
(1 )

| |
P

cluster p cluster

F
N C →+ −

Λ
.                            (3-10) 

If the indexed H2(T[t], T[t+1]).pid is valid, it means T may have a pattern 

pi∈PT[t],T[t+1]. Then T has to be compared with the patterns in the cluster PT[t],T[t+1], where 

the average number of patterns in PT[t],T[t+1] is Ncluster. Let _AVG T
fetchN be the average number 

of patterns fetching from an external memory for a given average-case input T. 

_AVG T
fetchN can be derived from the previous equations: 

_AVG T
fetchN = 2(| | 1) AVG

tier clusterT C N− × × .                (3-11) 

Thereby, the number of XOR instructions used in string comparisons between T and 

the patterns for a given average-case input T, denoted _AVG T
XORN , can be obtained by 

_AVG T
XORN  = _AVG T

fetch

p
N

ω
 
 
 

,                          (3-12) 

where ω  is the computer wordsize. In the average case of HMA, let AVG
XORN  represent the 

average number of XOR comparisons between T and the patterns in the cluster for one 

input character, which can be derived by 

AVG
XORN  = 

| |

AVG T

XORN

T

−

< 
| |

| | cluster

F p
N

ω
 
 Λ  

.                   (3-13) 
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3.6.2 Worst Case 

If a given string T is formed badly that has to do the exact string comparisons the 

most times, the performance of HMA for the bad-formed T is the worst case. Assume the 

largest cluster size is Lc. When every character of T (T[t]) belongs to F, and every 

corresponding indexed cluster is the largest (|PT[t],T[t+1]| = Lc), this is the worst scenario of 

HMA. As every character T[t]∈F, the probability to fetch the table H2 for the worst case 

is one. Thus, the number of external memory accesses per character in the worst case is  

(| | 1)

| |
WST c
RAM

T L
N

T

− ×= < Lc.                       (3-14) 

Assume the largest pattern size in P is Lp. When every input character points to the 

largest cluster, in which every pattern has the longest size, the worst case requires the 

largest number of comparisons. Hence, the number of XOR character comparisons for 

one input character is 

pWST
XOR c

L
N L

ω
 

<  
 

.                          (3-15) 

Obviously, the worst-case performance depends on Lc. To derive Lc, assume there is 

a largest cluster, say Px, y. Since Px, y is the largest cluster, assume that the cluster size is 

always larger than one, and initially the probability that its cluster size increases from 0 to 

1 is one. That is  

1}10Pr{ , =→=yxP .                         (3-16) 

In the worst case, the patterns are assumed formed badly and have a bias on the pivot 

pair (x, y). Since Px, y is the largest cluster, based on CBS, a given pattern p will not be 
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clustered into Px, y, unless all available pivot pairs of p are not in the set FFFF×Λ except (x, y). 

Therefore, the probability that |Px, y| increases from i to i+1 is  

2
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2
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}1Pr{
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where |p| is the given pattern size. As in the worst-case scenario, every pattern has the 

longest size Lp, the equation is rewritten  
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Thereby, the probability that the cluster size of Px, y is Lc is derived 
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When |P| is 1200 with |F| = 77, |Λ| = 256 and Lp = 128, the probability that Lc = 4 is 

about 7× 10-79, which is very small. When replacing Lp with the average pattern size of 

Snort (|p| = 11), then the probability that Lc = 4 is about 3.6× 10-6, and is still very small. 

Thus WST
RAMN  and WST

XORN are very small. Consequently, we can say that Lc<<| P|, and the 

worst-case performance of HMA is moderate and acceptable. 

3.6.3 Best Case 

If a given string T is a good string, where every character T[t]∉F for all t, 1≤ t<|T|, 

this good string will gain the best-case performance of HMA. In this case, no external 

memory access and no pattern comparison are necessary. The good string can be 

processed quickly, and only one embedded memory lookup (checking H1 to see whether 

T[t]∉F or not) is needed per input character.  
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Table 3. The pattern size distribution of Snort. 
Pattern Length =1 ≤ 4 ≤ 8 ≤ 12 ≤ 16 >16 
Ratio 0.028 0.245 0.482 0.653 0.813 0.187 

 

3.7 Results 

This section shows the simulation results of HMA, compared with the 

state-of-the-art multi-pattern matching algorithms: BMH [21], WM-PH [27], and bitmap 

compressed AC (AC-C) [34], which have been used in the IDSs. BMH and AC-C have 

been deployed in a famous open-source NIDS – Snort, and WM-PH has been proposed 

for a network-processor-based NIDS. In the simulations, a network processor 

development system is used as a simulation platform [33]. HMA, BMH, WM-PH and 

AC-C are emulated by assembly-like microprograms respectively, and the number of 

instructions and that of memory accesses are calculated. One microprocessor is used in 

the simulations to simplify the evaluation, though a network processor may have several 

microengines. 

Snort is the most famous open-source NIDS today and the patterns (rules) used in 

Snort are provided and tested by the Sourcefire Vulnerability Research Team (VRT), 

which is the largest group dedicated to advances in network security industry [1]. The free 

and real pattern set released by VRT is used in the simulations (the statistics of the pattern 

set are listed in Table 3), although the pattern set can be any self-defined or commercial 

pattern set. The number of distinct patterns used in the simulations is 200–1200, where 

each pattern is about 11.2 bytes on average. Since the patterns of Snort are written in 

mixed plain text and hex formatted bytecodes, the alphabet size (|Λ|) is 256 in the 

simulations.  
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Table 4. The measurements. 
Notation Meaning 
NI The average number of RISC instructions per input character (including comparisons and 

calculations) 
NL The average number of local memory accesses (including reading data from cache to registers) 
NE The average number of external memory accesses for loading the packet, querying the entries of 

tables in the external memory, and fetching the patterns 
wI The time of one instruction or one local memory/register access 
wE The time of one external memory access 

Iψ  The average computation cycles: 
Iψ =NI × wI 

Mψ  The average memory latency: 
Mψ = NE× wE + NL × wI 

Ψ  Total average matching time: Ψ =
Iψ +

Mψ  

 

3.7.1 Measurements 

Table 4 shows the measurements used in the simulations. Notably, we assume that 

the skip table of BMH was small enough to be loaded into the cache memory in the 

simulations, and thus only one external memory access was counted for each pattern 

during the matching process of BMH. We also assume AC-C needed one external 

memory access per input code, although it generally requires two memory references (one 

for reading the next pointer and one for traversing failure pointers or reading the patterns). 

3.7.2 Input Traffic Models  

3.7.2.1 Models I and II 

In the Models I and II, the malicious packets are generated by randomly choosing 

patterns from P and spreading over the packet payloads. Attack load λ  is defined as the 

expected number of malicious patterns in one packet. For example, if λ  is 0.5, it means 

every two packets have one harmful pattern on average.  

The characters in a payload besides the patterns are called background characters. 

Two forms of background characters are respectively used in the Model I and Model II. In 

the Model I, the payloads of random background are formed by characters randomly  
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Table 5. The traffic models. 
Packet Format  
Background Number of Patterns 

Packet Length Number of Packets 

Model I Random λ  640 bytes 10 million 
Model II Pure λ  640 bytes 10 million 
Model III All permutations 4 bytes 232 
Model VI Real Traces from Defcon 

 

drawn from Λ to imitate the normal packet contents. However, the random background 

may unconsciously contain some patterns of P. To evaluate the impact of λ  on the 

performance of algorithms, pure background is used in the Model II. The pure 

background is formed by the characters that never appeared in P.    

3.7.2.2 Model III 

Since different multi-pattern matching algorithms have different string forms that 

cause their best-case or worst-case performance, all permutations of four-character input 

strings (232 strings) are used in the Model III to examine the extreme performance of every 

algorithm. We choose the length of four characters because 24.5% of Snort’s patterns are 

less than or equal to four characters (see Table 3), and the test pool of 232 input strings is 

large enough for simulations. Because it is very difficult to obtain the best-case and 

worst-case traces for every algorithm, it is quite feasible by using this model to evaluate 

the extreme cases of every algorithm.  

3.7.2.3 Model VI 

To evaluate the performance of algorithms in an intense attack, a real trace from the 

Capture-the-Flag contest held at Defcon9 was adopted as the input traffic in the Model VI. 

The Defcon Capture-the-Flag contest is the largest security hacking game. In this contest,  

competitors try to break into the servers of others while protecting their own servers,  
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Table 6. The simulation parameters. 
Items Value 
Time for one RISC instructions or one local memory access (wI) 1 cycle 
Latency for each external memory access (wE)  100 or 250 cycles 
Number of patterns in P (|P|) 200, 400, ..,1200 
Range of pattern length 1–122 bytes 

Table 7. The extra memory requirements. 
 HMA WM-PH BMH AC-C 
Cache memory space (MI) O(|Λ|) O(1) O(|Λ|) O(1) 
External memory space (ME)*  O(|F|× |Λ|+|P|) O(|Λ|3+|P|) O(|P|× |Λ|+|P|) O(S+|P|) 

*|F| < |Λ| << |P| < S 

 

where each server hides several security holes [14]. The summary of the traffic models are 

shown in the Table 5 and the simulation parameters are listed in Table 6. 

3.7.3 Memory Requirements 

The lookup information and patterns are generally saved in the memory using a 

tabular structure for fast lookup and matching. Therefore, the memory requirements are 

shown in terms of the number of entries. Since the H1 of HMA is a direct lookup table, the 

cache memory space (MI) of HMA is |Λ| entries. Based on the proposed schemes, FCS 

and CBS, the number of entries in H2 is the total number of possible clusters. As all 

possible pivot pairs are in the space ×Λ F, the maximum size of H2 is |F|× |Λ| entries 

along with a shared space of no larger than |P| entries for collisions. Thereby, the external 

memory space (ME) of HMA is O(|F|× |Λ|+|P|). The lookup table of WM-PH is based on a 

direct prefix hash table with prefix length of D, where D = 3 in the simulations. 

Accordingly, ME of WM-PH is |Λ|D+|P| entries for the index table and pattern contents. In 

the BMH, every pattern has its own skip table of |Λ| entries, so that ME of BMH is 

O(|P|× |Λ|+|P|). Since each skip table of BMH is small enough to be loaded to the local  
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Table 8. The number of frequent common-codes versus the pattern set size. 
|P| 100 200 300 400 500 600 700 800 900 1000 1100 1200 
|F| 11 28 32 37 45 49 52 58 66 74 75 77 

 

 
(a)wE = 250 

 
(b) wE = 100 

Figure 10. The average matching time (Ψ ) versus the attack load (λ ) for HMA, WM-PH, 
BMH and AC-C with different pattern set sizes (|P|=200 and 1200), using Model II, and (a) wE 

= 250, (b) wE = 100. 
 

 

memory, we allocate a cache memory space for BMH in the simulations for fair 

comparisons. WM-PH and AC-C also need cache memory for loading one skip value or 

one state during matching process. The required memory used in HMA, WM-PH, BMH 

and AC-C is summarized in Table 7 including lookup tables and pattern contents.  

Table 8 lists the relations between the pattern set size |P| and the number of frequent 

common-codes |F| in the HMA. It shows that the growing rate of |F| is much slower than 

that of |P|. In the simulations with |P| = 1200 for example, the maximum ME of HMA is 
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20192 entries (326.75KB external memory when the size of an entry is 16 bytes, including 

pattern contents and formatted information); WM-PH needs more than 16M entries 

(16MB for shift values, excluding pattern contents); BMH needs more than 300K entries 

(300KB for shift values, excluding pattern contents); and AC-C requires 10731 states 

(461KB when the size of a node is 44 bytes, excluding |P| entries for pattern IDs). 

Consequently, the required memory space of HMA is very small.  

3.7.4 Results and Discussions 

Figure 10 shows the attack load λ  on the average matching time Ψ  using Model 

II with different attack loads |P| = 200 and |P| = 1200 respectively. Since the ratio of 

instruction cost (wI) and external memory cost (wE) are varied in different deployed 

systems, Figure 10 (a) and (b) also show the performance of each algorithm with different 

weights wE = 100 and wE = 250 respectively. Simulation results reveal that HMA 

outperforms WM-PH, AC-C and BMH even when |P| andλ  increase. The curves of 

HMA and WM-PH are slightly increased with λ  rising because HMA and WM-PH need 

more external memory accesses and string comparisons when more malicious patterns 

exist in a packet. With the larger pattern set, the matching time increases a little faster in 

both HMA and WM-PH. This is because the probability that the input strings hit the 

lookup tables (H1 and H2 for HMA and the prefix table for WM-PH) increases. HMA has 

higher growth rate than WM-PH because the table size of HMA is much smaller than that 

of WM-PH. WM-PH gains performance by having a large direct index table. The curves 

of BMH seem flat withλ  rising, since the tiny increment of BMH is caused by the 

increasing number of comparisons with relatively low wI when compared to wE. Because 

AC-C needs one external memory access in addition to time intensive popsum to count the  
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(a) wE = 250 

 
(b) wE = 100 

Figure 11. The average matching cost (Ψ ) versus pattern set size (|P|) for HMA, WM-PH, 
BMH and AC-C with different attack loads (λ ), using Model I, and (a) wE = 250, (b) wE = 
100. 
 

next state for every character, its Ψ  is high. In the case of wE = 250 and |P| = 200 (|P| = 

1200), the matching time of HMA is about 26.5–68 (99.7–409.5) times less than that of 

BMH, 4.2–10.6 (2.8–10.6) times less than that of WM-PH, and 15.5–34.8 (9.1–34.7) 

times less than that of AC-C under different attack loads. In Figure 10, when λ  is low, 

HMA significantly outperforms WM-PH, BMH, and AC-C. Consequently, HMA is very 

suitable for IDSs in a general network environment, because most packets are innocent 

( 0≈λ ).  

