

國 立 清 華 大 學 通 訊 工 程 研 究 所

博 士 論 文

多多多多多多多多多多多多多多多研究

Multi-Pattern Matching Algorithms for Networks

學生姓名：許慈芳 (899606)

Tzu-Fang Sheu

指導教授：黃能富 教授

Prof. Nen-Fu Huang

中 華 民 國 九 十 七 年 十 一 月

ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this dissertation
possible.

My foremost thank goes to my thesis adviser Dr. Nen-fu Huang, who has
advised me in various aspects of my research, and has assisted me in
numerous ways.

I thank the rest of my thesis committee members: Dr. Shiuhpyng Shieh, Dr.
Chi-Sung Laih, Dr. Chin-Laung Lei, Dr. Wei-Kuan Shih, Dr. Han-Chieh
Chao, and Dr. Yin-Te Tsai. Their valuable feedback helped me to improve
the dissertation in many ways. I gratefully thank to my master thesis adviser
Dr. Shiann-Tsong Sheu who introduced me to the field of network studies.

I gratefully acknowledge the MediaTek for the award of the MediaTek
Fellowship, which has supported me during my three years of research;
thank the National Science Council of the Republic of China for the award
of field research in the Northwestern University. I would like to express my
sincere thanks to the host professor Dr. Chung-Chieh Lee of Northwestern
University, for his valuable advice and friendly help.

I cannot end without thanking my family, on whose constant encouragement
and love I have relied throughout my time at the Academy. For my parents
who raised me with love and supported me in all my pursuits. For my
younger brother and sister who always listened to my heart and being my
side. And most of all for my loving, supportive, encouraging, and patient
boyfriend Ping who is my best research partner.

This dissertation is in memory of my grandfather whom I adore; in memory
of my beloved grandmother who was the mentor of my life. I miss you
dearly.

It is to them that I dedicate this work.

Tzu-Fang Sheu
Natioanl Tsing-Hua University

Nov. 2008.

 1

Contents

Abstract..9

1 Introduction..11

2 Background..15

2.1 General Definitions and Notations ..15

2.2 Previous Works..16

2.2.1 The Boyer-Moore-Like Algorithms...16

2.2.2 The Aho-Corasick-Based Algorithms ...20

2.2.3 Other Approaches ..21

2.3 Motivations ..22

2.3.1 Network Processors and Micro-processors..................................22

2.3.2 Hierarchical Architectures ...24

2.3.3 Pattern Spectrum..25

2.4 The Sketches of the Proposed Algorithms...25

2.4.1 HMA..26

2.4.2 EHMA..26

2.4.3 ACM ..28

3 The Hierarchical Multi-pattern Matching Algorithm (HMA)29

3.1 The FCS Algorithm ...30

3.2 The Cluster Balancing Strategy (CBS)..32

3.3 The On-line Hierarchical and Cluster-wise Matching.........................35

3.3.1 The First-tier Matching..35

 2

3.3.2 The Second-tier Matching ...36

3.4 The Incremental Update...40

3.5 An Example: Network Intrusion Detection System42

3.6 Performance Analyses ...44

3.6.1 Average Case ...44

3.6.2 Worst Case...48

3.6.3 Best Case..49

3.7 Results..50

3.7.1 Measurements ..51

3.7.2 Input Traffic Models..51

3.7.2.1 Models I and II..51

3.7.2.2 Model III ...52

3.7.2.3 Model VI...52

3.7.3 Memory Requirements ..53

3.7.4 Results and Discussions...55

4 The Enhanced Hierarchical Multi-pattern Matching Algorithm (EHMA)......63

4.1 The Basic Idea of EHMA ..63

4.2 The GFGS Algorithm ..65

4.3 Cluster Balancing Strategy (CBS) ...67

4.4 Safety Shift Strategy ..69

4.5 Table Construction...71

4.6 The On-line Hierarchical and Cluster-wise Matching.............................75

4.6.1 Tier-1 Matching ...76

 3

4.6.2 Tier-2 Matching ...77

4.7 Incremental Update..81

4.8 Worst Case...82

4.9 Results..84

4.9.1 Measurements ..84

4.9.2 Traffic Models ...85

4.9.2.1 Model I..86

4.9.2.2 Model II ..86

4.9.2.3 Model III ...87

4.10 Memory Requirements ..87

4.11 Results and Discussion ..89

5 AC with Magic Structures (ACM)...99

5.1 Previous Works..101

5.1.1 The Aho-Corasick Algorithm (AC)...101

5.1.2 The Basic Implementation of the Aho-Corasick Algorithm......102

5.1.3 The AC Algorithm with Bitmap (ACB)104

5.2 The ACM Algorithm ...106

5.2.1 Chinese Remainder Theorem...107

5.2.2 The Magic Structure ..109

5.2.3 AC with Magic Structures ...110

5.2.4 Implementation Issues ...113

5.3 Performance Analysis ..114

5.4 Results and Discussions...116

 4

6 Conclusions and Future Works..121

References..124

 5

List of Figures

Figure 1. The memory architecture of WM-PH, where the prefix size D = 3...18

Figure 2. The architecture of a network processor..22

Figure 3. The pattern spectrum when |P| = 1200 from Snort’s rule set...24

Figure 4. The FCS algorithm. ...30

Figure 5. The hierarchical index table of HMA. ...34

Figure 6. The on-line matching procedure of HMA. ..37

Figure 7. Examples of HMA on-line matching, where the input strings are ‘pink’ and ‘black’.38

Figure 8. The incremental update of HMA. ..39

Figure 9. The architecture of a network-processor-based NIDS...43

Figure 10. The average matching time (Ψ) versus the attack load (λ) for HMA, WM-PH, BMH and AC-C

with different pattern set sizes (|P|=200 and 1200), using Model II, and (a) wE = 250, (b) wE = 100..54

Figure 11. The average matching cost (Ψ) versus pattern set size (|P|) for HMA, WM-PH, BMH and AC-C

with different attack loads (λ), using Model I, and (a) wE = 250, (b) wE = 100.56

Figure 12. Iψ and Mψ versus attack load (λ), where |P|=1200 and wE = 100, using Model I. The labeled

value above each bar is Ψ . (a) HMA, (b) WM-PH, (c) BMH and (d) AC-C....................................57

Figure 13. The average number of XOR comparisons and that of external memory access versus the attack

load (λ) for HMA, WM-PH and BMH with different pattern set sizes (|P|), using Model I: (a)

Comparison, (b) Memory access...59

Figure 14. The pure costs of the matching algorithms in the worst-case and best-case situations using Model

III . ..60

Figure 15. The processing time and the norrmalized costs using Model VI with wE = 100: (a) Ψ and Mψ

where |P| = 1200 (b) The matching costs normalized to HMA where |P| = 200 and 1200.61

Figure 16. A simple state machine of the EHMA matching process. ..64

Figure 17. The sampling window. ..66

Figure 18. The general frequent-common gram searching algorithm (GFGS). ..66

Figure 19. The pattern clustering architecture. ...69

 6

Figure 20. An example of EHMA, where B1 = 1, B2 = 1, m = M = 6, W = 3 and F={ e, h}........................73

Figure 21. The processing flows of the on-line matching. ..75

Figure 22. The on-line matching procedure, including Tier-1 Matching and Tier-2 Matching.78

Figure 23. An example of matching process with input ‘kangaroo’. ..80

Figure 24. An example of matching process with input ‘iamanactress’. ..80

Figure 25. The average matching time (Ψ) versus the number of patterns (|P|), using Model I with λ = 0

and λ = 4, where wE = 100. ...90

Figure 26. The proportion of
Iψ to Ψ and

Mψ to Ψ using Model I with |P | = 1200 and wE = 100: (a)

λ = 0 and (b) λ = 4. ..91

Figure 27. The comparisons of average number of external memory accesses (E) using Model I with wE =

100: (a) λ = 0 and (b) λ = 4. ..93

Figure 28. The average matching time (Ψ) versus the number of patterns (|P|), using Model II: (a) wE = 100

and (b) wE = 10..94

Figure 29. The costs versus the number of patterns (|P|), using Model II, wE = 100 and M = 10: (a) Average

matching time, (b) Extra memory requirement, and (c) The average number of external memory

accesses. ..97

Figure 30. The average matching time (Ψ) versus the number of patterns (|P|), using Model III, wE = 100.

..98

Figure 31. The Aho-Corasick algorithm. ..102

Figure 32. A parent-child set...103

Figure 33. The ACB_matching Procedure..105

Figure 34. Magic structure. ...109

Figure 35. The architecture of ACM state machine, where the number in the parentheses is the magic

number. ...110

Figure 36. The matching procedure using the ACM structure..111

Figure 37. The total memory requirement for the ACM, ACB and ACO structures in the case of 1200 and

200 patterns respectively...118

 7

Figure 38. The average execution time per symbol of ACM, ACB, and ACO matching in the case of 1200

and 200 patterns respectively. ...118

 8

List of Tables

Table 1. Comparisons of single-pattern matching for cmputers and multi-pattern matching for network

packets. ...17

Table 2. Comparing the shifts of BM-based, FV, WM, and WM-PH algorithms.......................................19

Table 3. The pattern size distribution of Snort..50

Table 4. The measurements. ...51

Table 5. The traffic models. ..52

Table 6. The simulation parameters. ...53

Table 7. The extra memory requirements. ..53

Table 8. The number of frequent common-codes versus the pattern set size..54

Table 9. Analysis and simulation results of HMA with Model I and λ = 0...60

Table 10. The simulation parameters. ...85

Table 11. The pattern size distribution of Snort rule set R1. ...85

Table 12. The statistics of the traffic traces. ...87

Table 13. The memory requirements. ...88

Table 14. A list of symbols. ..88

Table 15. The impact of the size of sampling window (W) on the shift values of tables (H1.shift and H2.shift),

|F|, actual average shifts and E, using Model II. ...96

Table 16. The memory size (in Bytes) of a node for path traversing using simple structure, Bitmap structure,

and MS plus bitmap. ...116

Table 17. The normalized cost of ACM, ACB and ACO in the case of 200 and 1200 patterns.119

 9

Multi-Pattern Matching Algorithms for Networks

ABSTRACT

In-depth packet inspection engines, which search the whole packet payload to

identify packets of interest that contain certain patterns, are urgently required. The

searching results from the inspection engines can be utilized in the network equipment

for varied application-oriented management. The most important technology for fast

packet inspection is an efficient multi-pattern matching algorithm, which performs exact

string matching between packets and a large set of patterns. This study discusses

state-of-the-art pattern matching algorithms and proposes three efficient multi-pattern

matching algorithms for networks: a hierarchical multi-pattern matching algorithm

(HMA), an enhanced hierarchical multi-pattern matching algorithm (EHMA), and an

Aho-Corasick with Magic Structures (ACM) algorithm.