The simulation results shown in Figure 11– Figure 13 use Model I as input traffic. 

Figure 11 compares Ψ  of HMA, WM-PH, AC-C and BMH with different attack loads 
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(a) HMA 

 

(b) WM-PH 

 

(c) BMH 

 

(d) AC-C 

Figure 12. Iψ and Mψ  versus attack load (λ ), where |P|=1200 and wE = 100, using Model I. The 
labeled value above each bar is Ψ . (a) HMA, (b) WM-PH, (c) BMH and (d) AC-C. 
 

λ = 0 and λ = 4 respectively. It also shows the impact of |P| on Ψ . Simulation results 

reveal that HMA outperforms WM-PH, BMH and AC-C even when |P| andλ  are 

increasing. For both λ = 0 and λ = 4, the matching costs of HMA and WM-PH both rise 

with |P|. This is because while |P| rises, the number of patterns in P that have similar 

substrings also rises. This leads to the increasing number of marked entries that request 

for comparisons in HMA and WM-PH. Hence, HMA and WM-PH require more string 

comparisons and memory accesses with increasing |P|. HMA has slightly higher growth 

rate than WM-PH, because the table size of HMA (H1 and H2) is about 830 times smaller 

than that of WM-PH. The increasing |P| makes the matching time of BMH rise steeply, 
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because the BMH is originally a single-pattern matching algorithm that simply executes 

iteratively for every pattern. In the case of wE = 250 and λ = 0 (λ = 4), the matching time 

of HMA is 14.5–35.8 (11.7–29.8) times less than that of BMH, 2–3.3 (1.9–2.8) times less 

than that of WM-PH, and 11.9–22.2 (9.5–24.3) times less than that of AC-C under 

different pattern set sizes. Figure 11 reveals that HMA is quite stable due to slight 

increment of its Ψ  while |P| increases. 

The processing time Ψ  includes the computation time (Iψ ) and memory access 

delay ( Mψ ). Figure 12 (a)–(d) illustrate the proportion of Iψ  to Ψ  and Mψ  to Ψ  

respectively for all approaches with |P| = 1200 and variousλ . In these figures, the upper 

and lower part of the bar are represented as Mψ  and Iψ  respectively. The results show 

that HMA’s Iψ  is close to WM-PH’s, but HMA’s Mψ  is much less than others. 

Therefore, the hierarchical matching strategy of HMA is highly effective in reducing the 

memory latency, only tiny overhead of the computation time is needed. The proportion of 

Mψ  to Ψ  of BMH seems smaller than others. The reason is that the whole skip table of 

a pattern is idealistically assumed to be loaded within one external memory access, and 

kept in the cache during the matching process. Because AC-C compresses the size of each 

node, it requires more time to calculate the next state pointer. Thereby, AC-C does not 

have the smallest Iψ . Simulation results show that the Iψ  does not significantly rise 

with λ  in any of the experiments, because each algorithm has already tried to reduce the 

computation load ( Iψ ). However, Mψ  dominates the overall matching cost. This reveals 

that the number of external memory accesses is the bottleneck of almost all algorithms. 

The result also reflects our opinion mentioned previously that the essential issue in 



Chapter 3 

 59 

 
(a) Comparison 

 
(b) Memory access 

Figure 13. The average number of XOR comparisons and that of external memory access 
versus the attack load (λ ) for HMA, WM-PH and BMH with different pattern set sizes (|P|), 
using Model I: (a) Comparison, (b) Memory access. 
 
 
 
designing a high-speed detection engine is to reduce the number of required external 

memory accesses.  

Since different systems have different implementation overheads, Figure 13 extract 

two basic measurements from overall costs to compare the algorithms themselves. The 

results in Figure 13 (a) plot the average word comparisons ( AVG
XORN ) versus λ  for every 

approach, with |P| = 200 and 1200 respectively. Figure 13 (a) shows that AVG
XORN of HMA 

grows moderately with λ  and |P|, and is more efficient than others, especially when λ  

is low. Figure 13 (b) shows the average number of external memory access (AVG
RAMN ). It  
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Table 9. Analysis and simulation results of HMA with Model I and λ = 0. 
AVG
RAMN  AVG

XORN  

|P| Analysis Simulation Analysis Simulation 
200    0.109417 0.109965 0.0122 0.00282 
400    0.144658 0.146164 0.0244 0.005762 
600    0.191621 0.193972 0.0366 0.008785 
800    0.226885 0.229967 0.0488 0.011705 

1000    0.289458 0.293 0.0610 0.014587 
1200    0.301327 0.305335 0.0732 0.017624 
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Figure 14. The pure costs of the matching algorithms in the worst-case and best-case situations 
using Model III . 
 
 

demonstrates that HMA effectively reduces the number of required external memory 

accesses. AVG
RAMN  of HMA is only 0.109–0.369 when |P| = 200–1200 and λ = 0–4. In other 

words, HMA can successfully filter out about 90%–63% payloads without any external 

memory accesses and string comparisons.Table 9 lists both the analysis and simulation 

results of AVG
XORN  and AVG

RAMN  respectively, using Model I and λ = 0. The simulation and 

analysis results of AVG
RAMN  are very close. The simulation results of AVG

XORN  are a little 

smaller than the analysis results. The reason is that the comparison between the input 

s t r i n g  a n d  p a t t e r n s  w i l l  s t o p  i n  t h e  
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(a) Processing Time 

 

(b) Normalized Costs 

Figure 15. The processing time and the norrmalized costs using Model VI with wE = 100: (a) 
Ψ  and Mψ  where |P| = 1200 (b) The matching costs normalized to HMA where |P| = 200 and 
1200. 

 

simulations if there is one unmatched word; while we assume that the whole string has to 

be compared in the analysis. 

Figure 14 plots the best-case, the worst-case and the average performance of HMA, 

WM-PH, BMH and AC-C, using Model III with wE = 100. The matching time shown in 

Figure 14 excludes the cost for loading packets from input modules into the processor, 

because every algorithm has the same cost. Recall that different algorithms may have 

different extreme scenarios. This simulation uses Model III and records the extreme and 
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average results for each algorithm respectively. Figure 14 shows that HMA outperforms 

WM-PH and BMH in all cases. In the best case, HMA requires only seven instruction 

cycles to process an input character. In the worst case, the performance of HMA is still 

better than others. Therefore, HMA significantly improves the best-case and average-case 

performance and has moderately worst-case performance for the multi-pattern matching, 

enabling practical implementations. 

The simulation results using a real trace (Model VI) are shown in Figure 15, where 

wE = 100. Figure 15 (a) draws the overall cost (Ψ ) and the memory access time (Mψ ) 

respectively, where |P| = 1200. To compare the performance of the state-of-the-art 

algorithms, the matching time Ψ  of WM-PH, AC-C and BMH are normalized to HMA 

and shown in Figure 15 (b). Although the Defcon trace (Model VI) contains a lot of 

malicious packets, Figure 15 shows that HMA performs well and much better than others. 

It also demonstrates that the memory access time of HMA is much smaller than others 

(note that figures are in logarithmic scale), which means HMA successfully reduces the 

number of memory accesses. In other words, the small first-tier filter of HMA can still 

work well even under heavy attacking loads. 
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4 THE ENHANCED HIERARCHICAL MULTI-PATTERN 

MATCHING ALGORITHM (EHMA) 

 Enhanced Hierarchical Multi-Pattern Matching Algorithm (EHMA) contributes 

modifications to HMA [38], and introduces the idea of a sampling window and a Safety 

Shift Strategy in addition. EHMA is a two-tier and cluster-wise matching algorithm, and 

can perform fast skippable payload scan. Based on the occurrence frequency of grams, 

this study discovers a small set of signatures from the patterns themselves to narrow the 

searching domain. A Min-Max strategy is used in the EHMA. The hit rate of the first-tier 

table in the EHMA is minimized, while the spread of patterns in the second-tier table is 

maximized. Accordingly, EHAM significantly reduces the number of memory accesses 

and pattern comparisons. EHMA can skip unnecessary payload scans by applying the 

proposed Safety Shift Strategy, which is based on a frequency-based bad gram heuristic. 

The frequency-based bad gram heuristic is a modification of the bad grouped character 

heuristic of Wu-Manber algorithm (WM) [36]. Therefore, EHMA has the advantages of 

both HMA and WM. 

4.1 The Basic Idea of EHMA 

Based on a hierarchical and cluster-wise architecture, EHMA comprises two small 

index tables, namely the first-tier table (H1) and the second-tier table (H2). These two 

tables act as filters to avoid unnecessary external memory accesses and pattern 

comparisons, and thereby pass the innocuous packets quickly in the on-line matching 

process. The second-tier procedure (Tier-2 Matching) activates only after the first-tier  
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Figure 16. A simple state machine of the EHMA matching process. 
 

procedure (Tier-1 Matching) gets a match. Using H2, which indicates a small subset of 

patterns that are similar to the input packet, EHMA compares only a few selected patterns 

of P with the suspected substrings of the packet, rather than comparing all patterns with 

all substrings of the packet. Furthermore, a frequency-based bad gram heuristic is 

proposed in the EHMA to determine the safety shifts on the input strings during the 

on-line matching process. In other words, some characters of the input packets can be 

safely skipped without any process.  

Figure 16 displays the simple state machine of the EHMA, which illustrates the 

hierarchical and skippable matching flows. External memory accesses are needed only in 

the Tier-2 matching state. Consequently, EHMA significantly enhances the matching 

performance, and effectively reduces the number of external memory accesses, string 

comparisons and character scans, by utilizing two small index tables.  

This study proposes a general frequent-common gram searching algorithm (GFGS) 

and a cluster balancing strategy (CBS) to lower the size of the tables H1 and H2. The 

following subsections describe the GFGS, CBS and the Safety Shift Strategy in detail. 
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The hierarchical on-line matching using these two index tables, namely Tier-1 and Tier-2 

Matching, are then shown. 

4.2 The GFGS Algorithm 

In the high-layer intrusion detection, patterns may appear anywhere in the packet 

payload, making the attacking packets difficult to recognize. GFGS assumes that a small 

set of signatures can be found from the patterns themselves, then the suspicious substrings 

of T may be easier to distinguish from the innocent parts, and the pattern matching is 

therefore faster. A set of significant grams is defined as representatives of a pattern set P, 

given by ℑ ⊂ 1BΛ , where the size of a gram is B1 characters. The set ℑ  is much smaller 

than 1BΛ . Only when at least a significant gram occurs in the payload, a pattern may exist. 

That is, when at least one B1-gram of pi belonging to ℑ  occurs in the payload T, the 

pattern pi ∈P may be found in T. Many innocent B1-grams of T, that do not belong to ℑ , 

can be filtered in the Tier-1 Matching when scanning the packet payload. Obviously, 

smaller ℑ  leads to fewer pattern comparisons, and thus faster pattern matching. The 

GFGS is proposed to find the smallest ℑ  from P. 

Define Pg as a subset of P, that Pg = {pi | pi has the gram g, ∀ pi∈P}, where g is 

called the common gram of those patterns in the set Pg. Notably, if a common gram 

appears in the distinct patterns more frequently than other grams, and it is selected as one 

of the significant grams, then a smaller ℑ  is found. Based on this inference, the GFGS 

algorithm is designed to find the frequent-common gram set F, such that F is the 

minimum set of significant grams to represent a pattern set P. In the GFGS, the common 

grams are searched only from the sampling window, which is defined as the last W  
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Figure 17. The sampling window. 
 
 

 GFGS Algorithm; 
 Input: Given a set of patterns P, the parameters: W, B2, B1, and m. 
 Output: A set of frequent-common grams F. 
1 Initialize: F←∅ , V and R are set to zero; 
2 For each pattern pi of P, 0≤ i<|P| do  /*build a matrix R */ 
3 Transfer the first W- B2 bytes of the sampling window of the pattern pi into B1-grams, and set the 

element of a vector V: vj ← 1 if B1-gram = j; otherwise vj ← 0;  
4 Read V. For each vj = 1, set the elements of matrix R: r jk ← r jk + vk, ∀  k, 0≤ k<|Λ|B1; 
5 While (r ii ≠ 0, ∀ 0≤ i< |Λ|B1) do 
6 Find a frequent-common gram g f, where rff = max{r ii |∀ i, 0≤ i< |Λ|B1}; 
7 Add this gram into F : F ← F ∪ {  g f }; 
8 For 0≤ i< |Λ|B1 do      /* refresh  the diagonal of R */ 
9 r ii ← r ii – rfi, if r ii >rfi; otherwise, r ii ← 0; 
10 Return;  

Figure 18. The general frequent-common gram searching algorithm (GFGS). 
 

characters of the first m characters of a pattern. The range of m is M ≤ m≤ |pi|, where M 

denotes the minimum pattern length of all patterns, and |pi| is the current pattern length. 

Figure 17 illustrates the sampling window, where B1 is the size of a frequent-common 

gram, B1 ≤ W, and B2 is the size of the second pivot in the H2 table, which is explained 

later.  

The GFGS algorithm is presented in Figure 18. A bit-map vector V = (vi) and a 

matrix R = (r ij) are temporary memory, where 0≤ i, j<
1BΛ . Vector V records the 

occurrence of each B1-gram in a pattern; R is used for recording frequency, where r ij, i ≠ j, 

indicates the number of concurrent occurrences of two B1-grams gi and gj in P; and r ii 

records the frequency of the B1-gram gi occurring in distinct patterns. For instance, r ij = 2 
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means there are two patterns, each containing both gi and gj. In the GFGS algorithm, each 

pattern is first transferred into a set of B1-grams, and the occurrence of each B1-gram is 

recorded in the bit-map V, where B1 is pre-defined and depends on the available on-chip 

memory space. Matrix R is then derived from V (as shown in line 4 of Figure 18). Second, 

the largest occurrence frequency r ff is found, and its corresponding gram gf is selected as 

one of F. The elements of R relating to gf are subtracted accordingly to renew R. GFGS is 

repeated until all elements on the diagonal of R become zero. GFGS uses only a matrix 

and a vector to discover F from P.  

4.3 Cluster Balancing Strategy (CBS) 

Most packets are innocent in general situations. Even a harmful packet may contain 

only few patterns. Therefore, comparing all of the patterns in the large P with each input 

packet is time consuming. If the patterns in P can be distributed into different small 

clusters based on their similarity, then only the pattern in each cluster that is most similar 

to the suspected packet needs to be compared, thus improving the efficiency of the 

matching process. This subsection presents strategies to attain this goal. First, the method 

of clustering a set P based on the similarity of patterns is described. Then a cluster 

balancing strategy (CBS) is adopted to balance the cluster size. A second-tier table (H2) 

for on-line matching can be constructed based on the clusters. 

The clustering pivots are the keys used to distribute patterns, where each clustering 

pivot is a common gram of patterns defined previously. Two common grams are 

employed as a pair of clustering pivots, called a pivot pair, say (a, b), where the first pivot 

is a frequent-common gram, and the second pivot is the substring following the 

frequent-common gram. Let Pa,b represent a cluster of selected patterns (a subset of 
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patterns) with the pivot pair (a, b), which means that Pa, b = {pi | ‘ab’ ⊂ pi, a∈F and 

b∈ 2BΛ }, where ‘ab’ is the combination of two strings a and b and is a substring of pi; F is 

the result of GFGS, and B2 is the length of the second pivot. Notably, a pattern is assigned 

to only one cluster in the clustering strategy, although a pattern may have more than one 

pivot pair. That is, the clusters have the following properties: for any cluster Pa,b⊂ P, that 

∪ all a, b Pa,b = P, and ∩ all a, b Pa,b =∅ . Since a pattern may have several opportunities to 

select a cluster, a better assignment can lower the maximum cluster size, and thereby 

improve the worst-case performance of EHMA.  

The pattern grouping is based on F. To lower the worst matching time, CBS is 

adopted to balance the size of all clusters. In CBS, an 
2B

F Λ×  matrix N = (na, b) is used 

to record the current size of every cluster Pa, b during the pattern grouping procedure. The 

CBS is as follows. 

(1) First, read one pattern at a time from P and scan the pattern.  

(2) According to GFGS, for any given pi, there exists a B1-gram g∈F, where B1 is the 

length of a frequent-common gram. To balance the cluster size, CBS finds the smallest 

na, b, given by nx, y, among all available pivot pairs (a, b)s of pi, for all a∈F and ‘ab’ ⊂ pi.  

(3) After grouping pi into the smallest cluster Px, y, the corresponding nx, y is also 

incremented.  

All patterns are distributed sequentially into the designate clusters. Accordingly, 

GFGS and CBS divide the large P into smaller subsets. Figure 19 illustrates the pattern 

clustering architecture.  
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Figure 19. The pattern clustering architecture. 
 

4.4 Safety Shift Strategy 

This section presents a safety shift strategy to derive the values of the shift fields of 

H1 and H2. H1 and H2 can use the same strategy to derive their safety shifts respectively. 

As mentioned previously, as long as no frequent-common gram is matched in input 

strings, then no pattern exists. Therefore, if no frequent-common gram is missed, then no 

pattern will be missed. The safety shift strategy is based on a modified bad grouped 

character heuristic [9], named frequency-based bad gram heuristic in this study. The 

safety shift strategy ensures that no frequent-common gram is missed during a skippable 

scanning process. The proposed strategy helps EHMA to speed up the on-line matching 

process, since certain characters can be skipped unhesitatingly.  

Assume that x identifies all possible index keys, and that the length of x is B. Because 

the index keys of H1 and H2 are different, the parameters used to determine the shift fields 

of these two tables are different. For H1, as the length of a frequent-common gram is B1, 

thus x∈ 1BΛ  and B = B1. For H2, since x is all the possible of the pivot pairs (a, b), 

x∈F× 2BΛ  and B = B1+B2. The basic concept of the safety shift strategy is that: if x is not 
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a gram of any pattern, and any suffix of x is not any prefix of any pattern in P, then it is 

safe to shift m when x is scanned; otherwise, the number of safety shifts is the offset 

between the rightmost occurrence position of x and the position of the frequent-common 

gram nearest to x. Two parameters are needed to derive the safety shifts, namely W, and m, 

as shown in Figure 17. Assume that B≤ W≤ m, and define the safety shifts of each entry 

(H(x).shift) as follows: 

(1) Initially, all shift fields of the table H are set as 

If m > W, then  

H(x).shift = m - W + q,                      (4-1) 

where q = min{q | ∃  sub(x, q+1, B - q) = sub(p, 1, B - q), ∀  p∈P and 1 ≤  q < B} when 

B > 1 and q exists; otherwise q = B. 

Else 

H(x).shift = r,                        (4-2) 

where r = min{r | ∃  sub(x, r+1, B - r) = sub(f, 1, B - r), ∀  f∈F, 1 ≤  r < B, and r + B < 

W } when B > 1 and r exists; otherwise r = B. 

(2) Scanning every pattern p, for each i-th B-gram of each pattern pB[i], where 1≤ i ≤ m-W , 

set x ← pB[i] if the entry H(x) exists: 

If the current H(x).shift > m-W-i+1, then update the entry, so that  

H(x).shift = m-W-i+1.                   (4-3) 

(3) For each i-th B-gram of each pattern pB[i], where m-W<i ≤ m-B+1, set x ← pB[i] if the 

entry H(x) exists: 

If x∈F, then  

H(x).shift = 0;                      (4-4) 
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Else If the current H(x).shift > r, then update the entry:  

H(x).shift = r,                      (4-5) 

where r = min{r | ∃  sub(x, r+1, B-r) = sub(f, 1, B-r), ∀ f∈F, 1 ≤  r < B, and r+B < W } 

when B > 1 and r exists; otherwise r = B. 

Notably, the maximum shift of EHMA is m while W = B. The frequent-common 

grams and the sampling window are introduced in the proposed frequency-based bad 

gram heuristic to improve the flexibility and the efficiency. Additionally, comparing 

EHMA with WM, the maximum safety shift is raised from m−B+1 to m. The shift value of 

the proposed EHMA is similar to but larger than the shift value of WM, when the given 

parameters are m = M and W = B. 

4.5 Table Construction 

The result of GFGS, F, is used to construct the small table H1, which is stored in the 

on-chip memory. A direct index table of 
1BΛ  entries is used for H1 to achieve fast 

lookup. B1 is usually very small (B1 = 1 or 2), and is pre-defined according to the available 

size of on-chip memory. An entry of H1 is denoted as H1(a), where a is a B1-gram, and 

each entry has three fields: the frequent-common gram ID, H1(a).fid; the pattern ID when 

a itself is a pattern, H1(a).pid, and the safety shift number in the Tier-1 Matching, 

H1(a).shift. Namely, H1(a).fid = { i | a = fi ∈F}, and H1(a).pid = { i | |pi| = |fi| = B1, pi = ‘a’ 

and pi ∈P}. The unused fields of H1 are set to NULL. Since H1 is a small table (for 

instance, 256 entries in the case of one-byte coding and B1 = 1), it can be stored in the 

on-chip cache. Later, H1 acts as a filter in the on-line matching to quickly discover 

whether the packet contains a pattern. Namely, EHMA employs H1 to quickly scan and 
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jump over the innocent substrings of the input packets, and to narrow the searching field 

to the most likely clusters. 

The H2 table is built based on the cluster assignments. H2 contains the pattern 

contents and formatted information of patterns for fast on-line matching. Let H2(a, b) 

denote an entry of H2, indicating the head pattern of the cluster Pa,b , and defined as 

H2(a, b) = H1(a).fid× 2BΛ +b,                    (4-6) 

where B2 is the length of the second pivot b, and is pre-defined according to the available 

size of the external memory. Each entry H2(a, b) consists of six fields1: the safety shift 

number in the Tier-2 Matching H2(a, b).shift, the position of the frequent-common gram 

in the pattern H2(a, b).offset, the pattern size H2(a, b).size, the pattern content 

H2(a, b).data, the pattern ID H2(a, b).pid, and a pointer H2(a, b).next to the entry of the 

next pattern in the same cluster Pa, b or the fragmented content of the current pattern. 

Transferring the information of patterns into a predefined format can accelerate the 

matching procedure. The patterns in the same cluster Pa, b point to the same head entry  

 

                                                 

 

 

 

 

 

 

1 Only the first two fields are specialized for EHMA. The other four fields are used for structured patterns as 

other algorithms. 
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(a) An example of GFGS. 

 
(b) The architecture of the hierarchical hash tables. 

Figure 20. An example of EHMA, where B1 = 1, B2 = 1, m = M = 6, W = 3 and F={ e, h}. 
 

H2(a, b), and are linked by the linked-list structure to optimize the memory usage. The 

required memory size of H2 is 
2B

F Λ×  entries plus the share memory pool.  

For example, if pi is clustered to Pa, b by CBS and H2(a, b) is empty, then the 

information of pattern pi is saved into H2(a, b), where H2(a, b).size = |pi|, H
2(a, b).data = 

pi, H
2(a, b).offset = k if the k-th B1-gram of pi is a, H2(a, b).pid = i, and H2(a, b).next is 

NULL. If another pj is also clustered to Pa, b, then a free entry is also assigned to pj and 
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linked with the previous pattern pi. Similarly, if the pattern size of pi is larger than the 

width of data field, then pi is fragmented, and the remaining part is saved in a free entry of 

the share memory pool, and the address is saved in H2(a, b).next. 

Figure 20 shows an example of EHMA, which has five patterns: ‘actress’, ‘teacher’, 

‘firefighter’, ‘farmer’, ‘architect’, where the alphabet set comprises the 26 English letters. 

The parameters for EHMA are assumed B1 = 1, B2 = 1, m = 6 and W = 3. Figure 20 (a) 

demonstrates the GFGS. According to the GFGS (lines 2 – 4 of Figure 18), after scanning 

the first W-B2 characters of the sampling window of every pattern (the underlined 

characters of the patterns in Figure 20 (a)), the matrix R is obtained and shown in the 

figure. In the first run, the maximum value on the diagonal of R is three, and thus the 

corresponding gram ‘e’ is added into F. After refreshing the elements on the diagonal of R 

(lines 8 – 9 of Figure 18), GFGS finds that the maximum value on the diagonal of R is two 

in the second run, and the corresponding gram is ‘h’. GFGS stops while all elements on 

the diagonal of R are zero, and gets F= { e, h}. Figure 20 (b) displays the logical 

architecture of the two-tier tables of EHMA. Because B1= 1, and the H1 table has only 26 

entries, the H1 table can be stored in the cache memory. The fid fields of H1 point to the 

corresponding offsets of H2. As the pattern ‘actress’ has ‘e’ ∈F and the pivot pair ‘es’, 

according to CBS it is grouped to the cluster Pe, s. The shift fields of H1 and H2 are 

obtained from the proposed safety shift strategy. Initially, since B1 ≤ 1, H1.shift = 4. While 

B1+B2 > 1, H2.shift is set to 5 for those entries whose second pivot is not the prefix of any 

pattern (that is, b∉{‘a’, ‘f’, ‘t’}); otherwise, H2.shift is set to 4. When scanning the pattern 

‘actress’, the shift fields of H1(‘a’), H1(‘c’) and H1(‘t’) are updated to 3, 2 and 1 

respectively (the 2nd safety shift strategy); the shift fields of H1(‘r’) and H1(‘s’) are both  
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Figure 21. The processing flows of the on-line matching. 

 

updated to 1, while the H1(‘e’).shift is updated to zero, because ‘e’∈F (the 3rd strategy). 

As for the table H2, only the existing entry H2(‘e’, ‘s’) has to be updated to two, because B 

= B1+B2 = 2, and no prefix of F is the suffix of ‘es’ (the 3rd strategy). The remainders of 

the patterns follow the same clustering and safety shift strategy. The shift fields of H1 and 

H2 tables are updated when the new shift is less than the previous one. Let us see H1(‘a’) 

for example. When scanning the pattern ‘actress’, H1(‘a’).shift = 3 (as p1[i] = ‘a’, i = 1 and 

m-W-i+1 = 3); while scanning the pattern ‘teacher’,  H1(‘a’).shift is updated to 1 (as ‘a’ is 

the third character of ‘teacher’: i = 3, then m-W-i+1 = 1), because the new value is smaller 

than the previous one (the 2nd strategy). Finally, H1(‘a’).shift = 1 is saved in the table 

because the remaining patterns do not have H1(‘a’).shift smaller than one.  Notably, the 

maximum shift of H1 and H2 is large (4 and 5 respectively). Consequently, the number of 

scans and comparisons can be significantly reduced. 