HMA and EHMA are built based on hierarchical and cluster-wise matching

strategies. The hierarchical matching strategy of HMA and EHMA can efficiently reduce

the number of external memory (L2) accesses and the amount of memory space. EHMA

contributes modifications to HMA and includes the ideas of Sampling Windows and a

Safety Shift Strategy. The Safety Shift Strategy can significantly speed up the scanning

process of packet inspection. HMA and EHMA improve the average-case performance of

 10

multi-pattern matching, and are useful for the network equipment that locates at the

general network environment.

Moreover, the proposed ACM presents a novel Magic Structure based on the

Chinese Remainder Theorem. ACM needs only a small amount of memory space and

does not increase computational time complexity. ACM has better worst-case

performance than state-of-the-art algorithms, and is suitable for the network equipment

that usually suffers heavy attacks or requires guaranteed performance.

In this study, the analyses and simulation results show that the proposed algorithms

in this study outperform others. HMA and EHMA successfully reduce the average

number of L2 memory accesses to about only 0.06–0.37 per code, and improve the

performance to about 0.89–1161 times better than the state-of-the-art algorithms. The

overall cost of ACM is about 1.1–459 times better than the existing implementations. In

particular, HMA, EHMA, and ACM use only simple and easy instructions, and no special

hardware is required. Therefore, the proposed multi-pattern matching algorithms are easy

to be implemented in both hardware and software. Consequently, the proposed

multi-pattern matching algorithms can be efficiently applied to packet inspection

engines for network equipment.

Chapter 1

 11

1 INTRODUCTION

Many applications run over the Internet today create a high demand on in-depth

network management. Low-layer network equipment checks specified fields of the packet

headers, such as layer 2/3 switches and layer-4 firewalls. Checking only packet headers is

insufficient for application-oriented management, owing to the increasing amount of

information stored in packet payloads. Network management systems urgently need

efficient and in-depth packet inspection engines for high-layer network equipment. The

packet inspection engine is used to find packets of interest over the network.

A packet inspection engine in the high-layer network equipment, such as an intrusion

detection system (IDS), anti-virus appliance, application firewall or layer-7 switch,

typically contains a policy or rule database. In the database, every rule consists of several

patterns (or signatures) and a matching action (or a series of actions). These patterns

describe the fingerprints of traffic flows. A packet inspection engine applies the

pre-defined patterns to identify or manage packets of interest over the network. The

pattern form depends on the application of the network equipment. However, the patterns

have similar features: (1) a database generally contains a few thousand patterns, of various

lengths, and (2) the patterns may appear anywhere in any packet payload.

For instance, Snort is an open-source network-based intrusion detection system

(NIDS), which is adopted to listen in packets on a network link, identify anomalous

intruder behavior with a set of patterns, and generate logs and alerts through predefined

actions [1]. Snort describes one pattern of the Nimda worm as “GET

/scripts/root.exe?/c+dir” [2], [3]. If the Snort inspection engine detects a packet with this

Chapter 1

 12

pattern in its payload, then it generates appropriate alerts to warn network administrators.

Pattern matching is known to be the most resource-intensive task in the Snort [4], [5], [6].

It has been shown that the pattern matching routine of Snort needs 31% of the total

execution time, which is the most expensive routine [7]. Therefore, the emerging

high-layer network equipment needs an efficient packet inspection engine to search the

entire packet headers and payloads for pattern matching. This study focuses on the

nascent issues of payload inspection, and proposes three fast multi-pattern matching

algorithm.

The most important component of an inspection engine is a powerful multi-pattern

matching algorithm, which can efficiently perform exact string matching to keep up with

the growing data volume in the network. However, conventional string-matching

algorithms are impractical for packet inspection [1], [8]. Because of the large pattern

database, an effective inspection engine must be able to simultaneously search for a set of

patterns, rather than iteratively performing the single-pattern matching. The performance

of processing packets is not only affected by the computation time, but also strongly

affected by the number of external memory accesses.

It is well known that the rate of improvement in processor speed exceeds the

improvement in memory speed. The gap has been the largest problem for system builders.

For example, the latency of one external memory access is about 150–250 times more

than the time of one instruction cycle in the Intel IXP2x00 network processor systems [9].

Therefore, a high-speed multi-pattern matching algorithm should aim to minimize the

number of external memory accesses.

Chapter 1

 13

This study proposes three efficient multi-pattern matching algorithms for in-depth

packet inspection: a hierarchical multi-pattern matching algorithm (HMA), an enhanced

hierarchical multi-pattern matching algorithm (EHMA), and an Aho-Corasick with

magic structures (ACM) algorithm. These three algorithms can simultaneously search the

packet payload for all patterns in a set. HMA, EHMA and ACM are proposed for different

network situations. HMA and EHMA have better average-case performance, while ACM

has better worst-case performance than the state-of-the-art algorithms. Usually,

algorithms of good average-case performance work well in the general network systems.

However, algorithms of good worst-case performance are very important especially for

the equipment in the core and edge network requiring guaranteed services. Consequently,

HMA and EHMA are useful for general network applications, and ACM is suitable for

reliable network applications.

The increasing problem of network security threats means that NIDSs have become

essential network applications [20], [23]. NIDSs protect network infrastructure from

attacks and intrusions without modifying end-user software. To ensure effective

protection, NIDSs must be capable of real-time packet inspection, and be fast enough to

keep up with the ever-increasing data volume over the network. Hence, this study

illustrates HMA, EHMA and ACM with the promising NIDS that makes use of a set of

patterns describing known intrusions.

The rest of this study is organized as follows. Section 2 presents the background of

pattern matching algorithms and the motivation of the proposed HMA, EHMA and ACM

algorithms. From Section 3 to Section 5, the details of the proposed algorithms: HMA,

EHMA and ACM, are described respectively, and the analyses and experimental results

Chapter 1

 14

are also shown and discussed. Finally, Section 6 gives the conclusions and the future

works of this study.

Chapter 2

 15

2 BACKGROUND

This section describes the background of the exact string matching algorithms. The

fundamental definitions and notations used in this study are firstly presented. Then the

related works are discussed in this section.

2.1 General Definitions and Notations

An array is adopted to represent a string of characters from an alphabet set Λ.

Namely, an element of string T at the position i is T[t], where T[t]∈Λ. The absolute value

of an object signifies the size of the object. For instance, |T| represents the length of the

string T, and |Λ| is the number of elements in the set Λ. Define a function sub(T, t, B),

which is the substring of T that starting from T[t] to T[t+B−1]. A string can also be given

as a set of B-grams, where a gram is defined as a group of characters, and B is the number

of grouped characters in a gram. For exampe, the string “green” can be translated into a

set of grams {‘gr’, ‘re’, ‘ee’, ‘en’} when B=2.

Let P = {pi} denote a set of distinct patterns, where pi is a pattern with an

identification number (ID) i. Note that in the set P, pi≠pj when i≠j. Assume that the

payload of an input packet T and each pattern pi ∈P are both strings drawn over Λ.

A search request (|P|=1) in a conventional exact string matching algorithm generally

only contains one pattern. A single-pattern matching algorithm is used to search a string

(or text) T for the first occurrence or all occurrences of one given pattern. A multi-pattern

matching algorithm is adopted to search the input T for all occurrences of any pattern

pi∈P where |P|≠1, or to confirm that no pattern of P is in T. That is, the goal of the

Chapter 2

 16

multi-pattern matching is to find all the matched patterns in T, say PM ⊂ P, such that PM =

{ pi | ∀ pi ⊂ T and pi∈P}. PM can be applied to any high-level decision policy, such as the

high-priority-win, first-matched-win or other state-concerned rules.

The notation e.f denotes the value of the field (or offset) f at the entry (or address) e.

If e is a table, then e.f means all fields named f of the table e.

2.2 Previous Works

Single-pattern matching algorithms were originally proposed to perform text

searching in computer systems. In single-pattern matching, Boyer-Moore-based

algorithms provide the best average-case performance in terms of computation

complexity, which is sublinear to the input string [8], [13], [21]; while the Aho-Corasick

algorithm has the best worst-case performance, which is linear to the input string [1], [31].

Since algorithms with better average-case performance typically work better in the real

world, Boyer-Moore-based algorithms are widely used in the practical implementations.

Some multi-pattern matching algorithms that modify the Boyer-Moore-based algorithms

have been proposed for the IDSs in [21], [27], [29], [36]. The details are as follows.

2.2.1 The Boyer-Moore-Like Algorithms

For single-pattern matching, the Boyer-Moore algorithm (BM) [13] employs a bad

character heuristic and a good suffix heuristic to build a skip table and a shift table

respectively. The Boyer-Moore-Horspool algorithm (BMH), which is a variant of BM,

slightly modifies the bad character heuristic to build a single skip table [21]. The tables of

the Boyer-Moore-based (BM-based) algorithms are precomputed, and are used to obtain

the number of safety shifts of every character during the searching process [13], [21].

Chapter 2

 17

Table 1. Comparisons of single-pattern matching for cmputers and multi-pattern matching for
network packets.

 Single-pattern Searching Multi-pattern Matching
Pattern Length Long Many patterns are very short.
Pattern Database 1. One pattern

2. | |
1| |i

P
i p=∑ < |T|.

1. Hundreds of patterns
2. Usually, | |

1| |i

P
i p=∑ > |T|

Memory Requirement Small Large

Therefore, some characters of the input text T can be skipped during the matching process.

In other words, the safety shift (jump) of each alphabet a∈ Λ when searching a single

given pattern p, say J(a, p), is precomputed, and J(a, p) ≤ |p|. The BM-based algorithm,

while scanning T to verify the existence of p, checks J(a, p) to locate the next character of

T to scan after the input character T[t] = a is scanned. This shift method speeds up the

searching process.

Some algorithms apply the BM-based algorithms iteratively for each pattern to solve

the multi-pattern matching problem. However, these algorithms were originally designed

for single-pattern matching. BM-based approaches are not applicable for packet

inspection, because of the different pattern length, scale of the pattern database and

memory capacity. Table 1 shows these differences.

Although BMH is the best average-case algorithm for general pattern lengths in the

single-pattern matching, several studies have concluded that the Brute Force method

outperforms the BM-based approaches in the extreme cases of pattern length less than

three characters or close to the length of the input string [8], [22], [31]. Generally, the

patterns in many network systems are very short. For example, 13.7% of the patterns in

the Snort pattern set have pattern lengths of less than three characters, and the range of

pattern lengths is 1–122 bytes. Conventional single-pattern searching algorithms are

designed for text file searching in computers, where the length of an input string is

Chapter 2

 18

Figure 1. The memory architecture of WM-PH, where the prefix size D = 3.

typically larger than that of a pattern string. However, the input string for multi-pattern

matching across a network is a packet, whose length is much smaller than the sum of the

length of all patterns. Moreover, the pattern set (|P|) is generally very large in a network

system. Notably, the required amount of memory are very important, especially in a

hardware-based design. For single-pattern searching, the table size of BM-based

algorithms is O(|Λ |). However, for multi-pattern matching, the table size of BM-based

algorithms rises significantly to O(|P|× |Λ |).

To search for a set of patterns, Snort runs a BM-based algorithm iteratively for each

pattern. In this case, the time complexity is O(| |
1| |

i

P
i p=∑ +|P|× |T|) for one input string T [5],

[31]. BM-based algorithms obviously have poor packet inspection performance due to the

large pattern set in the network. The complexity of implementing the conventional

matching algorithm has been cited as a reason why it has not been adopted extensively in

Chapter 2

 19

Table 2. Comparing the shifts of BM-based, FV, WM, and WM-PH algorithms.
 Shift Value Maximum Shift
BM-based J(a, p) |p|
FV min{J(a, pi) |∀ pi∈P} min{|pi| |∀ pi∈P}
WM min{J(g, pi) | g⊂ pi, ∀ pi ∈P}, where |g| = D min{|pi| | ∀ pi∈P}–D+1
WM-PH min{J(x, pi) | sub(pi, 1, D) = x, ∀ pi ∈P} D

multiple-pattern matching [7], [21]. Markatos’s approach promoted Snort by using a

bitmap filter before BMH, but still searching for only one pattern in each iteration [29].

Several modifications to BM-based algorithms have been developed to solve the

multiple-pattern matching problem. Fisk and Varghese’s method (FV) groups all patterns

to precompute the safety shifts [7]; Wu and Manber’s algorithm (WM) groups D-grams of

the prefixes of all patterns to build a shift table based on the bad gram heuristic, where

each entry contains the safety shift of each D-gram [36]; Liu et al. presented an algorithm

(WM-PH) that groups the prefixes of all patterns to build a large hash table, where the

length of the prefix is D [27]. Figure 1 displays the memory architecture of WM-PH.

Notably, WM-PH has to duplicate the patterns of length smaller than D in the hash table to

avoid a miss. Table 2 presents the shift values of BM-based, FV, WM and WM-PH

algorithms.

Obviously, grouping a large number of patterns leads to a small average shift. The

valid shift decreases as the size of pattern set grows. Additionally, the maximum shift

value of the FV and WM must be less than the minimum pattern length in P in order to

avoid missing any pattern. Hence, FV and WM are unfeasible for the inspection engines

when the pattern set includes single-symbol patterns. The required memory space of the

table for WM and WM-PH is O(|Λ|D). Generally, D = 3, and the table requires 16M entries

when the alphabet size is 256. These large tables must be held in the external memory,

which leads to long access delay during the matching process. Furthermore, because the

Chapter 2

 20

safety shift of a D-gram g in the BM-like algorithms relates to all patterns containing g, it

is a very complicated process to derive the shifts and updating the tables when the pattern

set is changed. The BM-like inspection engines must be suspended for table update, even

when only one pattern is added or removed.

2.2.2 The Aho-Corasick-Based Algorithms

The Aho-Corasick (AC) algorithm is a well-known algorithm that provides the best

worst-case computational time complexity [1], [31]. AC is an automaton-based algorithm.

By using a simple data structure, the memory space required to store the transition

matrixes of the states is in the order of O(|Λ|× S), where S is the number of states of the

automaton. Using a compressed structure, Tuck et al. modified AC (named AC-C), and

lowered the required memory to about 2% of the original AC [34]. However, the data

structure of AC-C is still too large to be cached in the on-chip cache of general chips.

Although the AC-based algorithms have the best worst-case computational time

complexity, the latency of external memory access dominates the processing performance

rather than the computational time. Even in the best-case scenario, AC still needs at least

two memory references per character. Additionally, even when only one pattern is

removed, AC must rebuild the failure table since AC’s failure table is built by correlating

the entire pattern set. AC-C also needs to rebuild the entire state machine when it adds or

deletes a pattern, because the structures of AC-C are compressed. Consequently, the

AC-based inspection engine has to be suspended for pattern update, and the suspended

time is proportional to the total length of all patterns in P [1].

Chapter 2

 21

Coit et al. proposed a matching algorithm for Snort by combining AC and BM [15].

However, their algorithm requires three times the memory of the standard version, and

may yield inconsistent results.

2.2.3 Other Approaches

In the case of hardware solutions, Li et al. developed an FPGA-based inspection

engine for NIDSs, using the internal content addressable memory (CAM) to speed up

multi-pattern matching [28]. Because the size of an internal CAM of FPGA is not large

enough to store all patterns, Li et al.’s engine dynamically reloads a block of patterns into

the CAM, resulting in long latency. Moreover, Li et al.’s approach does not solve this

problem while the patterns of varied lengths complicate the formulation of a CAM for

exact matching.

Additionally, Dharmapurikar et al. adopted Bloom Filters (BFs), and Kim et al.

employed mask filters in the FPGA-based packet inspection [17], [24]. However, these

two methods only act as filters and have to cooperate with another string matching

algorithm to verify a match. Furthermore, this Bloom-Filter-based algorithm can be used

only in the case that all patterns are longer than a certain length.

Lu et al. used several binary CAMs and BFs to implement parallel compressed

deterministic finite automata (DFAs), and Dharmapurikar et al. combined AC with BFs

for packet inspection [18], [22]. Both approaches utilize parallel BFs, and assume that a

BF can execute one query every clock cycle. However, these architectures and

assumptions are only valid in specific hardware implementations. BFs are inefficient in

software implementations, because one BF is composed of several hash functions, which

Chapter 2

 22

Figure 2. The architecture of a network processor.

generally have long computation times in software [19], unless hash functions are

carefully selected for different CPUs.

A Piranha algorithm, based on the idea that a pattern can be identified from its least

popular D-gram of a pattern, has been presented [11]. A least popular gram of a pattern is

selected as an index key of a pattern. However, the Piranha algorithm cannot handle

patterns with lengths smaller than D, and require a large memory space (O(|Λ|D)).

2.3 Motivations

Generally, there are three ways to improve the performance of a real-life appliance:

(1) reduce the number of required instructions for a task (computation complexity); (2)

reduce the memory requirement (space complexity); (3) reduce the number of memory

references, especially the external memory references (access latency).

2.3.1 Network Processors and Micro-processors

Programmable chips, such as network processors, FPGAs, networking on chips

(NOCs) or system-on-a-programmable-chips (SOPCs), are increasingly used in

Chapter 2

 23

implementations in order to have the performance and flexibility at the same time [6],

[12]. Although microprocessors are slower than general CPUs, microengine clusters

using pipeline or parallel technologies have been proposed to overcome this shortage. A

network processor system generally consists of microengines, on-chip memory (L1

cache), external memory (L2 memory), and packet control modules (Figure 2). Due to the

cost and power consumption issues, programmable chips generally have small on-chip

cache. For example, the Intel IXP2x00 network processor has only a 4 KB instruction

cache and a 2 KB data cache in each microengine, while the Vitesse IQ2000 network

processor has a 4 KB data cache [22], [35]. Nevertheless, the required memory capacity of

the existing multi-pattern matching algorithms for Snort’s database is usually larger than

300 KB. Because the number of patterns is still growing, the on-chip cache of general

programmable chips is typically too small to store the tables and patterns for the existing

algorithms. Therefore, the pattern content and lookup tables built by matching algorithms

have to be stored in the external memory.

However, frequently accessing the external memory (to read patterns or tables)

significantly decreases the matching efficiency due to the long and indeterminable access

latency of the external memory. It has been pointed out that processor speed doubles

every 18 months, while the memory latency improves by only 7% per year. For example,

Intel IXP2x00 needs about one cycle for one basic instruction, but about 150 cycles for

one access from SRAM (or 250–300 cycles from DRAM) [9]. While considering

implementation issues, the system performance is strongly affected by memory latency.