4.6 The On-line Hierarchical and Cluster-wise Matching 

The previous subsections presented the off-line stage of EHMA, which builds two 

index tables H1 and H2, holding the indexing and pattern information in the cache memory 
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and external memory respectively. These two tables are regarded as the two-tier filters 

and indices for the on-line matching. This subsection presents the on-line matching 

procedure in detail.  

In network intrusion detection systems, an input packet is forwarded to a detection 

engine. The detection engine then returns the search results of matched patterns PM. This 

study focuses on the payload inspection, and assumes that each input is a packet payload T. 

As a hierarchical matching, the on-line matching procedure of EHMA is divided into two 

tiers: Tier-1 Matching and Tier-2 Matching. The hierarchical architecture is applied to 

decrease the number of external memory accesses. The small H1 is stored in the cache of 

the processing unit for Tier-1 Matching, while the H2 with pattern content is in the 

external memory for Tier-2 Matching. Figure 21 illustrates the processing flows of 

EHMA, and shows that the on-cached Tier-1 Matching does not access the external 

memory, but does act as a pre-filter. The external memory access is necessary only when 

the Tier-2 Matching is invoked. This process is described in detail in the following 

subsections.   

4.6.1 Tier-1 Matching 

In on-line matching, the payload T is scanned from left to right, and each B1-gram of 

T is the key to fetch the entry H1(t1), where t1 = ][1 iT B . The H1 acts as the first-tier filter of 

EHMA, by checking whether T may likely contain patterns belonging the pattern set P. 

Because H1 is small enough to be stored in the on-chip memory during the on-line 

matching procedure, the latency of accessing H1 is very small.  

In the Tier-1 Matching, first the shift field is checked. If H1(t1).shift ≠ 0, i.e., t1∉F, 

then no external memory is necessary. The obtained H1(t1).shift also determines the 
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number of grams that can be skipped without further process. The next gram to check is 

then 1 1
1[ ( ). ]BT i H t shift+ . After read the next gram, the matching process repeats as in the 

previous steps, and remains in the Tier-1 Matching. Because |F|≪≪≪≪
1BΛ , the probability of 

t1∈F is small and most grams of T gain the shifts, thus avoiding the Tier-2 Matching. 

Consequently, both the number of string comparisons and the costly memory accesses can 

be significantly reduced.  

Otherwise, if t1∈F, then T may contain a malicious pattern pk∈P, where t1⊂ pk. 

Simply stated, if H1(t1).shift = 0, then T may have a pattern that belongs to the cluster of 

pivot pair (t1, t2), where t2 = ][ 1
2 BiT B + . Therefore, the matching procedure activates 

Tier-2 Matching to identify the pattern. If H1(t1).pid is not NULL, then the current gram t1 

itself is a pattern, and this matched pattern is also added into PM.  

4.6.2 Tier-2 Matching 

After the Tier-1 Matching, if H1(t1).shift = 0, then the matching procedure proceeds 

to the Tier-2 Matching. The function H2(t1, t2) indicates the location of the corresponding 

cluster according to input T. Since EHMA is a cluster-wise matching algorithm, only the 

patterns in the small cluster of pivot pair (t1, t2), which are similar to T, are loaded to the 

processing unit for further checks.  

Tier-2 Matching first checks the pid field of H2. If H2(t1, t2).pid is NULL, then the 

cluster (t1, t2) contains no pattern, and no pattern comparison is necessary. Otherwise, if 

H2(t1, t2).pid is not NULL, then this cluster contains patterns. The pattern content in the 

H2(t1, t2).data is then compared with the corresponding substring of T: sub(T, 

i-H2(t1, t2).offset, H2(t1, t2).size). If H2(t1, t2).next is valid, and points to the next entry, here  
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 Procedure Tier-1Matching(T, H1, M, W, B1)  
 Input: Packet payload T, a first-tier hash table: H1, the minimum pattern length M, the length of the 

frequent-common gram B and the length of the sampling window W.  
 Output: The output of Tier-2Matching. 
1 i←M-W+1; 
2 While i <= |T|- B1 do 
3 Read the i-th B1-gram of T: gram←TB1[i]; 
4 If H1(gram).shift > 0, then shift←H1(gram).shift; 
5 Else  
6 If H1(gram).fid ≠ NULL, then shif←Tier-2Matching(T, H2, B2, i); 
7 If H1(gram).pid≠ NULL, then  
        PM←PM ∪ { gram};  
 If shift == 0, then shift←1; 
8 Jump over the string: i←i+shif;      /*shift and read the next*/ 
9 End While 
10 Return; 
  
 Procedure Tier-2Matching(T, H2, B2, i)  
 Input: Packet payload T, a preprocessed indexing table: H2, the length of the second pivot B2, and the 

current pointer i 
 Output: A safety shift number for Tier-1 Matching: shift, the matched pattern set of T: PM, and its 

corresponding pid PIDM 
1 Load data from the external RAM at entry H2(TB1[i], TB2[i+B1]) to a local buffer LB; 
2   shift←LB.shift; 
3 While (k←LB.pid) ≠ NULL do                                    
4 Compare the substring of T: sub(T, i-LB.offset, LB.size) with the pattern LB.data;  /*Assume no 

fragmentation here*/ 
5 If it is matched then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k}; 
6 If LB.next≠ NULL  then 
7 Load data from the external RAM at entry LB.next to the local buffer LB; 
8 Else 
9 Jump to Line 10; 
10 End While 
11 Return shift; 
Figure 22. The on-line matching procedure, including Tier-1 Matching and Tier-2 Matching. 

 

given by H2(a, b), then the cluster contains other patterns. Similarly, the pattern in 

H2(a, b).data is also fetched and compared with the substring of T starting at 

T[i−H 2(a, b).offset] of length H2(a, b).size. Every matched pattern is added to the matched 

pattern set PM and its corresponding matched pid set PIDM in order. Until all patterns in 

this cluster are checked, the next gram 1 2
1 2[ ( , ). ]BT i H t t shift+  is then read, and the 

on-line matching procedure returns to the Tier-1 Matching. H2(t1, t2).shift also indicates 
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the number of characters of T that can be skipped, since the next possible 

frequent-common gram may only appear far than H2(t1, t2).shift away.  

Notably, if a pattern pk exists in T, then all grams of pk appear in T. The clustering 

pivot pair of pattern pk, ( ][1 jp B
k , ][ 1

2 Bjp B
k + ) is certainly scanned, say at t1 and t2, so 

that t1= ][1 jp B
k ∈ F and t2= ][ 1

2 Bjp B
k + . Pattern pk is then recognized when T is 

compared with the patterns in the cluster (t1, t2) during the on-line matching procedure. 

Based on the Safety Shift Strategy, EHMA never skips any frequent-common gram. 

Consequently, no patterns in the payload T are missed.  

The on-line matching procedure of EHMA is described in Figure 22, including 

Tier-1 Matching and Tier-2 Matching. Since EHMA introduces H1 and H2 as filters, and 

CBS is employed, only a few suspected patterns are loaded from external memory and 

compared with T. Because generally most of the packets are innocent over the network, 

and the frequent-common grams (F) narrow the searching field, EHMA performs a fast 

scan over the packets. The returned result PM includes all matched patterns for a given T, 

and is applied to make the final decision and to analyze the impending attacks. The final 

decision depends on decision-making rules.  

An example is provided to demonstrate the online matching of EHMA. Assume that 

the H1 and H2 tables have been built as Figure 20 where W = 3 and M = 6. Assume that the 

input T is ‘kangaroo’ as given in Figure 23. The scan runs from left to right. The scan 

starts at ‘g’ ((M−W+1)-th gram), obtaining H1(‘g’). shift = 4. Therefore, Tier-1 Matching 

shifts four characters. Because the pointer goes beyond |T|−B1 after the shift, EHMA 

completes scanning the input T. This example only requires one on-cache table lookup,  



Chapter 4 

 80 

 

Figure 23. An example of matching process with input ‘kangaroo’. 

 

Figure 24. An example of matching process with input ‘iamanactress’. 
 

and no external memory access. By only checking T with the embedded table H1, EHMA 

can know that T contains no pattern.  

Considering another example where T = ‘iamanactress’ as shown in Figure 24, the 

first scanned B1-gram is ‘a’, yielding H1(‘a’).shift = 1. Thus the matching process stays in 

the Tier-1 Matching, and the next B1-gram ‘n’ is read after shifting one character, yielding 

H1(‘n’). shift = 4. Similarly, staying in the Tier-1 Matching, and the next B1-gram ‘n’ is 

read after shifting one character, yielding H1(‘n’). shift = 4. Similarly, staying in the Tier-1 

Matching, the matching process obtains H1(‘r’). shift = 1 and H1(‘e’).shift = 0 in order after 

shifting. While H1(‘e’).shift = 0, the Tier-2 Matching is activated. After checking the field 

H2(‘e’, ‘s’).pid and finding that it is not NULL, EHMA knows a suspected pattern may 

exist. The Tier-2 Matching then compares input T with the pattern in the cluster Pe,s, 

where H2(‘e’, ‘s’).data = ‘actress’, and gets a match. Because this cluster contains no 

other patterns, the matching process returns to Tier-1 Matching with H2(‘e’, ‘s’).shift = 2. 

Since the pointer goes beyond |T|−B1 after shifting two characters, the matching process 
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for the input T is finished. In this case, H1 is checked four times, and H2 is fetched only 

once for the string T of twelve characters. EHMA thus significantly reduces the latency 

caused by memory accesses. 

4.7 Incremental Update 

EHMA can achieve incremental update by adding a count field in the H2, which 

records the current size of every cluster. The count field has the same function as the 

matrix N of CBS. When a pattern p is added into P, after checking the count fields of the 

possible entries according to the pivot pairs of p, the smallest cluster, say Px, y, can be 

found. Then, p is added into the cluster Px, y by following the steps of the table 

construction mentioned previously. If no B1-gram of p belongs to F and p finds no 

existing entry in the H2, then a random B1-gram of p, say g, is chosen and added into F 

(H1(g) is modified accordingly), and a memory space is allocated for cluster set Pg in the 

H2. A random pivot pair of p, say (g, h), is chosen and then p is added into the cluster Pg, h. 

The shift fields of H1 and H2 may be modified because of the added p. Since the safety 

shift strategy scans the patterns one by one to calculate the shift values, no modification to 

the safety shift strategy is required for pattern addition. The added p can be recognized as 

the last scanned pattern of the safety shift strategy. At most |p|-B1+1 fields of H1 and 

|p|-B2+1 fields of H2 are modified for a pattern addition.  

To delete a pattern p from P, first step is to find the pattern. When p is found, just link 

p’s previous entry to p’s next entry by modified its next field in the H2, and delete p from 

tables. Then, subtract the count field of the cluster that p belongs to. The shift fields are 

not modified for pattern deletion. Because the shift values are universal minimum in the 

safety shift strategy, they may not be optimum after pattern deletion. However, no error 
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will occur after pattern deletion, even while the shift fields are not modified. 

Consequently, EHMA needs not recalculate the whole index tables as long as the pattern 

database is changed. EHMA can refresh the index tables when the system is not busy. 

4.8 Worst Case 

If a given string T is formed badly that has to do the exact string comparisons the 

most times, and no character of T can be skipped during the on-line matching process, 

processing this bad-formed T is the worst case of EHMA. Assume the largest cluster size 

is Lc. When every character T[t]∈F, H1(T[t]).shift = 0, and each corresponding indexed 

cluster is the largest (|PT[t],T[t+1]| = Lc), T is a bad-formed string and this is the worst 

scenario of EHMA. As for all T[t], T[t]∈F and H1(T[t]).shift = 0, the probability to fetch 

the table H2 for the bad-formed T is one. Thus, the number of external memory accesses 

per character in the worst case is  

T

LBT
N cWST

RAM

×−
=

)( 2
< Lc,                      (4-7) 

where assume that fetching one pattern needs one memory access. Define the largest 

pattern size in P as Lp. When every input character points to the largest cluster, in which 

every pattern has the longest size, this bad-formed T requires the largest number of 

comparisons. Hence, the number of character comparisons per input character is 

pcp
WST
RAM

WST
CMP LLLNN ×<×= .                    (4-8) 

Obviously, the worst-case performance depends on Lc. To derive Lc, assume there is 

a largest cluster, say Px, y. Since Px, y is the largest cluster, assume that the cluster size is 

always larger than one, and initially the probability that its cluster size increases from 0 to 

1 is one.  
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As Px, y is the largest cluster, based on CBS, a given pattern p will not be clustered 

into Px, y, unless all available pivot pairs of p are not in the set FFFF×Λ except (x, y). Since the 

pattern database is usually predefined and static, assume the given patterns are uniformly 

distributed. Therefore, the probability that |Px, y| increases from i to i+1 is  

1
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As in the worst-case scenario, every pattern has the longest size Lp, the equation is 

rewritten  
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Thereby, the probability that the cluster size of Px, y is maximum (Lc) is derived 
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When |P| is 1200 with |F| = 77, |Λ| = 256 and Lp = 128, the probability that Lc = 4 is 

only 7× 10-79. When replacing Lp with the average pattern size, which is about eleven in 

the Snort, then the probability that Lc = 4 is about 3.6× 10-6. The probability that Lc = 4 is 

tiny, which infers that EHMA has a small Lc, and thus WST
RAMN  and WST

CMPN  are small. 