Therefore, reducing the number of required external memory accesses is more important

than reducing the amount of computational time [34].

Chapter 2

 24

(a) Spectrum of 1-gram.

(b) Spectrum of 2-gram.

Figure 3. The pattern spectrum when |P| = 1200 from Snort’s rule set.

The proposed three multi-pattern matching algorithms: HMA, EHMA and ACM, all

try to lower the number of external memory accesses, and reduce the amount of required

memory space at the same time.

2.3.2 Hierarchical Architectures

As shown in Section 2.2 (and later shown in Table 7 and Table 13), every existing

algorithm uses a large index table for multi-pattern matching. To reduce the number of

external memory accesses, the idea of HMA and EHMA is to use hierarchical

architectures: hierarchical memories and hierarchical matching strategies.

The hierarchical architecture is a common idea and has been used to solve many

problems. However, how to obtain a small first-tier table is the major point for a fast and

Chapter 2

 25

efficient multi-pattern matching algorithm. This study will propose novel methods to

obtain smaller index tables.

2.3.3 Pattern Spectrum

Firstly, Snort’s patterns are analyzed, because index tables of matching algorithms

are constructed by the patterns. Figure 3 plots the pattern spectrum of the Snort patterns.

The pattern spectrum indicates the occurrence frequency of grams of patterns. Figure 3 (a)

shows the distribution of 2-grams of patterns, and Figure 3 (b) is the distribution of

characters of patterns.

As shown in the figures, they are not normally or uniformly distributed, and have

several peaks, which mean that some grams obviously occur more frequent than others.

Hence, the idea of finding a small first-tier table is possible.

2.4 The Sketches of the Proposed Algorithms

Generally, an algorithm of better average-case performance performs better in

real-life applications. However, some applications working in special situations require

guaranteed performance and reliable systems, such as core routers. In this case, an

algorithm of better worst-case performance is demanded. Consequently, this study

proposes three algorithms for different requirements. The hierarchical-based algorithms,

called HMA and EHMA, have better average-case performance; while the

automaton-based algorithm, called ACM, has better worst-case performance than the

state-of-the-art algorithms.

Chapter 2

 26

2.4.1 HMA

The hierarchical multi-pattern matching algorithm (HMA) for in-depth packet

inspection simultaneously searches the packet payload for all patterns in a set. A small

first-tier table from the most frequent common-codes of patterns is used to narrow the

searching scope. HMA significantly reduces external memory accesses and pattern

comparisons by two-tier and cluster-wise matching strategies. HMA requires much less

memory space than current state-of-the-art multi-pattern matching algorithms [12], [21],

[27], [34], [36]. For instance, HMA requires less than 350 KB to import the Snort

database of 1200 patterns and it reveals small-scale and cost-effective implementations.

The average number of external memory accesses in HMA is about only 0.1–0.37 per byte,

which efficaciously improves the performance of the inspection engine. Simulation

results demonstrate that HMA performs about 0.9–410 times better than the

state-of-the-art algorithms [21], [27], [34]. HMA has better best-case and average-case

performance, and also manageable worst-case performance. HMA furthermore has an

incremental pattern update mechanism to make it reliable and appropriate for on-line

network equipment. Consequently, HMA is a very cost-effective and efficient mechanism

that can be employed in fast network content inspection.

2.4.2 EHMA

The Enhanced Hierarchical Multi-pattern Matching Algorithm (EHMA) for fast

in-depth packet inspection can simultaneously searches the packet payload for a set of

patterns. EHMA contributes modifications to HMA [38], and introduces the idea of a

sampling window and a Safety Shift Strategy in addition. EHMA is a two-tier and

cluster-wise matching algorithm, and can perform fast skippable payload scan. Based on

Chapter 2

 27

the occurrence frequency of grams, this study discovers a small set of signatures from the

patterns themselves to narrow the searching domain. A Min-Max strategy is used in the

EHMA. The hit rate of the first-tier table in the EHMA is minimized, while the spread of

patterns in the second-tier table is maximized. Accordingly, EHAM significantly reduces

the number of memory accesses and pattern comparisons. EHMA can skip unnecessary

payload scans by applying the proposed Safety Shift Strategy, which is based on a

frequency-based bad gram heuristic. The frequency-based bad gram heuristic is a

modification of the bad grouped character heuristic of Wu-Manber algorithm (WM) [36].

Therefore, EHMA has the advantages of both HMA and WM.

The memory space and the number of external memory accesses required by the

proposed EHMA are much smaller than those required by the state-of-the-art

multi-pattern matching algorithms. EHMA needs less than 40KB memory space to

construct required tables for the Snort of 1200 patterns, and therefore enables small-scale

and cost-effective hardware implementations. Using only 768 bytes on-chip memory,

EHMA reduces the average number of external memory accesses to 0.06–0.19, and thus

significantly improves the matching time of the detection engine. Simulation results

reveal that the matching performance of EHMA is about 0.89–1161 times better than

other matching algorithms [12], [21], [27], [34], [36], [38]. Even under real-life intense

attack, EHMA still outperforms others. Because employing only basic instructions and

two small index tables, EHMA is very simple for hardware and software implementations.

Consequently, the proposed EHMA is a very cost-effective and efficient mechanism for

real-life network detection systems.

Chapter 2

 28

2.4.3 ACM

Guaranteed performance is very important especially for the equipment in the core

and edge network. The AC algorithm has the best worst-case computational time

complexity for multi-pattern matching, where the number of state transitions for each

input symbol is at most two [1], [19]. However, as for realistic implementations, the

performance of an algorithm is not only affected by the computation time, but also

strongly affected by the number of required memory references. Because using the

conventional simple structures to implement the AC algorithm requires a large amount of

memory, the performance of AC in a realistic implementation is not good as the

theoretical value. Therefore, this study proposes a Magic Structure based on the property

of Chinese Remainder Theorem and contributes modifications to the AC algorithm

(named ACM) for fast in-depth packet inspection.

The Magic Structure needs only a small amount of memory and features fast

traversing schemes. This study uses NIDSs to illustrate the performance of ACM. The

results show that ACM has better worst-case performance than others. The overall cost of

ACM is about 1.1–459 times better than the existing implementations. The performance

of the Magic Structure is analyzed, which shows that the Magic Structure performs very

well especially for sparse graphs.

Chapter 3

 29

3 THE HIERARCHICAL MULTI-PATTERN MATCHING

ALGORITHM (HMA)

Based on the concept of hierarchical and cluster-wise matching, the proposed HMA

can effectively reduce the number of external memory accesses and string comparisons

without sacrificing the memory space. HMA comprises two stages: the off-line

preprocessing stage and the on-line matching stage. The off-line stage constructs two

small tables for the on-line stage.

A frequent common-code searching algorithm (FCS) and a cluster balancing

strategy (CBS) are proposed for the table construction. To obtain smaller index tables and

narrow the searching scope, an idea of frequent common-codes of patterns is used. FCS is

proposed to find out the frequent common-code set F, which is used to build the first-tier

table: H1; the F and CBS are used to build the balanced second-tier table: H2. H1 and H2

act as two filters to avoid unnecessary external memory accesses and pattern comparisons,

and thereby pass the innocuous packets quickly in the on-line matching stage. The

second-tier matching activates only after the first-tier gets a match, and H2 indicates a

small cluster of patterns that are similar to the input packet for real comparisons. HMA

compares only a few selected patterns of P with the suspected substrings of a packet,

rather than comparing all patterns with all substrings of a packet. Consequently, HMA

significantly improves the matching performance. The FCS and CBS algorithms and the

on-line hierarchical matching stage of HMA are described in the following subsections.

Chapter 3

 30

 FCS Algorithm
 Input: A set of patterns P.
 Output: A set of frequent common-codes F.
1 Initialize: F ← ∅ ;
2 For each pattern pi of P, 0≤ i<|P| do
3 __Transfer the first | pi |-1 codes of pi into a vector M by setting mj = 1 if j∈pi; otherwise mj = 0, for all j,

0≤ j< |Λ|;
 If pi is a single-code pattern, set mj = 1 if j=p i.

4 __Read M. For each mj = 1, set the elements of matrix R: r jk = r jk + mk, for all k, 0≤ k<|Λ|;
5 While r ii ≠ 0, 0≤ i< |Λ| do
6 __Find a frequent common-code f, where rff = max{r ii |∀ i, 0≤ i< |Λ|};
7 __Add this code into F : F = F ∪ { f};
8 __For 0≤ i< |Λ | do /* refresh R*/
9 ____r ii = r ii – rfi, if r ii >rfi; otherwise, r ii = 0;
10 Return;

Figure 4. The FCS algorithm.

3.1 The FCS Algorithm

Since the packet payload T and the patterns in P are strings drawn over the same

alphabet set Λ, and in addition the patterns may appear anywhere in the packet payload, to

recognize the packets that have the patterns is difficult. HMA assumes that a small set of

signatures can be found from the patterns themselves, and then by using the signatures,

distinguishing the suspicious substrings of T will become easier. A set of significant codes

is defined as representatives of a pattern set P, given by ℑ ⊂Λ. A pattern of P may exist

in the payload only when at least a significant code exists. In other words, for each pattern

pi ∈P, at least one character of pi occurs in ℑ . Many innocent characters of T that do not

belong to ℑ can be skipped without further processing when scanning the input T.

Obviously, smaller ℑ leads to fewer pattern comparisons, and thus faster pattern

matching. The FCS is proposed to find the smallest ℑ from P.

Define Pc as a subset of P, and all patterns in Pc contain a common-code c, which

means Pc = {pi | c∈pi and pi ∈P}. Obviously, if there is a common-code that appears in

Chapter 3

 31

distinct patterns more frequently than other codes, and it is selected as one of ℑ , then a

smaller ℑ is found. Based on this inference, FCS is designed to find the frequent

common-code set of a given P, denoted F = {fi | fi ∈Λ}, such that F is the minimum set of

significant codes to represent the pattern set P, where fi is a frequent common-code.