Consequently, the worst-case performance of EHMA is moderate and acceptable because 

Lc is much smaller than |P|. 
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4.9 Results 

As the number of network security threats rises, the NIDS has become one of the 

most important applications of packet inspection [20], [23]. Therefore, this study 

demonstrates the feasibility of integrating the proposed EHMA with the promising NIDS. 

This section presents the simulation results of EHMA deployed in the NIDS, compared 

with the original hierarchical matching algorithm (HMA) [38], the 

Boyer-Moore-Horspool algorithm (BMH) [21], the Wu-Manber algorithm (WM) [36], a 

variant of the Wu-Manber algorithm using a grouped prefix hash  (WM-PH) [27], and 

the Aho-Corasick algorithm with memory compression (AC-C) [34]. In the simulations, 

the assembly-like microprograms were emulated for EHMA, BMH, WM, WM-PH and 

AC-C using RISC instructions of general network processors (such as ADD, XOR, MOV), 

and the number of instructions and the number of memory accesses needed to process a 

packet were calculated. To simplify the evaluation, the simulation assumed that one 

microprocessor was employed. 

4.9.1 Measurements 

Define I as the average number of RISC instructions (including comparisons and 

calculations), and L as the average number of local memory accesses (including reading 

data from the cache to the registers for further processes), for each payload character in 

the pattern matching. E represents the average number of external memory accesses per 

input character, which includes loading the input packets, querying the entries of tables in 

the external memory, and fetching the patterns. wI indicates the time needed by one 

instruction or one local memory/register access, and wE indicates the time for one external 

memory access. The following measurements are given: the average computation cycles  
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Table 10. The simulation parameters. 
Items Value 

Time of one RISC instruction or one local memory access (wI) 1 cycle 
Latency for each external memory access (wE)  10, 100 cycles 
Packet payload length for Model I 512 bytes 
Number of patterns in P (|P|) 200, 400,…,5000 
Simulation time for Model I 10 million packets 

 

Table 11. The pattern size distribution of Snort rule set R1. 
Pattern Size =1 ≤ 4 ≤ 8 ≤ 12 ≤ 16 >16 
Ratio 0.028 0.245 0.482 0.653 0.813 0.187 

 
 

Iψ = I × wI; the average memory latency Mψ = E× wE + L × wI; and the total average 

matching time Ψ = Iψ + Mψ , which is regarded as the overall performance.  

In the simulations, the skip table of BMH was assumed to be small enough to be 

loaded into the cache memory, and therefore only one external memory access was 

counted during the matching process of BMH for each pattern. One external memory 

access was assumed for AC-C, although it typically needs two memory references to fetch 

the transition matrices, and the fail table or the matched patterns. Table 10 lists the 

simulation parameters.  

4.9.2 Traffic Models  

The simulations used two free and real pattern sets, R1 and R2, from Snort in Aug. 

2004 and May 2008 respectively [1], although the pattern set can be self-defined or any 

commercial pattern set. The number of distinct patterns is about 1250 in the R1, where the 

average length of a pattern is about 11.2 bytes (the statistics of the pattern set listed in 

Table 11); while the number of distinct patterns becomes up to about 5000 in the R2. Since 

Snort patterns are written in mixed plain text and hex formatted bytecodes, the alphabet 
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size (|Λ|) was set to 256 in the simulations. In the simulation traffic models, Model I and 

II use R1, and Model III uses R2 as the matching pattern sets.  

Table 8 shows the relationships between the number of patterns |P| and the number 

of frequent-common grams |F| of the EHMA, where the lengths of patterns are in the 

range from 1–122, m = |pi|, and the patterns are randomly selected from R1. The results in 

Table 8 reveal that the growth rate of |F| is much slower than that of |P|.  

4.9.2.1 Model I  

In the Model I, the synthetic malicious packets are generated by randomly choosing 

patterns from the pattern set P and spreading over the packet payloads. The attack load λ  

is defined to represent the expected number of malicious patterns existing in one packet. 

For instance, if λ  = 2, then each packet contains two harmful patterns on average. Except 

for the injected patterns parameterized byλ , the background characters of a packet were 

randomly drawn from Λ to imitate the normal packet content. Hence, the random 

background may unconsciously contain patterns.   

4.9.2.2 Model II 

To evaluate the performance of algorithms in a real intense attack, a trace from the 

Capture-the-Flag contest held at Defcon9 was adopted as the input traffic in the Model II. 

The Defcon Capture-the-Flag contest is the largest security hacking game, in which 

competitors try to break into the servers of others while protecting their own servers, each 

hiding several security holes [14]. 
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Table 12. The statistics of the traffic traces. 
Statistics Model II Model III 

Average Packet Size (Byte) 467.71 896.1 
The Standard Deviation of the Size of each Packet (Byte) 651.06 690.99 
Data Transmission Rate (Kbps) 254.13 280.03 
Number of Packets per second 69.55 40 
Packet Type: TCP (%) 48.48% 97.18% 

UDP (%) 0.65% 2.56% 
Others (%) 50.87% 0.26% 

 
 

4.9.2.3 Model III 

Model III uses a real 2-hour trace as the input traffic, and the more recent Snort rules 

R2 as the pattern set |P|. This real trace recorded all IP packets in a laboratory of 

Providence University for 2 hours. The laboratory has an FTP server, a web server, and 

three PCs running several network application clients.  

Table 12  lists the statistics of the traffic traces used in Model II and Model III, 

where the values are measured by traffic analysis tools: tcpstat and tcptrace. 

4.10 Memory Requirements 

For fast lookup and matching, the lookup information and patterns are usually saved 

in the memory using a tabular structure. Therefore, the memory requirements are 

estimated according to the number of entries. Since all algorithms need to keep the pattern 

content in the (external) memory, this section only discusses the extra memory 

requirement for the tables of each algorithm. In the simulations, the numbers of characters 

in the clustering pivots (B1 and B2) were both assumed to be 1. Because the H1 of EHMA 

is a direct index table, the cache memory space (MI) of EHMA comprises |Λ| entries. 

Based on GFGS and CBS, the number of entries in H2 is the total number of possible 

clusters (plus a small memory pool). Since the domain of possible pivot pairs is F× Λ, the  
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Table 13. The memory requirements. 
 EHMA HMA WM WM-PH AC-C BMH BMH-O 

Cache Memory O(|Λ|) O(|Λ|) O(1) O(1) O(1) O(|Λ|) O(1) 
External Memory O(|F|× |Λ|) O(|F|× |Λ|) O(|Λ|3) O(|Λ|3) O(S) O(|P|× |Λ|) O(|P|× |Λ|) 

 
Table 14. A list of symbols. 

Notation Meaning 
pi A pattern with an identification number (ID) i 
P Pattern set. P = {pi}  
|P| The size of pattern set P 
Λ Alphabet set 
T Input string 
ℑ  Significant gram set 
F Frequent-common gram set 

B-gram A gram is defined as a group of characters, and B is the number of 
characters in a gram. 

B1 The size of a frequent-common gram 
B2 The size of the second pivot in the H2 table 
M The minimum pattern length of all patterns 
W The size of sampling window 
I The average number of RISC instructions per input character (including comparisons and 

calculations) 
L The average number of local memory accesses (including reading data from cache to 

registers) 
E The average number of external memory accesses for loading the packet, querying the 

entries of tables  in the external memory, and fetching the patterns 
wI The time of one instruction or one local memory/register access 
wE The time of one external memory access 

Iψ  The average computation cycles: 
Iψ =I × wI 

Mψ  The average memory latency: 
Mψ = E× wE + L× wI 

Ψ  Total average matching time: Ψ =
Iψ +

Mψ  
 

 
 

external memory space for H2 (ME) of EHMA is O(|F|× |Λ|). HMA has the same memory 

requirement as EHMA. The shift table of WM is also a direct hash table. The gram size of 

WM (block size B) was 3 in the simulations, so the shift table of WM had |Λ|3 entries. The 

grouped skip table of WM-PH used in the simulations was a direct prefix hash table with a 

prefix length of three characters. Therefore, the skip table of WM-PH comprises |Λ|3 

entries. Every pattern in the BMH has its own skip table of |Λ| entries, so that the table of 

BMH has |P|× |Λ| entries. Because each skip table of BMH (for one pattern) is small 
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enough to be loaded into the local memory, for fairness, a cache memory space was 

allocated to lower the number of external memory accesses. The BMH-O is the original 

BMH with no local cache and assesses the latency penalty. Notably, WM-PH, AC-C and 

BMH-O also require cache memory to store the skip value or one state during the 

matching process. Table 13 lists the memory requirements of EHMA, HMA, WM, 

WM-PH, BMH and AC-C. The scale relation of the parameters is |F| <  | Λ| ≪≪≪≪ |P| < S ≪≪≪≪ 

|Λ|3. 

In the simulations using Model I, when |P| is 1200, the H1 and H2 of EHMA needs 

256 and 19712 entries respectively (about 768 bytes on-chip memory and 38.5KB 

external memory, including the shared memory pool); HMA has the same number of 

entries as EHMA, but needs smaller entry size as HMA has no shift field; the table of WM 

needs more than 16M entries (16MB external memory, in the case without using an 

additional prefix table); the table size of WM-PH is the same as that of WM; BMH and 

BMH-O need more than 300K entries (300KB external memory); and AC-C needs 10731 

states (461KB with each node of 44 bytes). The memory size of all algorithms listed 

previously excludes pattern content. Obviously, the required memory space of EHMA is 

quite small. Table 14 lists the symbols used in the Section 4.  

4.11 Results and Discussion 

The minimum pattern length of the feeding patterns in Figures 24–27 is only one 

character, i.e., M = 1. Because the minimum pattern length of WM is restricted to be 

larger than the gram size, in this case three characters, WM is not compared in these 

figures. In Figures 24–27, the results labeling EHMA in the following simulations use the  



Chapter 4 

 90 

1

10

100

1000

10000

100000

200 400 600 800 1000 1200

Number of Patterns

C
yc

le
 T

im
e

EHMA     = 0

EHMA     = 4

HMA     = 0

HMA     = 4

WM-PH     = 0

WM-PH     = 4

AC-C     = 0

AC-C     = 4

BMH     = 0

BMH     = 4

BMH-O     = 0

BMH-O     = 4

 
Figure 25. The average matching time (Ψ ) versus the number of patterns (|P|), using Model I 
with λ = 0 and λ = 4, where wE = 100. 
 

sampling window with parameters W = m = |pi|, which means that each pattern is sampled 

in its entirety.  

Figure 25 compares the average matching time (Ψ ) of EHMA, HMA, WM-PH, 

AC-C, BMH and BMH-O using Model I with different attack loads λ = 0 and λ = 4 

respectively. It also shows the impact of the number of patterns (|P|) on the matching time. 

Simulation results reveal that EHMA outperforms HMA, WM-PH, AC-C, BMH and 

BMH-O even when |P| andλ  increase. EHMA has slightly higher growth rate than 

WM-PH, because it has a much smaller table size. WM-PH gains performance by having 

a large direct index table. Notably, the matching time of the original AC using basic 

structure is independent from |P| and λ . The curves of AC-C increase with |P| and λ  

owing to the popsum used in the AC-C algorithm. The increasing |P| makes the matching 

time of BMH (BMH-O) rise steeply, because the BMH is originally a single-pattern 

matching algorithm that simply executes iteratively for multi-pattern matching.  
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(a) λ = 0 and |P| = 1200. 
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(b) λ = 4.0 and |P| = 1200. 

Figure 26. The proportion of 
Iψ  to Ψ  and 

Mψ  to Ψ  using Model I with |P | = 1200 and 

wE = 100: (a) λ = 0 and (b) λ = 4. 
 

The case λ = 0 means that the traffic has no malicious packets. In this case, the 

proposed EHMA needs only 9.5–19.9 cycles per character on average, which is about 0.9, 

3.3–5.3, 16.3–26.8, 40–117 and 408–1161 times less than the matching time of HMA, 

WM-PH, AC-C, BMH and BMH-O, respectively, under various pattern set sizes. We can 

say that EHMA is very appropriate for network equipment, because generally most 

packets are innocent ( 0≈λ ). The time available for the detection engine to process the 

malicious packets rises as the innocent packets are processed more quickly. 

When λ = 4, then the systems are under heavy attack, and the traffic contains many 

monitored patterns. In this situation, the matching time of EHMA is about 0.89–0.94, 
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3.1–4.5, 14.1–24.9, 33.2–96.4 and 335–957 times less than that of HMA, WM-PH, AC-C, 

BMH and BMH-O respectively. Additionally, the performance of EHMA is quite stable, 

since Ψ  rises only slightly as λ  or |P| rises.  

The processing time of the pattern matching includes the time necessary for 

instructions ( Iψ ) and the time for memory accesses (Mψ ). To investigate their impacts on 

the algorithms, these two measurements are separated from overall matching costs since 

different systems introduce different implementation overheads. Figure 26 displays the 

proportion of Iψ  to Ψ  and Mψ  to Ψ  respectively, for all approaches using Model I 

with |P| = 1200, where Figure 26 (a) shows the results underλ = 0, and Figure 26 (b) 

shows the results underλ = 4. In Figure 26, the upper part of the bar is Iψ  and the lower 

part of the bar is Mψ . The results show that the Iψ  of EHMA is close to HMA’s and 

WM-PH’s, but Mψ  of EHMA is much less than others. The proportion of Mψ  to Ψ  of 

BMH seems smaller than others, because the whole skip table of a pattern is idealistically 

assumed to be loaded within one external memory access and kept in the cache during the 

matching process for each pattern. Because AC-C compresses the data structure of the 

state machine, it requires more time to derive the next state pointer. Therefore, AC-C does 

not have the smallest Iψ . Simulation results show that the Iψ  does not significantly rise 

with λ  in any of the experiments, because each algorithm has already tried to reduce the 

computation load ( Iψ ). However, Mψ  dominates the overall matching cost. This reveals 

that the number of external memory accesses is the bottleneck of almost all algorithms. 