The FCS algorithm is presented in Figure 4, using a |Λ| vector M = (mi) and a |Λ|× |Λ|

matrix R = (r ij) as temporary memory, where 0≤ i, j< |Λ|. M is a bit-map recording the

occurrence of each character in a pattern. R is used to record the occurrence frequency,

where r ij, i ≠ j, indicates the relations of concurrent occurrence between two alphabets ai

and aj in P, and r ii records the frequency of an alphabet ai ∈Λ occurring in different

patterns. For example, r ij=2 means that currently two patterns in P contain both ai and aj.

Firstly, the FCS algorithm records the character occurrence of each pattern in the bit-map

M, and then accumulates the elements of M into the corresponding elements of R

respectively (lines 2-4). Secondly, FCS finds the largest occurrence frequency r ff, and

consequently the corresponding alphabet af is selected to be one of F. Then the elements

of R relating to af are subtracted accordingly to renew R (lines 6-9). FCS repeats until all

elements on the diagonal of R become zero.

After FCS finds out F from P, F is used to construct a small index table, called the

first-tier table (H1). To speed up the process, H1 uses a direct index table of |Λ| entries.

The ath entry of H1 is denoted H1(a), where each entry has two fields: the frequent code

ID, say H1(a).fid; and the single-symbol pattern ID, H1(a).pid. That is H1(a).fid = { i | a= fi

∈F}, and H1(a).pid = { i | |pi| = 1, pi= ‘a’ and pi ∈P}. The unused fields of H1 are set as

NULL. Since H1 is a small table, e.g. only 256 entries in the case of one-byte coding, it

can be stored in the on-chip cache. Later, H1 acts as a first-tier filter in the on-line stage to

Chapter 3

 32

quickly discover whether a packet contains a pattern. Namely, HMA makes use of F to

narrow the searching scope to the most likely subset of patterns (clusters).

3.2 The Cluster Balancing Strategy (CBS)

Generally, most packets are innocent and a harmful packet may contain only few

patterns. Hence, comparing all of the patterns in the large P with each input packet is time

consuming. If the patterns in P can be distributed into different small clusters based on

their similarity, then only the patterns in few clusters that are most similar to the input

need to be compared. Therefore, the efficiency of the matching process is improved. This

subsection presents strategies to attain this goal. First, the method of clustering a set P

based on the similarity of patterns is described. Then a cluster balancing strategy (CBS) is

used to balance the cluster size, and finally a second-tier table (H2) for on-line matching

based on the clustering results is built.

Define the clustering pivots as the keys used to distribute patterns, where each

clustering pivot is a common-code of patterns defined previously. Two common-codes

are employed as a pair of clustering pivots, called a pivot pair and noted as (a, b), where

the first pivot is a frequent common-code of F, and the second pivot is the code following

the frequent common-code. Let Pa,b represent a cluster of selected patterns (a subset of

patterns) with the pivot pair (a, b), which means that Pa,b = {pi | ‘ab’ ⊂ pi, a∈F and b∈Λ},

where ‘ab’ is the combination of two strings a and b, and is a substring of pi. Notably, a

pattern is assigned to only one cluster in the clustering strategy, although a pattern may

have more than one pivot pair. That is, the clusters have the following properties: any

cluster Pa,b⊂ P, ∪ all a, b Pa,b= P and ∩ all a, b Pa,b=∅ . Since a pattern may have several

Chapter 3

 33

opportunities to select a cluster, a better assignment can lower the maximum cluster size,

and thereby improving the worst-case performance of HMA.

In order to lower the worst matching time, CBS is employed to balance the size of

clusters. In CBS, an |F|× |Λ| matrix N = (na,b) is used to record the current size of a cluster

Pa,b. The algorithm is as the followings. Firstly, CBS reads one pattern at a time from P

and scans the pattern. According to FCS, for any given pi, there exists a character such that

pi[k]∈F, where 1≤ k<|pi|. To balance the cluster size, CBS finds the smallest na,b among

all available pivot pairs of pi, say (a, b), where a∈F and ‘ab’ ∈pi. After group pi into the

smallest cluster Pa,b, the corresponding na,b is then incremented. All patterns are

distributed sequentially into the designate clusters in the same way.

The second-tier table H2 is constructed based on the cluster assignments. H2 contains

the pattern contents and the patterns’ formatted information for fast on-line matching. Let

H2(a, b) denote an entry of H2, storing the head pattern of a cluster Pa,b , and defined as

H2(a, b) = h(a)× |Λ| +b,

where h(a) = H1(a).fid. Each entry H2(a, b) consists of five fields: the pattern size H2(a,

b).size, the pattern content H2(a, b).data, the position of the frequent common-code in the

pattern H2(a, b).offset, the pattern ID H2(a, b).pid, and a pointer H2(a, b).next to the entry

of the next pattern in the same cluster or the fragmented content of the current pattern.

Transferring the information of patterns into a predefined format can accelerate the

matching procedure. The patterns in the same cluster are linked by the linked-list structure

to optimize the memory utilization.

For example, if pi is clustered to Pa,b and H2(a, b) is empty, then the information of pi

is saved into H2(a, b), where H2(a, b).size = |pi|, H
2(a, b).data = pi, H

2(a, b).offset = k if

Chapter 3

 34

Figure 5. The hierarchical index table of HMA.

 pi[k] = a, H2(a, b).pid = i, and H2(a, b).next is NULL. If the pattern size of pi is larger than

the width of data field, pi is fragmented and the remaining part is saved in a free entry

H2(a’, b’) in the shared memory pool. H2(a’, b’).size is H2(a, b).size minus the width of

the data field, and H2(a, b).next is pointed to H2(a’, b’). Similarly, if another pj is also

clustered to Pa,b, then a free entry is also assigned to pj, and pi and pj are linked by a

pointer.

Figure 5 illustrates the logical architecture of the index tables of HMA, assuming the

alphabets are 26 English letters. This example has six patterns as shown in Figure 1. Since

‘e’ and ‘a’ are the most frequent common-codes that both occur in three different patterns,

FCS discovers F = {e, a} as the signatures of these six patterns. Since H1 has only |Λ| (=

26) entries, it can be stored in the on-chip cache. The fid fields of H1 are pointing to the

corresponding offsets of H2. Since the first pattern ‘a’ is a single-pattern, its pid (= 1) is

Chapter 3

 35

stored in the H1 table. As the pattern ‘red’ has ‘e’∈F and the pivot pairs (e, d), ‘red’ is

grouped to the cluster Pe,d according to CBS. The remainders of the patterns follow the

same clustering strategy.

3.3 The On-line Hierarchical and Cluster-wise Matching

The off-line stage of HMA constructs two tables H1 and H2, holding the index and

pattern information in the cache memory and external memory respectively. These two

tables are regarded as the two-tier filters and as indices for the on-line matching. In this

subsection, the on-line stage of HMA are presented in detail. Notably, HMA is designed

for multi-pattern matching, where the pattern lengths are varied from one character to

hundreds of characters. HMA has no constratnt on the minimum length of patterns.

In a packet inspection engine, an input packet is a given object and forwarded to the

engine for multi-pattern matching. Then the inspection engine returns the searching

results of matched patterns PM. This study focuses on the payload inspection and assumes

that every input is a packet payload T. To reduce the times of external memory accesses,

HMA uses a hierarchical matching scheme. The matching process of HMA is divided into

two tiers: the first-tier matching and the second-tier matching.

3.3.1 The First-tier Matching

In the matching stage, T is scanned from left to right, and each character T[t] is used

as the index key to fetch the entry H1(T[t]) in H1. H1 acts as the first-tier filter of HMA,

using to check weather T contains any pattern of P. Since H1 is small enough to be kept in

the embedded memory of microengines, the latency of accessing H1 is much less than that

of accessing external memory.

Chapter 3

 36

In the first-tier matching, if H1(T[t]).pid is not NULL, then T[t] is a single-symbol

pattern, and this matched pattern will be added into PM. Whether H1(T[t]).pid is NULL or

not, then the first-tier matching procedure checks the fid field.

If H1(T[t]).fid is NULL, i.e., T[t]∉F, T[t] will be skipped with no pattern comparison,

and thereby no external memory is necessary. Then the on-line matching stays in the

first-tier matching, proceeding to the next character T[t+1] and checking the

H1(T[t+1]).pid as previous steps. Since |F| is much smaller than |Λ|, most characters of T

can gain the skips and avoid the second-tier matching. Consequently, both the number of

character comparisons and costly memory accesses can be reduced.

If T[t]∈F, T may contain a pattern pi ∈P, where T[t]∈pi. That is, as H1(T[t]).fid is not

NULL, T may have a pattern (or more than one) belonging to the cluster PT[t],T[t+1]. Then

the second-tier matching is activated to identify the pattern.

3.3.2 The Second-tier Matching

After the first-tier matching, as long as H1(T[t]).fid is not NULL, the matching

procedure proceeds to the second-tier matching. H2(T[t], T[t+1]) indicates the location of

the corresponding cluster PT[t],T[t+1] according to the input T. As a cluster-wise matching,

HMA checks only the patterns in the small cluster PT[t],T[t+1], which are most similar to T.

In the second-tier matching, firstly the pid field of H2 is checked. If H2(T[t],

T[t+1]).pid is NULL, it means the cluster PT[t],T[t+1] has no pattern. Afterward, the next

character T[t+1] is scanned, and the matching procedure returns to the first-tier matching.

Otherwise, if H2(T[t], T[t+1]).pid is valid, it means the cluster PT[t],T[t+1] has patterns

similar to T. Then, HMA compares the pattern content in H2(T[t], T[t+1]) with the

suspected part of T, sub(T, T[t-H2(T[t], T[t+1]).offset], H2(T[t], T[t+1]).size). If the

Chapter 3

 37

 Procedure OnlineMatching(T, H1, H2)
 Input: Packet payload T, two preprocessed indexing tables: H1 and H2
 Output: The matched pattern set of T: PM, and its corresponding pid PIDM
1 Load the input payload into buffer T;
2 Initialize: PM←∅ ;
3 For each T[t] do
4 __If (k←H1[T[t]].pid) ≠ NULL then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k}; /* First-tier matching*/
5 __If (k←H1[T[t]]. fid) ≠ NULL && t < |T| then
6 ____Load data from the external RAM at entry H2(T[t], T[t+1]) to a local buffer LB;
7 ____While (k← LB.pid) ≠ NULL do /* Second-tier matching*/

8
______Compare the substring start at T[(t-LB.offset)] with the pattern LB.data of length LB.size; /*
Assume no fragmentation here*/

9 ______If the comparison is matched then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k};
10 ______If LB.next≠ NULL then
11 ________Load data from the external RAM at entry LB.next to the local buffer LB;
12 Else
13 Break;
14 Return;

Figure 6. The on-line matching procedure of HMA.

pattern size H2(T[t], T[t+1]).size is larger than the width of a data field, the next fragment

of the pattern at H2(T[t], T[t+1]).next is fetched and compared only when the current

fragment gets a match. If the next field of the last pattern fragment points to a valid next

pattern, say at H2(a, b), similarly the pattern in H2(a, b).data is compared with the

substring of T starting at T[t-H2(a, b).offset]. All matched patterns are added to PM.

Notably, if a pattern pi exists in T, then all characters of pi will appear in T. Definitely,

the clustering pivot pair of pattern pi, say pi[k] and pi[k+1], will be found in T, say at T[t]

and T[t+1], where T[t] = pi[k] ∈F. When T compares with the patterns in the cluster

PT[t],T[t+1] during the matching procedure, pi will be recognized. Consequently, no patterns

in the payload T will be missed.

The on-line matching procedure of HMA is presented in Figure 6. Obviously, only

few suspected patterns are loaded from external memory, and the number of string

comparisons is decreased. HMA can scan the packets rapidly by using H1 and H2, since

Chapter 3

 38

Figure 7. Examples of HMA on-line matching, where the input strings are ‘pink’ and ‘black’.

most packets in the network are generally innocent and the obtained F narrows the

searching scope.

Figure 7 demonstrates the on-line matching of HMA. Assume the H1 and H2 tables

have been constructed as Figure 5, where F = {e, a}. HMA scans the input T from left to

right. If T = ‘pink’, after checking T with the on-cache H1 for four times and finding that

all characters of T do not belong to F, HMA knows that T contains no pattern and no

external memory access is required. If T = ‘black’, HMA stays in the first-tier matching

until ‘a’ is scanned, and finds that ‘a’∈F (H1(a).fid is valid) and ‘a’ is a single-symbol

pattern (H1(a).pid = 1). Then, ‘a’ and its following ‘c’ are used as the index keys (pivot

pair), and the second-tier matching loads an entry from H2(a, c) for further checks.

Because H2(a, c).pid (= 6) is not NULL, HMA compares the substring(s) of T with the

pattern(s) in Pa, c, where H2(a, c).data = ‘black’, and a match is got. As H2(a, c).next is

NULL, the on-line matching process returns to the first-tier matching as the previous steps.

Chapter 3

 39

Since ‘c’ and ‘k’∉F, the scanning process of this input is finished. For the input ‘black’,

only one external memory access is required. The result of this case is PM={a, black}.

 Procedure AddPattern(pi, |F|, H1, H2)
 Input: A new pattern pi with pattern ID i, the current |F|, H1 and H2
 Output: The new H1 and H2
1 Initialize: flag ← FALSE;
2 If |pi|== 1 && H 1(pi[1]).pid≠ NULL then
3 __H1(pi[1]).pid ← i;
4 Else
5 __For each pi[j] && j<|pi| do
6 ____If H1(pi[j]).fid ≠ NULL then
7 ______flag ← TRUE;
8 ______If H2[pi[j]][pi[j+1]].pid==NULL then
9 ________Save the information of pi to the entry H2(pi[j], pi[j+1]); /* Assume no fragmentation here*/
10 ________Return;
11 __If flag==TRUE then /* No empty cluster*/
12 ____Choose a random number r, 1≤ r<|pi|, such that pi[r] ∈F;
13 ____Add the pattern pi to the cluster Ppi[r], pi[r+1]: Find the last entry of the cluster, say H2(a’, b’), and save

the information of pi to an empty entry of H2, say H2(a’’, b’’);
14 ____H2(a’, b’).next←H2(a’’, b’’);
15 __Else
16 ____Choose a random number r, 1≤ r<|pi|, set H1(pi[r]).fid←|F|++ and save the information of pi to the

entry H2(pi[r], pi[r+1]);
17 Return;
 Procedure DelPattern(p, H1, H2)
 Input: A pattern p to delete, the current H1 and H2
 Output: The new H1 and H2
1 Initialize: Set temporary registers prev←NULL and this←NULL;
2 If |p|==1 && H1[p[1]].pid≠ NULL then
3 __H1[p[1]].pid←NULL;
4 Else
5 __For each p[j] do
6 ____If (k←H1[p[j]]. fid) ≠ NULL && j < |p| then
7 ______Load data from the external RAM at entry this←H2(p[j], p[j+ 1]) to a local buffer B, and f←p[j];
8 ______While (k← B.pid) ≠ NULL do
9 ________Compare the substring start at p[(j-B.offset)] with the pattern B.data of length B.size;
10 ________If the comparison is matched then /* Assume no fragmentation here*/
11 __________If prev≠ NULL then prev.next ←B.next;
12 __________Clear the data of the entry at this and Goto Line 16;
13 ________Else If (prev←B.next) ≠ NULL then
14 __________Load data from the external RAM at entry B.next to a local buffer B;
15 ________Else Break;
16 If for all a∈ Λ that H2(f, a) = NULL then H1(f).fid←NULL; /* Check the frequent common-code

after delete p*/
17 Return;

Figure 8. The incremental update of HMA.

Chapter 3

 40

3.4 The Incremental Update

A packet inspection engine, just like most network equipment, must work

persistently to avoid missing any packet. When an inspection engine suspends, even for

only 30 seconds, millions of packets will cut through it without any inspection.

Nevertheless, the pattern database of network equipment has to be updated frequently,

because contents over networks change with each passing day. For example, when a new

attacking scenario is discovered, the new patterns must be added to the databases of IDSs

as soon as possible. However, the BM-like and AC-based algorithms have to suspend for

a long time for pattern update. For the BM-based algorithms, they calculate the valid shift

by correlating one pattern with others in P based on bad character and good suffix

heuristics. For the AC-based algorithms, they build the fail tables by correlating the

substrings of all patterns in P. Accordingly, BM-based and AC-based algorithms have to

modify many entries of the lookup tables even when only a pattern is added or deleted.

The number of the modified entries relates to the length of the updated patterns.

Contrarily, the proposed HMA has the advantage of incremental update, with which at

most three entries of the tables have to be updated for one changed pattern.

The incremental pattern update mechanism is shown in Figure 8. The pattern

insertion is similar to the table construction of HMA. To add a new pattern pi into the

pattern set P, HMA has to modify at most one field: H2.next, H1.pid, or H1.fid; and add

one entry. The new pi is scanned from left to right. (1) If there is a character pi[j] such that

pi[j] ∈ F (i.e., H1(pi[j]).fid is valid), and cluster [], [1]i ip j p jP + is empty (i.e., H2(pi[j],

pi[j+1]).pid is NULL), then pi is added to the entry H2(pi[j], pi[j+1]). If there is no empty

cluster for pi, then a random number r is chosen, such that pi[r]∈F. Thereupon, pi is added

Chapter 3

 41

to the cluster [], [1]i ip r p rP + and saved in a free entry of H2, say H2(a'', b''). Then the next field

of the last pattern of [], [1]i ip r p rP + , say H2(a', b').next, is modified from NULL to H2(a'', b'').

(2) If there is no character of pi belongs to F, then a random character of pi, say pi[r], is

chosen as a new frequent common-code and added to F. A new ID of frequent

common-code is assigned and saved in H1(pi[r]).fid. If pi is a single-symbol pattern, i.e.,

|pi| = 1, then modify H1(pi[r]).pid to i; otherwise, pi is saved in the entry H2(pi[r], pi[r+1]).

The size of the cluster is balanced by randomly choosing a cluster if the information of all

cluster size (the matrix N) is not kept in the system. If the matrix N is kept in the system,

the pattern insertion procedure is the same as the table construction.

To delete a pattern pi, only one entry has to be cleared and at most two of H2.next,

H1.fid, and H1.pid have to be modified. The first process is to find out the pattern pi in H2

by using a matching process similar to the on-line matching. If |pi| = 1, then change

H1(pi[j]).pid to NULL. If |pi| ≠1 and pi is in the cluster [], [1]i ip j p jP + , then (1) when pi is not

the only pattern in the cluster [], [1]i ip j p jP + , link pi’s previous entry and its next one in H2

before clearing the entry of pi (H
2.next is modified); (2) when pi is the only one in the

cluster [], [1]i ip j p jP + , check whether any pattern exists in the subset []ip j FP ∈ after clearing

the entry of pi. If no, it means the frequent common-code pi[j] = f is not used any more.

Then, the code f can be removed from F and the field H1(f).fid is set to NULL.

Obviously, the number of modified fields due to HMA’s pattern updates are constant

(at most three), and thus the updating time is deterministic and negligible. Therefore,

HMA provides more reliable inspection engines for real-time network equipment.

Chapter 3

 42

3.5 An Example: Network Intrusion Detection System

HMA can be used in many novel network applications to inspect packets, such as

NIDSs, anti-virus appliances, and layer-7 switches, which search for a set of patterns in

packets. The only difference between these applications is the pattern format. Most

patterns of virus codes are binary codes; while most patterns of layer-7 switches are

formed by English letters. The patterns in NIDSs are written in mixed plain text and hex

formatted bytecodes. In this section, we illustrate an application of HMA with NIDSs.