This result also reflects our opinion mentioned previously that the essential issue in 

designing a high-speed detection engine is to reduce the number of required external 

memory accesses. 
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(a) λ = 0. 
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(b) λ = 4. 

Figure 27. The comparisons of average number of external memory accesses (E) using 
Model I with wE = 100: (a) λ = 0 and (b) λ = 4. 

 

Figure 27 compares the average number of external memory accesses per character 

(E) of the state-of-the-art pattern matching algorithms. The figure shows that the E of 

EHMA is only 0.06–0.19, which is much smaller than others. In other words, EHMA can 

successfully filter out about 94% payloads when |P| = 200, and 81% when |P| = 1200, 

requiring no external memory accesses and string comparisons. The E of EHMA rises 

only slightly with rising λ . The increasing rate of E is slightly higher in EHMA than in 

WM-PH when |P| rises, because EMHA has much smaller table size than WM-PH. Since 

BMH is based on the single-pattern-matching algorithm, its E is proportional to |P|. 

Consequently, the hierarchical matching along with the safety shift strategy is highly 

effective in reducing the memory latency. 
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(a) wE = 100. 
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(b) wE = 10. 

Figure 28. The average matching time (Ψ ) versus the number of patterns (|P|), using Model II: 
(a) wE = 100 and (b) wE = 10. 

 

Figure 28 and Figure 29 adopted the Model II as a real-life network environment 

under intense attack to evaluate the performance of the state-of-the-art algorithms. Since 

different implementation systems may have different external memory costs (wE), Figure 

28 illustrates two results with wE = 100 and wE = 10 respectively. To lower the impact of 

wE on an algorithm, a very small value of wE is adopted in Figure 28 (b). The results in 

Figure 28 indicate that EHMA significantly outperforms others in both cases of small and 

large pattern set size even in the intense attack. EHMA still performs better than others 

even when the penalty on the external memory access (wE) is reduced (as shown in Figure 

28 (b)). Comparing EHMA with HMA in the Figure 25 - Figure 28 reveals that the 
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proposed safety shift strategy significantly reduces the number of external memory 

accesses and thus improves the matching performance.   

The minimum length of Snort patterns is one character. However, some detection 

systems, such as virus detection systems, have larger minimum pattern lengths. The 

performance of matching algorithms with long minimum pattern lengths was examined 

using Model II, including only the patterns with lengths greater than 10 (M = 10) from 

Snort patterns, as drawn in Figure 29. Since the number of patterns whose length larger 

than ten characters in R1 is around 500, Figure 29 shows the cases of |P| = 200 and  |P| = 

500, respectively. Figure 29 (a) shows the average processing time (Ψ );Figure 29 (b) 

shows the memory requirement of the fast index/hash tables, excluding the memory for 

pattern contents, and Figure 29 (c) compares the average number of external memory 

accesses (E) of all algorithms. Since here M is larger than the gram size of WM, which is 

three as mentioned before, the performance of WM is compared here. The result labeling 

EHMA(W=5) is the case using EHMA algorithm with m = M = 10 and W = 5. Recall that 

the sampling window of EHMA is entire pattern content, that is, m = M = |pi|. To observe 

the performance of WM and WM-PH with smaller hash tables, Figure 29 also displays 

two additional cases with block size of two characters, WM(B = 2) and WM-PH(B = 2).  

Before discussing the simulation results of Figure 29, Table 15 presents the effect of 

the size of sampling window (W) on the performance of EHMA in terms of the average 

shift values of H1 and H2, the size of the set of frequent-common grams (|F|) derived from 

GFGS, the average number of actual shifts and the average number of external memory 

accesses, using the same traffic model as in the Figure 29.  
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Table 15. The impact of the size of sampling window (W) on the shift values of tables (H1.shift and 
H2.shift), |F|, actual average shifts and E, using Model II. 

|P| 200 500 

 EHMA 
EHMA 
(W=7) 

EHMA 
(W=5) 

EHMA 
(W=3) 

EHMA 
EHMA 
(W=7) 

EHMA 
(W=5) 

EHMA 
(W=3) 

H1.shift 0.94 2.71 3.66 4.74 0.91 1.86 2.02 2.49 
H2.shift 1.99 4.89 6.79 8.71 1.99 4.84 6.72 8.65 

|F| 13 20 25 39 23 33 47 65 
Average Shift 1.5 1.74 1.79 1.84 1.49 1.68 1.74 1.8 

E 0.0377 0.0441 0.0431 0.0434 0.1243 0.16 0.1635 0.2512 
 

Table 15 shows that the number of candidate common grams increases with 

increasing W, resulting in smaller |F|. The average number of H1.shift and H2.shift 

increases when W decreases. Since the traffic spectrum is not normally distributed, the 

actual average number of shifts during matching process is not the same as the average of 

H1.shift and H2.shift. However, the trend is the same. E is effected by both |F| and the 

actual average shift. 

Figure 29 (a) shows EHMA(W = 5) outperforms EHMA and others when |P| = 200; 

while EHMA performs better than EHMA(W = 5) and others when |P| = 500. Therefore, 

reducing |F| becomes more important than increasing the average number of shift values 

when |P| is large. Since all algorithms need a copy of the pattern contents, Figure 29 (b) 

only displays the extra memory requirement of every algorithm for the index/hash tables. 

Figure 29 (b) shows that the required memory of EHMA is only slightly larger than that of 

HMA but much smaller than that of others. The required memory of EHMA grows 

moderately with |P|. The memory of EHMA(W = 5) is greater than that of EHMA due to 

the larger |F|. As shown in Figure 29, EHMA is highly effective in reducing the required 

external memory, providing efficient performance even in the virus-detection-like model.  
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(a) Average matching time. 
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(b) Memory Requirement. 
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(c) The average number of external memory accesses. 

Figure 29. The costs versus the number of patterns (|P|), using Model II, wE = 100 and M = 10: 
(a) Average matching time, (b) Extra memory requirement, and (c) The average number of 
external memory accesses. 
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Figure 30. The average matching time (Ψ ) versus the number of patterns (|P|), using Model III, 
wE = 100. 

 

Figure 30 uses Model III as real-life normal traffic to show the performance of the 

algorithms. Meanwhile, to demonstrate the effect of the rising number of patterns on the 

matching performance, a more recent Snort ruleset R2 of about 5000 patterns are used in 

Model III. Figure 30 shows that EHMA performs better than others even when the patter 

set is very large. The matching time of EHMA only moderately increases with the rising 

|P|. 
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5 AC WITH MAGIC STRUCTURES (ACM) 

To deal with the ever-increasing data volume over the network, many algorithms 

have been proposed to improve the performance of variant network equipment. Usually, 

the network equipment has to inspect all incoming packets and compares the packets with 

pre-defined data to find a match or multiple matches. Tri- and automaton-based lookup 

algorithms have been proposed and widely used in these network applications. 

For example, many IP-lookup algorithms use multi-bit tries on longest prefix 

matches to speed up searching time, such as Lulea algorithm [40] and Etherton algorithm 

[41] which is now reaching wide deployment in routers. Aho-Corasick (AC) algorithm, an 

automaton-based algorithm, is a fast multi-pattern matching algorithm [1]. AC algorithm 

has the best worst-case computational time complexity, and thus it has been modified for 

intrusion detection systems (IDSs) and network content searching engines [18], [34]. 

Additionally, deterministic finite automata (DFAs) and nondeterministic finite automata 

(NFAs) are often employed in regular expression matching and deep packet inspection 

[26], [42]. While tri- and automaton-based schemes are utilized in different applications, 

they are very much analogs of one another in that both need similar data structures. To 

implement these algorithms on real-life appliances, an efficient structure is the most 

essential part to the performance of appliances. However, the existing algorithms usually 

did not consider the implementation issues.  

Furthermore, as many critical and personal data are accessible on the Internet, people 

demand more secure networks and systems. Intrusion Detection Systems (IDSs) are one 
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of the most useful tools to identifying the malicious attempts and protecting the systems 

without modifying the end-user software. Different from firewalls that only checks 

specified fields of the packet headers, IDSs detect the malicious information in the 

payloads. IDSs must be capable of real-time packet analyzing even when suffering 

serious attacks; otherwise the protectorate will not be defended strictly. Many studies 

recently have aimed for upgrading the performance and accuracy of IDSs. 

As mentioned previously, the required memory capacity of the existing 

multi-pattern matching algorithms for Snort’s database is usually larger than 300 KB. The 

number of patterns is still growing. Therefore, an IDS requires a pattern detection engine 

capable of in-depth packet inspection. Without exception, the most essential technology 

of a detection engine is a powerful multi-pattern matching algorithm. 

Many multi-pattern matching algorithms have been proposed, and most of them are 

filter-based searching algorithms, such as BM-based algorithms, WM, WM-PH, and 

BF-based algorithms. However, in these filter-based algorithms, if there is a match in the 

pre-filters, the exact string matching (usually using sequential search) in the second stage 

is also required. Furthermore, the performance of these algorithms decreases while the 

number of patterns increases. Consequently, these algorithms have bad worst-case 

performance. 

Guaranteed performance is very important especially for the equipment in the core 

and edge network. The Aho-Corasick algorithm (AC) had the best worst-case 

computational time complexity, where the number of state transitions for each input 

symbol is at most two [1], [19]. However, as for realistic implementations, the 

performance of an algorithm is not only affected by the computation time, but also 
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strongly affected by the number of required memory references. The off-chip memory 

reference costs about 80 ~ 200 clock cycles and the gap may keep increasing [19]. 

Because of requiring large memory space, the AC needs frequent off-chip memory 

references and then results in poor performance. Tuck et al modified the AC with a 

compressed data structure, which reduced the memory size, but also increased the 

processing time [34].  

Therefore, this study proposes a practical multiple-pattern matching algorithm that 

has better worst-case performance as well as smaller required memory, called ACM. The 

proposed ACM uses Magic Structures based on the property of Chinese Remainder 

Theorem, and contributes modifications to the AC algorithm for fast in-depth packet 

inspection. 

5.1 Previous Works 

5.1.1 The Aho-Corasick Algorithm (AC) 

The Aho-Corasick algorithm (AC) provided the best worst-case computational time 

complexity. AC is an automaton-based algorithm. There are three functions in the AC: 

Goto(st, code), Fail(st) and Output(st), where st is the state identification and the code is a 

scanned character. In other words, the Goto function is a state transition function, which is 

constructed by a set of patterns (or keywords): P. The Goto function maps a pair (st, code) 

into a state or a fail message. In the state machine, every prefix of the patterns is only 

represented by one state. The Fail function points to a next state that is the longest suffix 

of the current state. The Output function stores the matched patterns belonged to P 

corresponding to the current state. These three functions are constructed off-line and will 

be used in the in-line matching stage.  
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(a) Goto function. 

 

 
(b) Fail and Output Function 

Figure 31. The Aho-Corasick algorithm. 
 

 

Figure 31 shows the Goto, Fail, and Output functions of the AC algorithm with a 

pre-defined pattern set P = {she, he, his, hers}. In the matching stage, given an input T  = 

‘sihe’ for example, the matching procedure scans one character at a time and starts from 

the rooted state of the automaton, say state 0. Since, Goto(0, s) = 1, the machine goes to 

state 1 and read the next character ‘i’. Because ‘i’ is not an expected character in the state 

1 (Goto(1, i) = fail), the Fail function is called and get Fail(1) = 0. Then the machine goes 

to the state 0, and read the next character ‘h’. As Goto(0, h) = 4, and with the same steps as 

before we get Goto(4, e) = 5, the state machine goes to state 5 and have a valid output 

value: Output(5) = {he}. As a result, we can know that the input T contains one pattern 

‘he’. This example illustrates how the AC matching algorithm works. 

5.1.2 The Basic Implementation of the Aho-Corasick Algorithm 

Tries and automata have the same architecture that a parent node has several paths to 

its child nodes. In both tries and automata, since the next node only depends on the current 

node and the current input while traversing the graph, we can simply consider only one set  
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Figure 32. A parent-child set. 

 

at a time: one parent and all of its child nodes (Figure 32). Assume the input is drawn from 

a set }2,..,2,1|{ n
i ia ==Λ , where 2n is the number of paths and n is the bit-width of the 

input code (the stride size of tries and automata). 