Two complementary techniques are used to cope with the intrusion detection

problem: anomaly detection and misuse detection [25]. Anomaly detection techniques

attempt to model normal behavior; while misuse detection techniques attempt to model

abnormal behavior. Anomaly-based IDSs are deployed based on machine learning, data

mining or statistical algorithms, which are more sensitive to new attacks than

signature-based IDSs. However, anomaly-based IDSs usually trigger up to 99% false

positive alarms, and their complex normal models result in poor performance. Several

researchers have proposed new schemes to improve the anomaly detection [25], [32], [37].

Misuse detection is assumed to be more accurate and efficient than anomaly detection,

and therefore signature-based IDSs are commonly used today. Some effort has focused on

automatic signature generation to improve the robustness of the signatures [32]. An

example of signature-based NIDSs using HMA is shown in this section.

As network processors have been widely used to develop novel network equipment

[33], a network processor platform is used to illustrate the HMA-base NIDS. A network

processor development system usually consists of several on-chip multi-context

processing engines, each with a small on-chip cache, one host CPU, external memory,

Chapter 3

 43

Figure 9. The architecture of a network-processor-based NIDS.

built-in Ethernet MAC modules and queue modules, such as weighted fair queues (WFQs)

[35]. A NIDS can be a sniffer for intrusion analyses, or can combine with an embedded

queue module (as in Figure 9) to intercept malicious packets. To accelerate the

performance of the network equipment, the network-processor-based systems generally

divide the tasks into two paths: the control path and the data path. The host CPU

processes the non-real-time tasks in the control path, including the table construction, the

pattern set management, the log analyses, and the user interface control. The on-chip

microengines handle the real-time tasks in the data path, including the packet parsing,

header matching, content matching, decision control and queue management. The content

matching engine utilizes the proposed HMA, which is usually the most resource-intensive

element; while the header matching engine uses a hardware-supported classification

module. The H2 table of HMA is stored in the external memory and H1 is in the on-chip

cache of the content matching engines.

When a packet comes in, the packet input module makes some standard checks and

put it into a packet buffer. Because the intrusion detection rules have both the header and

Chapter 3

 44

payload patterns, one engine for header matching and two engines for content matching

are employed to accelerate the processes. The header matching engine checks the packet

headers; and in the meantime the content matching engines search for the patterns in the

packet payloads. The matching results both forward to a decision procedure, which

decides to drop the packet, to generate alerts/logs, or to send the packet to an assigned

WFQ. A management procedure in the host CPU analyzes the logs and feedbacks to the

decision procedure that controls the bandwidth of the suspicious flows by using the WFQs.

Thereby, the HMA-based NIDS can efficaciously avoid attacks. Furthermore, the

HMA-based NIDS can react fast to the new attacks with low false negative alarms when it

is cooperating with proactive bandwidth management and analysis feedbacks.

3.6 Performance Analyses

The performance analyses of HMA are presented in this section. The input and

patterns in worst, best and average formatted type are used to analyze the worst, best, and

average performance of HMA respectively.

3.6.1 Average Case

Since the pattern database is usually predefined and static, assume the given patterns

are uniformly distributed. First of all, the cluster organization is modeled. Assume that the

occurrence probability of any alphabet in a pattern pi is an uniform distribution:

Pr{ pi[j] = a | a∈Λ} =
1

| |Λ
. (3-1)

Based on the table construction procedure of HMA, the probability that any

two-character substring, say ‘ab’, is a pivot pair, and also exits in a pattern pi is denoted

Cpivots, where

Chapter 3

 45

Cpivots = Pr{‘ ab’ ⊂ pi and a F∈ , b∈Λ | ‘ab’ 2∈Λ } = () 3

| |
1

| |
p

F−
Λ

, (3-2)

and p is the average pattern size. In other words, Cpivots is the probability that a cluster

Pa,b is one of the available clusters for a pattern pi. Thereby, the average number of pivot

pairs in a pattern, denoted Npivots, can be derived by the following equation:

Npivots =
1

| || |

1

| || |
(1)

p
k F k

pivots pivots
k

F
k C C

k

−
Λ −

=

Λ
−∑

, (3-3)

where
!

!()!

m

n

m

n m n

 −

≡ . According to CBS, when a cluster, say Pa,b, is one of the available

clusters of pi, and also is the smallest one, then pi is grouped to Pa,b. Since the patterns are

uniformly distributed and CBS classifies the patterns as balance as possible, the

probability that an available cluster is the minimum one is 1/Npivots. Consequently, the

probability that a pattern is grouped to a designate cluster is

Cp→cluster = pivots

pivots

C

N
. (3-4)

As k patterns are grouped into the same cluster, the cluster size is k. Thus, the

probability that the size of a cluster is k for a given pattern set P is

Ck =
| || |

(1)k P k
p cluster p cluster

P
C C

k
−

→ →

−

. (3-5)

Let Ncluster represent the average cluster size, which can be derived by the following

equation:

Ncluster =
| |

1

P

k
k

kC
=
∑ . (3-6)

Note that the structures of H1 and H2 depend on the predefined P, and additionally

are controllable and balanced by HMA. Therefore, generally the tables will not be

Chapter 3

 46

constructed badly, whether the input string is the best, average or worst-case string for the

algorithm. In fact, Ncluster can be reduced by increasing the size of H2, using B characters

for the second pivot instead of one character. Then Cpivots-B is smaller than Cpivots, which is

Cpivots-B = () 2

| |
1

| | B

F
p +−

Λ
. (3-7)

Reducing Ncluster by using the smaller Cpivots-B can improve the matching performance,

but however will increase the required memory space. This is a trade-off between the

matching performance and the memory cost.

In the average case, assume that an input string T is drawn randomly from the

alphabet set Λ. As defined previously, H1 is a direct indexing table for each character. The

fid field of the entry H1(a) is assigned a valid ID, say i, for all a= fi ∈F. Thus, the

probability that an entry of H1 has a valid fid is:

Pr{H1.fid ≠ NULL} =
| |

| |

F

Λ
, (3-8)

where |F| is the number of frequent common-codes. In the matching process, if

H1.fid ≠ NULL, the next step is to check the pid field of the indexed H2 in the external

memory, and proceed to the second-tier matching. Accordingly, the probability that the

on-line matching goes to the second-tier matching for any input character T[t]∈Λ is

defined as 2
AVG
tierC , and

2
AVG
tierC =

| | 1

0

1 | |

| | | |

FΛ −

×
Λ Λ

∑ =
| |

| |

F

Λ
. (3-9)

The first step of the second-tier matching is to fetch the entry and check the pid field,

and thus one external memory access is required. If there is more than one pattern in the

cluster, additional external memory access will be needed to fetch those patterns. We

Chapter 3

 47

assume every pattern can be loaded into microprocessors within one external memory

access. Let AVG
RAMN represent the average number of external memory accesses per one

input character, and it is

AVG
RAMN =

| |
| |

2
2

| |
1 (1) (1)

P
AVG k P k
tier p cluster p cluster

k

P
C k C C

k
−

→ →
=

× + − −∑

= ()| || |
(1)

| |
P

cluster p cluster

F
N C →+ −

Λ
. (3-10)

If the indexed H2(T[t], T[t+1]).pid is valid, it means T may have a pattern

pi∈PT[t],T[t+1]. Then T has to be compared with the patterns in the cluster PT[t],T[t+1], where

the average number of patterns in PT[t],T[t+1] is Ncluster. Let _AVG T
fetchN be the average number

of patterns fetching from an external memory for a given average-case input T.

_AVG T
fetchN can be derived from the previous equations:

_AVG T
fetchN = 2(| | 1) AVG

tier clusterT C N− × × . (3-11)

Thereby, the number of XOR instructions used in string comparisons between T and

the patterns for a given average-case input T, denoted _AVG T
XORN , can be obtained by

_AVG T
XORN = _AVG T

fetch

p
N

ω

, (3-12)

where ω is the computer wordsize. In the average case of HMA, let AVG
XORN represent the

average number of XOR comparisons between T and the patterns in the cluster for one

input character, which can be derived by

AVG
XORN =

| |

AVG T

XORN

T

−

<
| |

| | cluster

F p
N

ω

 Λ

. (3-13)

Chapter 3

 48

3.6.2 Worst Case

If a given string T is formed badly that has to do the exact string comparisons the

most times, the performance of HMA for the bad-formed T is the worst case. Assume the

largest cluster size is Lc. When every character of T (T[t]) belongs to F, and every

corresponding indexed cluster is the largest (|PT[t],T[t+1]| = Lc), this is the worst scenario of

HMA. As every character T[t]∈F, the probability to fetch the table H2 for the worst case

is one. Thus, the number of external memory accesses per character in the worst case is

(| | 1)

| |
WST c
RAM

T L
N

T

− ×= < Lc. (3-14)

Assume the largest pattern size in P is Lp. When every input character points to the

largest cluster, in which every pattern has the longest size, the worst case requires the

largest number of comparisons. Hence, the number of XOR character comparisons for

one input character is

pWST
XOR c

L
N L

ω

<

. (3-15)

Obviously, the worst-case performance depends on Lc. To derive Lc, assume there is

a largest cluster, say Px, y. Since Px, y is the largest cluster, assume that the cluster size is

always larger than one, and initially the probability that its cluster size increases from 0 to

1 is one. That is

1}10Pr{ , =→=yxP . (3-16)

In the worst case, the patterns are assumed formed badly and have a bias on the pivot

pair (x, y). Since Px, y is the largest cluster, based on CBS, a given pattern p will not be

Chapter 3

 49

clustered into Px, y, unless all available pivot pairs of p are not in the set FFFF×Λ except (x, y).