A simple data structure to implement tries and automata is to save all pointers of 

child nodes in the parent node. When the branch size is four, it means every node in tries 

and automata needs four pointers to indicate its four child nodes while using the simple 

structure. The space complexity of the simple structure is O(2n). Since the paper [1] 

mentioned that the Goto and Fail functions could be combined into one next function: 

( , )st codeδ , the basic original data structure ACO is shown as follows.  

struct ACO{ 
struct ACO *next_state[| Λ |]; 
struct Result *pattern_list; 
}; 
 

The pointer next_state will indicate the address of the next state directly and the 

pointer pattern_list is the memory block storing corresponding patterns of this state. Since 

every next pointer is saved in a state, the address of the next state can be obtained directly 

and only one memory reference is required per character.  
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However, in a system with 32-bit pointers and |Λ | = 256, the ACO structure requires 

1028 bytes per state. For example, retrieving 1200 distinct patterns from the Snort rule 

database, 10213 states are built in the AC algorithm, which means about 10 MB is 

required for the state machine. Moreover, the size of the commercial on-chip memory 

capacity to date is only several kilobytes in the microprocessors and Application Specific 

Integrated Circuits (ASICs), and 128–512 KB in the general CPUs. Although a few 

high-end ASICs providing large embedded memory are available, linking many memory 

blocks degrades the chip performance and poses challenges to power consumption issues. 

To build a full graph for a detection rule database usually requires large amounts of 

memory. Hence external memory is required in this case. As mentioned previously, the 

time to read data from external memory is very long and indeterminist. A compact and 

efficient data structure is essential to tries and automata. 

5.1.3 The AC Algorithm with Bitmap (ACB) 

Tuck et al proposed a data structure with a bitmap for the AC algorithm, named ACB 

in short, to compress the nodes in the state machine [34].  

struct ACB { 
bitmap next_flag[| Λ |]; 
struct ACB *fail_ptr; 
struct ACB *next_start; 
struct Result *pattern_list; 
};  

 

The state machine is still constructed based on the Goto and Fail functions of the AC 

algorithm. The bitmap next_flag[a] indicates whether there is a valid forwarding path for 

the given character a (in other words, Goto(st, a)≠fail ). Thus, if Goto(st, a)≠fail, the 

next_flag[a] will be set as one; otherwise, it means the next state will traverse along the  
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 Procedure ACB_Matching 
 Input: A string: T, the starting pointer of the ACB state machine: State. 
 Output: The matched pattern set T: PM. 
1 Initialize: PM ← ∅ . 
2 For each input character: InCode ← T[i] do 
3   If State->next_flag[InCode] is set then 
4     pop_count ← 0 and j ← 0; 
5     While j<InCode do 
6       pop_count ← pop_count+State->next_flag[j]; 
7     End 
8     State ← State->next_start + pop_count*Sizeof(ACB); 
9     PM ← PM ∪ Out(State->pattern_list); 
10   Else 
11     State ← State->fail_ptr; 
12 End 
13 Return; 

Figure 33. The ACB_matching Procedure 
 

Fail function, and the bitmap next_flag[a] will be set as zero. This structure can 

successfully reduce the memory requirement to only 44 Bytes for each state (on a 32-bit 

pointer system and |Λ | = 256).  

However, there is only one pointer, next_state, to indicate the address of the first 

valid next state. To obtain the address of a valid next state with a given character a, the 

matching process has to scan every bits in the bitmap next_flag prior to a and accumulates 

the number of valid prior bits. The accumulation routine is called “popcount”. The 

matching procedure using the ACB structure is shown in Figure 33.  

The accumulation routine in lines 5-8 of the ACB_matching procedure is very time 

consuming. In the worst case, it costs |Λ | bit-access and |Λ | adds for each input character. 

Tuck et al admitted that the popcount is very expensive for software implementation. 

Although in the hardware implementation the popcount may have the opportunity to be 

optimized, the complexity and cost are still high. 
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Therefore, an efficient function to calculate the address of the next node is required. 

Consequently, this stidy will focus on providing an efficient data structure which has 

compact memory without sacrificing processing time. 

5.2  The ACM Algorithm 

Taking the commercial hardware/software constraints into account, this study 

proposes an efficient data structure, based on Chinese Remainder Theorem, named Magic 

Structure. The Magic Structure is suitable for both tri- and automaton-based lookup 

schemes. The Magic Structure needs only a small amount of memory and also reduces the 

number of external memory accesses, when compared with conventional data structures.  

Therefore, the performance of network equipment using the tri- and automaton-based 

algorithms can be efficiently improved. 

Generally most nodes of tries and automata have only a few valid child nodes. Hence, 

allocating continuous memory only for the existing child nodes is much more efficient 

than for all child nodes. Additionally, assume that we can find a simple magic function, 

say ℜ , so that the corresponding child nodes can be found very fast according to the 

inputs. As for the invalid input that does not have a valid path, a virtual node is assigned. 

That is, the function ℜ  of  Figure 32 is 

}0,2,0,1{},,,{ 4321 →ℜaaaa ,               (5-1) 

where ai are the input codes and the identification of the virtual node is zero. Assume there 

is a magic number χ  and define the magic function ℜ  as 

,)(%: kaf ii =ℜ χ                   (5-2) 
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where f is a function that maps the code set Λ  into a numerical set, n % m returns the 

remainder when n is divided by m, and k is the index number of a child node (Ck). In other 

words, ℜ  acts as a path decoder that returns the correct next node for each input. Thus, if 

we can prove that the magic number χ  exists, we can obtain the ℜ . 

5.2.1 Chinese Remainder Theorem 

Because ℜ  needs only one simple modulo operation, the path traversing process 

will go fast. It is interesting that the famous Chinese Remainder Theorem (CRT) can be 

applied here for this purpose [43]. The theorem is as follows: 

Chinese Remainder Theorem (CRT). Let 
1

k

i
i

M m
=

= ∏ , where mi are integers and 

relatively prime; that is, gcd(mi, mj) = 1 for 1 ,i j k≤ ≤ , and i j≠ .2 Let x1, x2,..., xk be 

integers. Consider the system of congruences: 

1 1(mod )X x m≡  

2 2(mod )X x m≡                      (5-3) 

... 

                                                 

 

 

 

 

 

 

2The gcd(a, b) means the greatest common divisor of a and b. 
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(mod )k kX x m≡ , 

where X and xi are said to be congruent modulo mi, 1 i k≤ ≤ . Then there exists exactly 

one X and { }0,1,..., 1X M∈ − .                                               ■ 

Therefore, if let the function f number the symbols by prime numbers, that means 

{ }1 2 1 2, ,..., { , ,..., }f
k ka a a m m m→ , then by CRT we know the magic number χ exists. χ is 

now the X in CRT. Since f is one-to-one mapping, a Prime table can be used to store the 

prime number for each possible input symbol. The Prime table has at most |Λ | entries, and 

so that it is very small and can be kept in the on-chip cache. Thus the prime number of an 

input symbol can be obtained by a fast lookup. To obtain the magic number χ, the 

following algorithm is applied. 

Chinese Remainder Theorem Algorithm. Let zi = M/mi and yi = 1(mod )i iz m−  for 

each i = 1, 2,..., k, where 1
iz −  means the multiplicative inverse of zi. (Note that 1

iz −  exists 

if gcd(zi, mi) = 1.) Then the solution to the congruence system of the Chinese Remainder 

Theorem is  

1
( )mod

k

i i i
i

X x y z M
=

= ∑ .                  (5-4) 

■ 

For example, assume the inputs {a1, a2, a3, a4} in Figure 32 maps to the relatively 

prime set {2, 3, 5, 7}. We want to find a magic number χ that satisfies χ% 2 = 1, χ% 3 = 0, 

χ % 5 = 2, and χ% 7 = 0. Then, we get χ= 147. 
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Figure 34. Magic structure. 
 
 

5.2.2 The Magic Structure 

Based on CRT, a Magic Structure (MS) is defined as shown in Figure 34, including a 

pointer to the first child node of this set (Ptr) and a magic number χ in addition to the data 

in a node. The address of the next node (next_ptr) for the input ai can be fast obtained by  





≠×−+
=

=
,0)(% if,sizeof_MS)1)(%(

;0)(% if,Null
_

ii

i

afafPtr

af
ptrnext

χχ
χ

      (5-5) 

where sizeof_MS is the size of the Magic Structure, which is the size of one pointer plus 

χ2log  in addition to the size of  data in a node. The size of MS is much smaller than 

that of the simple structure of 2n pointers.  

Furthermore, MS has a special property: if a node has only one child, then the magic 

number χ will be one. Observing most tri- and automaton-based algorithms, we find that 

while approaching the leaf nodes, more and more nodes have only one child. Therefore, to 

improve the performance, a simple check on χ is done before operating next_ptr. If χ=1, 

next_ptr is Ptr. The next node can be obtained directly without computing. 
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Figure 35. The architecture of ACM state machine, where the number in the parentheses is the 
magic number. 
 
 

5.2.3 AC with Magic Structures 

In this section, we will show a case of using AC algorithm with Magic Structures for 

multi-pattern matching. Modifying the original Magic Structure and adding some 

required fields, the data structure for AC, named ACM, is proposed as follows: 

struct ACM{ 
bitmap next_flag[| Λ |];   
struct ACM *fail_ptr;   
struct ACM *next_start;  
struct Result *pattern_list;  
long_int MagicNum; 
};  

 

In the structure ACM, a bitmap next_flag is used for fast checking whether there is a 

valid child. To reduce the size, only one pointer next_start pointing to the first valid child 

state is stored in the data structure. The MagicNum stores the magic number χ. The ACM 

state machine is organized based on the Goto and Fail functions of the AC algorithm. 

Figure 35 illustrates the memory organization of the ACM state machine when using the 

same example shown in Figure 31(a), and the prime numbers for possible input codes are  
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 Procedure ACM_Matching 
 Input: A string: T, the starting pointer of the ACM state machine: State, and an array with 

prime numbers: Prime. 
 Output: The matched pattern set T: PM. 
1 Initialize: PM ← ∅ . 
2 For each input character: InCode ← T[i] do 
3   If nextState->next_flag[InCode] is set then 
4     If nextState->MagicNum = 0 then  
5       nextState ←nextState->next_start; 
6     Else 
7       nextState ←nextState->next_start + 

((nextState->MagicNum)%Prime[InCode])*Sizeof(ACM); 
8     PM ← PM ∪ Out(nextState->pattern_list); 
9   Else 
10     nextState ←nextState->fail_ptr; 
11 End 
12 Return; 

Figure 36. The matching procedure using the ACM structure. 
 
 

also listed. Note that when there is no valid child for the leaf nodes, the magic numbers of 

the leaf nodes are labeled NULL.  

Note that since a bitmap next_flag is used for fast checking in ACM, the mapping 

organization is slightly modified, and virtual node is not used. Thus the first valid child 

node will have ℜ = 0. Using Figure 35 as an example, the MagicNum of the root state 

(state 0) has to satisfy that {‘s’, ‘ h’}→{0, 1}, where the prime numbers for ‘s’ and ‘h’ are 

11 and 3, respectively. This means MagicNum % 11 = 0, and MagicNum % 3 = 1. Then 

the MagicNum is 22.  

The matching procedure using the ACM structure is illustrated in Figure 36. In the 

ACM matching, given an input symbol a for example, if next_flag[a] is not flagged, then 

the machine traverses the pointer fail_ptr until a state has a flagged next_flag[a] or the 

machine returns to the root state. If the machine traverses to the root state and the 

next_flag[a] is not flagged, the machine will stop in the root state and read the next 
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symbol. Otherwise, while next_flag[a] is flagged, slightly modifies the Equ.(5-5), the 

pointer to the next state is 

nextState = next_start + ℜ × sizeof_ACM                          (5-6) 

= next_start + (MagicNum % Prime[a]) × sizeof_ACM, 

where sizeof_ACM is the structure size of ACM, ℜ  is the offset to the first valid next 

state (next_start), and Prime is a small on-cache table keeping the prime number for each 

possible input character. Obviously, only three reads (next_start, MagicNum and 

Prime[a]) and three operations are required for indicating the next state. According to 

lines 7-10 of the ACM matching procedure in Figure 36, the worst case cost is three read 

sand three operations. As the number of fail transitions is never more than the depth of a 

state, the number of state transitions for each input symbol will be at most two. 

Consequently, the cost of fail transition is small.    

Due to the definitions of ℜ  and CRT, ACM matching has a special property as 

mentioned before: if there is only one child, MagicNum will be zero. Observing the ACM 

state machine, we can find that approaching the leaf nodes, more and more states have 

only one child state. Therefore, this heuristic can be used in the ACM matching to reduce 

the computation. That is, if the next_flag[a] is set and the MagicNum in the current state is 

zero, then there is only one child state and the pointer to the next state for the symbol a is 

next_start. The forwarding path can be obtained directly without computing the ℜ . 

The ACM structure needs only 52 bytes for each state when the size of magic 

number is 8 bytes, which is much smaller than the ACO structure of 1028 bytes, and so 

that it successfully reduces the memory requirement. Additionally, the state transition 

time will be fast because of the simple path decoder ℜ  and the magic number heuristic. 
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Figure 35 illustrates the ACM matching, and assumes that the input string is ‘ish’. 

Scan the string from left to right, and start from the root state at 0x000. As the bitmap 

next_flag[‘ i’] is not flagged, the machine stays in the state at 0x000. Reading the next 

symbol ‘s’, the process finds that it is flagged, and then gets MagicNum = 22 in the state 

0x000. As Prime[‘ s’] = 11 and the next_start of the state 0x000 is 0x040, the address of 

the next state for ‘s’ can be calculated by 0x040+(22%11)×0x34 = 0x040, where the size 

of ACM is 52 bytes (0x34). Then the machine goes to the state at 0x040 and checks the 

bitmap for the next symbol ‘h’. Since the next_flag[‘ h’] is flagged and the MagicNum is 

zero, ACM matching knows that it is the only child and the address of the next state is 

0x0c0, which is read directly from the next_start of the state 0x040. 

5.2.4 Implementation Issues 

According to the magic number definition and the CRT theorem, it is noted that if 

there are too many child states and the alphabet set is large, the magic number will be a 

large number. In the hardware implementations, this is not a problem. Many papers have 

proposed optimized hardware designs for high performance modular arithmetic with long 

operands, which can archive one operation per clock cycle [44]. Therefore, the ACM 

matching algorithm can be easily implemented in the hardware and gain high 

performance.  

However, in the software implementations, software has its limitation on the length 

of an operand. Two mechanisms can be employed to overcome this: (a) use a bitmap 

check before ℜ ; (b) if the magic number is still too large, then use running sums in 

partial nodes. In the first method, the bit of a valid input is set; otherwise, it is not. Then 

only the valid inputs have to find their next nodes. This is the method that used in the case 
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study: ACM matching. The invalid inputs pointing to the virtual node are not involved in 

calculating the magic number. For example, in the Figure 32 only {a1, a3}→{1, 2} are 

used in calculating χ  and get χ =7, which becomes much smaller.  

In the second method, the running sum scheme is employed instead of ℜ  in partial 

nodes. A union structure is used here and then eight running sums and the 64-bit magic 

number share the same memory space. Fortunately, in the case of importing 1200 distinct 

patterns from the Snort database, only 0.078% states of the state machine has to use the 

running sum scheme. Another issue of implementing ACM on some general processors is 

sometimes the expensive cost of modulo operations. This study will show the simulation 

results later and illustrate that ACM outperforms ACB even when running on a general 

processor without optimized modulo instruction. 

5.3 Performance Analysis 

Different algorithms use different ways to construct and traverse their graphs, but 

while in searching processes, they all need to calculate the address of the next node, which 

is a required cost.  Based on the heuristic of the magic number and the magic structure, 

the average time to calculate the address of the next node (average addressing time, Tnext) 

is 

Lnext TTTT +−+= ≠= 11 )1( χχ αα ,                      (5-7) 

where α is the probability that a parent node has only one child node, 1=χT and 1≠χT  are 

the time spent on getting the address of the next node when χ =1 and χ ≠ 1 respectively, 

and TL is the time of one lookup to check the magic number. When χ =1, it implies that 

the current node has only one child node, and the address of the next node is Ptr. Thus,  
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1=χT = Tread,                              (5-8) 

where Tread is the time of one read. If 1≠χ , the pointer of the next node is calculated by 

Equ. (5-5). Hence,  

readLmulsubadd TTTTTTT 3mod1 +++++=≠χ ,            (5-9) 

where Tmod, Tadd and Tmul are the time of one modulo, add and multiply operation 

respectively, and TL is the time of one lookup on the direct mapping table (f). It requires 

three reads while reading operands from data structures or registers is considered. When 

the structures can be kept on cache, Tread is very small. Assume that Tadd, Tsub, Tread, TL, and 

Tmul each needs τ  cycle time since the multiplication in Equ. (5-5) is a simple constant 

multiplication, and Tmod needs τb  cycles. b is very small because the optimizations for 

modulo operations in hardware and software have been proposed in many articles [44]. 

By substituting Equ. (5-8) and Equ. (5-9) into Equ. (5-7), the average addressing time is 

αττ )6()8( +−+= bbTnext .                  (5-10) 

In the worst case, the addressing time is  

τχ )8(}max{ 1 +=+= ≠ bTTT Lnext .             (5-11) 

As a bitmap is involved in MS, the average addressing time is 

αβττββ )6())8(1( +−++=+= bbTTT Lnext
B

next ,       (5-12) 

where β  is the probability that the current code exists a path for a certain input. For a 

sparse graph, α  and β  are very small. The addressing time of Tuck and Lulea 

algorithms which used popcount to obtain the offset of a child node is 

Lreadaddmul

k

i
readaddk

pop
next TTTTTTaT +++++= ∑

=1
)()( ,      (5-13) 
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Table 16. The memory size (in Bytes) of a node for path traversing using simple structure, Bitmap 
structure, and MS plus bitmap. 

2n Valid Children Simple Bitmap MS+bitmap 
8 4 32 5 7 
16 8 64 6 12.25 
64 16 256 12 28.125 
256 16 1024 36 56.875 

 

 

 

where ak is the current input code. The worst case of pop
nextT is 

τττ )42(422}max{ 1 +=+×= +nnpop
nextT ,            (5-14) 

when the input code is n-bit coding. Compared Equ. (5-11) with Equ. (5-14), we can see 

that MS outperforms BM structure, while n is usually larger than two and b is very small. 

Notably, pop
nextT increases exponentially. Consequently, MS performs much better than 

BM structure, especially for the algorithm that has a sparse graph or that uses larger 

strides to reduce the searching depth. 

5.4 Results and Discussions 

Firstly, Table 16 lists the required memory of simple structure, bitmap structure (BM) 

and MS plus bitmap for path traversing in a 32-bit addressing system. This shows only the 

memory for node addressing, excluding the data for algorithms themselves. Recall that 

the simple structure has to save all pointers to child nodes, and the bitmap structure uses 

an n-bit bitmap and one pointer that indicates the starting address of the first child node. 

Table 16 shows that MS needs only a small amount of memory. Although MS requires a 

little larger memory than BM structure, it is still small enough to be stored in the cache 

memory. 
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To show the performance of these structures on a real system, we implement an IDS 

of 1200 rules using the AC algorithm with different data structures. In the following 

simulations, with detachment we use the free and real pattern set released by Snort [1] 

Since the patterns of Snort are written in mixed plain text and hex formatted bytecodes, 

we assume that the alphabet size (|Λ |) is 256 in the simulations.  

To evaluate the performance of algorithms in a real intense attack, we use a trace 

from the Capture-the-Flag contest held at the Defcon9 as the input streams of the 

programs. The Defcon Capture-the-Flag contest is the largest security hacking game, 

which tries to break into the servers of others while protecting your own server hiding 

several security holes [14]. In the simulations, we evaluate the performance by calculating 

the number of instructions used in the algorithms and then multiplying the cost of each 

instruction. The costs of the instructions refer to a real AMD processor [45], where the 

number of instructions per clock for add, mov, mul, cmp, bt, and mod is 3, 3, 1, 3, 3, 1/71 

respectively, and the operation cost of mod is high. 

Let CM represent the total memory requirement and CT be the average execution time. 

Figure 37 and Figure 38 show CM and CT for the ACM, ACB and ACO matching 

respectively in the case of 200 patterns and 1200 patterns. Note that the CM of ACM 

includes the memory requirement of the Prime table. We can see that the total memory 

requirement of ACM is 519.2 KB in the case with a big pattern set |P| = 1200, which is 

only 5.1% of the basic AC and a little (18%) more than that of ACB. Furthermore, the 

memory size of ACM is still in the scale of the on-chip cache that general chipsets support. 

Therefore, we can say that the ACM can be easily implemented in the hardware and 

software, and can gain high performance due to no off-chip memory access.  
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Figure 37. The total memory requirement for the ACM, ACB and ACO structures in the case of 
1200 and 200 patterns respectively. 
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Figure 38. The average execution time per symbol of ACM, ACB, and ACO matching in the case 
of 1200 and 200 patterns respectively. 
 

 

To date, the largest size of on-chip memory supported by the FPGAs is about 1 MB 

and the size of L1 cache and L2 cache of general processors is only 128 KB ~ 2 MB [22]. 

Therefore, according to the memory requirement shown in Figure 37, the full state 

machine of ACO can not be stored in the on-chip memory. The external memory 

references are required in the ACO matching  draws the average execution time per byte 

of ACM, ACB and ACO matching respectively in the case of importing 200 and 1200 

patterns. There are two cases for ACO matching: the result labeling ACO is not assessed  
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Table 17. The normalized cost of ACM, ACB and ACO in the case of 200 and 1200 patterns. 

 C/CACM 

(Num. of Patterns = 200) 
C/CACM 

(Num. of Patterns = 1200) 
ACM 1 1 
ACB 4.492 4.795 
ACO 2.141 3.048 

ACO-100 323.306 460.197 
 

 

any latency penalty for the external memory references, and the other one labeling 

ACO-100 needs 100 cycles for each external fetch.  

Figure 38 shows that ACM performs about 4.67 times better than ACB in the case of 

1200 patterns, and 4.34 times over ACB in the case of 200 patterns. Comparing ACM 

with ACO and ACO-100, we can see that ACM outperforms ACO-100 and the external 

memory references drastically affect the performance of ACO matching. Note that the 

cost of modulo operation in the simulations is extremely higher than others. Even assessed 

the penalty of high operation cost, ACM still outperforms ACB and is moderately slower 

than ACO. If implemented in embedded systems or FPGAs, ACM will be more efficient.  

As the required time and memory are usually trade-off, to compare the overall costs 

of these three algorithms, we define an evaluation function C: C = CM × CT. The higher C 

means the more cost is required in the implementations. The total cost for ACM, ACB and 

ACO is labeled CACM, CACB, and CACO respectively.  

For easy comparison, we show the normalized cost (=C/CACM) of each algorithm in 

Table 17.  

Table 17 demonstrates that the cost of ACM is smaller than others. Even requiring a 

little more memory than ACB, ACM has better overall efficiency, which is about 3.4–3.7 

times better than ACB. Although the theoretic execution time of ACO is shorter than that 
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of ACM, the overall cost of ACM is about 1.1–2 times smaller than ACO. For realistic 

implementations, we can see that the overall cost of ACM is about 322–459 times better 

than that of ACO-100. Therefore, we can say that ACM is a time- and memory-efficient 

algorithm for IDSs, and the Magic Structure is efficient for the automaton-based 

algorithms.
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6  CONCLUSIONS AND FUTURE WORKS 

The increasing variety of network applications and stakes held by various users are 

creating a strong demand for fast in-depth packet inspection. The most important 

component of in-depth packet inspection is an efficient multi-pattern matching algorithm. 

This study has proposed three novel multi-pattern matching algorithms for network 

content inspection: a hierarchical multi-pattern matching algorithm (HMA), an enhanced 

hierarchical multi-pattern matching algorithm (EHMA), and an Aho-Corasick with 

Magic Structures (ACM) algorithm. HMA and EHMA have better average-case 

performance, while ACM has better worst-case performance than the state-of-the-art 

algorithms. This study also has discussed and evaluated current multi-pattern matching 

algorithms for NIDSs. 

HMA applies the most frequent-common codes to quickly filter out innocent packets, 

and to reduce memory accesses. The frequent-common codes are used to build small 

hierarchical index tables for simple and fast checks. The hierarchical scheme improves 

the matching performance significantly by reducing the average number of external 

memory accesses to only 10%–37%. The required memory of HMA is only about 350 KB 

including the 1200 patterns of Snort rules. Particularly, HMA use simple architecture and 

functions, and it can be easily implemented in both software and hardware. Simulation 

results have shown that HMA performs about 0.9–409 times better than others. HMA 

significantly improves the best-case and average-case performance, and also provides 

moderately worst-case performance of the multi-pattern matching. Moreover, an 

incremental pattern update mechanism has also proposed for HMA.  
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Improving HMA, EHMA applies the frequent-common grams obtained by the 

proposed GFGS to narrowing the searching scope and to quickly filtering out the innocent 

packets. The matching process then focuses only on the most suspected packets. EHMA 

concentrates the patterns into a small on-chip table, and performs simple and fast checks. 

Additionally, EHMA uses the frequency-based bad gram heuristic to speed up the 

scanning process. The hierarchical matching significantly reduces the average number of 

external memory accesses to only 6%–19%, thus improving the matching performance. 

The required memory of EHMA is only about 40KB in additional to the pattern contents 

of Snort rules. Particularly, EHMA is very simple and can be easily implemented in both 

software-based and hardware-based platforms. Simulation results have shown that 

EHMA performs about 0.89–1161 times better than others. Even under real-life intense 

attack, EHMA significantly outperforms others. EHMA also works well for the systems 

with larger minimum pattern size, such as virus detection systems. Consequently, HMA 

and EHMA facilitate the creation of efficient and cost-effective packet inspection 

engines. 

In this study, an efficient Magic Structure (MS) for multi-pattern matching 

algorithms has been proposed in ACM, and the proposed algorithm ACM contributes 

better worst-case performance of pattern detection for NIDSs. The MS is based on an idea 

behind congruence systems, and uses a magic number derived from Chinese Remainder 

Theorem. The analysis and simulation results have shown that ACM can efficiently 

reduce the required amount of external memory access. ACM is an automaton-based 

algorithm, and it features fast traversing between the nodes in the state machine. 

Furthermore, ACM uses only simple instructions other than specific operations or 
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hardware. Therefore, ACM can be easily implemented in hardware and software. The 

results have shown that ACM outperforms others. The overall cost of ACM is about 

1.1–459 times better than the existing implementations. Consequently, ACM enables an 

efficient IDS that can survive under heavy attacks. 

As the proposed EHMA has nice average-case performance and the ACM has good 

worst-case performance, combining this two algorithms for a powerful and adaptive 

multi-pattern matching algorithm is worthy of further research in the future. 

Furthermore, the proposed Magic Structures may be able to apply to different network 

applications, such as tri-based algorithms and IP lookup algorithms. In this study, the 

proposed three algorithms are applied to in-depth packet inspection in wired intrusion 

detection systems. The multi-pattern matching algorithms can also be applied to other 

research areas, such as wireless network security, searching engines, etc. Therefore, 

extending the use of the proposed ideas is also a notable issue.
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