Therefore, the probability that |Px, y| increases from i to i+1 is

2

2

2

,

1
}1Pr{

−

Λ

+Λ×−Λ
=+→=

p

yx

F
iiP , (3-17)

where |p| is the given pattern size. As in the worst-case scenario, every pattern has the

longest size Lp, the equation is rewritten

2

2

2

,

1
}1Pr{

−

Λ

+Λ×−Λ
=+→=

pL

yx

F
iiP . (3-18)

Thereby, the probability that the cluster size of Px, y is Lc is derived

)1)(2(

2

2

,

1
}Pr{

−−

Λ

+Λ×−Λ
==

cp LL

cyx

F
LP . (3-19)

When |P| is 1200 with |F| = 77, |Λ| = 256 and Lp = 128, the probability that Lc = 4 is

about 7× 10-79, which is very small. When replacing Lp with the average pattern size of

Snort (|p| = 11), then the probability that Lc = 4 is about 3.6× 10-6, and is still very small.

Thus WST
RAMN and WST

XORN are very small. Consequently, we can say that Lc<<| P|, and the

worst-case performance of HMA is moderate and acceptable.

3.6.3 Best Case

If a given string T is a good string, where every character T[t]∉F for all t, 1≤ t<|T|,

this good string will gain the best-case performance of HMA. In this case, no external

memory access and no pattern comparison are necessary. The good string can be

processed quickly, and only one embedded memory lookup (checking H1 to see whether

T[t]∉F or not) is needed per input character.

Chapter 3

 50

Table 3. The pattern size distribution of Snort.
Pattern Length =1 ≤ 4 ≤ 8 ≤ 12 ≤ 16 >16
Ratio 0.028 0.245 0.482 0.653 0.813 0.187

3.7 Results

This section shows the simulation results of HMA, compared with the

state-of-the-art multi-pattern matching algorithms: BMH [21], WM-PH [27], and bitmap

compressed AC (AC-C) [34], which have been used in the IDSs. BMH and AC-C have

been deployed in a famous open-source NIDS – Snort, and WM-PH has been proposed

for a network-processor-based NIDS. In the simulations, a network processor

development system is used as a simulation platform [33]. HMA, BMH, WM-PH and

AC-C are emulated by assembly-like microprograms respectively, and the number of

instructions and that of memory accesses are calculated. One microprocessor is used in

the simulations to simplify the evaluation, though a network processor may have several

microengines.

Snort is the most famous open-source NIDS today and the patterns (rules) used in

Snort are provided and tested by the Sourcefire Vulnerability Research Team (VRT),

which is the largest group dedicated to advances in network security industry [1]. The free

and real pattern set released by VRT is used in the simulations (the statistics of the pattern

set are listed in Table 3), although the pattern set can be any self-defined or commercial

pattern set. The number of distinct patterns used in the simulations is 200–1200, where

each pattern is about 11.2 bytes on average. Since the patterns of Snort are written in

mixed plain text and hex formatted bytecodes, the alphabet size (|Λ|) is 256 in the

simulations.

Chapter 3

 51

Table 4. The measurements.
Notation Meaning
NI The average number of RISC instructions per input character (including comparisons and

calculations)
NL The average number of local memory accesses (including reading data from cache to registers)
NE The average number of external memory accesses for loading the packet, querying the entries of

tables in the external memory, and fetching the patterns
wI The time of one instruction or one local memory/register access
wE The time of one external memory access

Iψ The average computation cycles:
Iψ =NI × wI

Mψ The average memory latency:
Mψ = NE× wE + NL × wI

Ψ Total average matching time: Ψ =
Iψ +

Mψ

3.7.1 Measurements

Table 4 shows the measurements used in the simulations. Notably, we assume that

the skip table of BMH was small enough to be loaded into the cache memory in the

simulations, and thus only one external memory access was counted for each pattern

during the matching process of BMH. We also assume AC-C needed one external

memory access per input code, although it generally requires two memory references (one

for reading the next pointer and one for traversing failure pointers or reading the patterns).

3.7.2 Input Traffic Models

3.7.2.1 Models I and II

In the Models I and II, the malicious packets are generated by randomly choosing

patterns from P and spreading over the packet payloads. Attack load λ is defined as the

expected number of malicious patterns in one packet. For example, if λ is 0.5, it means

every two packets have one harmful pattern on average.

The characters in a payload besides the patterns are called background characters.

Two forms of background characters are respectively used in the Model I and Model II. In

the Model I, the payloads of random background are formed by characters randomly

Chapter 3

 52

Table 5. The traffic models.
Packet Format
Background Number of Patterns

Packet Length Number of Packets

Model I Random λ 640 bytes 10 million
Model II Pure λ 640 bytes 10 million
Model III All permutations 4 bytes 232
Model VI Real Traces from Defcon

drawn from Λ to imitate the normal packet contents. However, the random background

may unconsciously contain some patterns of P. To evaluate the impact of λ on the

performance of algorithms, pure background is used in the Model II. The pure

background is formed by the characters that never appeared in P.

3.7.2.2 Model III

Since different multi-pattern matching algorithms have different string forms that

cause their best-case or worst-case performance, all permutations of four-character input

strings (232 strings) are used in the Model III to examine the extreme performance of every

algorithm. We choose the length of four characters because 24.5% of Snort’s patterns are

less than or equal to four characters (see Table 3), and the test pool of 232 input strings is

large enough for simulations. Because it is very difficult to obtain the best-case and

worst-case traces for every algorithm, it is quite feasible by using this model to evaluate

the extreme cases of every algorithm.

3.7.2.3 Model VI

To evaluate the performance of algorithms in an intense attack, a real trace from the

Capture-the-Flag contest held at Defcon9 was adopted as the input traffic in the Model VI.

The Defcon Capture-the-Flag contest is the largest security hacking game. In this contest,

competitors try to break into the servers of others while protecting their own servers,

Chapter 3

 53

Table 6. The simulation parameters.
Items Value
Time for one RISC instructions or one local memory access (wI) 1 cycle
Latency for each external memory access (wE) 100 or 250 cycles
Number of patterns in P (|P|) 200, 400, ..,1200
Range of pattern length 1–122 bytes

Table 7. The extra memory requirements.
 HMA WM-PH BMH AC-C
Cache memory space (MI) O(|Λ|) O(1) O(|Λ|) O(1)
External memory space (ME)* O(|F|× |Λ|+|P|) O(|Λ|3+|P|) O(|P|× |Λ|+|P|) O(S+|P|)

*|F| < |Λ| << |P| < S

where each server hides several security holes [14]. The summary of the traffic models are

shown in the Table 5 and the simulation parameters are listed in Table 6.

3.7.3 Memory Requirements

The lookup information and patterns are generally saved in the memory using a

tabular structure for fast lookup and matching. Therefore, the memory requirements are

shown in terms of the number of entries. Since the H1 of HMA is a direct lookup table, the

cache memory space (MI) of HMA is |Λ| entries. Based on the proposed schemes, FCS

and CBS, the number of entries in H2 is the total number of possible clusters. As all

possible pivot pairs are in the space ×Λ F, the maximum size of H2 is |F|× |Λ| entries

along with a shared space of no larger than |P| entries for collisions. Thereby, the external

memory space (ME) of HMA is O(|F|× |Λ|+|P|). The lookup table of WM-PH is based on a

direct prefix hash table with prefix length of D, where D = 3 in the simulations.

Accordingly, ME of WM-PH is |Λ|D+|P| entries for the index table and pattern contents. In

the BMH, every pattern has its own skip table of |Λ| entries, so that ME of BMH is

O(|P|× |Λ|+|P|). Since each skip table of BMH is small enough to be loaded to the local

Chapter 3

 54

Table 8. The number of frequent common-codes versus the pattern set size.
|P| 100 200 300 400 500 600 700 800 900 1000 1100 1200
|F| 11 28 32 37 45 49 52 58 66 74 75 77

(a)wE = 250

(b) wE = 100

Figure 10. The average matching time (Ψ) versus the attack load (λ) for HMA, WM-PH,
BMH and AC-C with different pattern set sizes (|P|=200 and 1200), using Model II, and (a) wE

= 250, (b) wE = 100.

memory, we allocate a cache memory space for BMH in the simulations for fair

comparisons. WM-PH and AC-C also need cache memory for loading one skip value or

one state during matching process. The required memory used in HMA, WM-PH, BMH

and AC-C is summarized in Table 7 including lookup tables and pattern contents.

Table 8 lists the relations between the pattern set size |P| and the number of frequent

common-codes |F| in the HMA. It shows that the growing rate of |F| is much slower than

that of |P|. In the simulations with |P| = 1200 for example, the maximum ME of HMA is

Chapter 3

 55

20192 entries (326.75KB external memory when the size of an entry is 16 bytes, including

pattern contents and formatted information); WM-PH needs more than 16M entries

(16MB for shift values, excluding pattern contents); BMH needs more than 300K entries

(300KB for shift values, excluding pattern contents); and AC-C requires 10731 states

(461KB when the size of a node is 44 bytes, excluding |P| entries for pattern IDs).

Consequently, the required memory space of HMA is very small.

3.7.4 Results and Discussions

Figure 10 shows the attack load λ on the average matching time Ψ using Model

II with different attack loads |P| = 200 and |P| = 1200 respectively. Since the ratio of

instruction cost (wI) and external memory cost (wE) are varied in different deployed

systems, Figure 10 (a) and (b) also show the performance of each algorithm with different

weights wE = 100 and wE = 250 respectively. Simulation results reveal that HMA

outperforms WM-PH, AC-C and BMH even when |P| andλ increase. The curves of

HMA and WM-PH are slightly increased with λ rising because HMA and WM-PH need

more external memory accesses and string comparisons when more malicious patterns

exist in a packet. With the larger pattern set, the matching time increases a little faster in

both HMA and WM-PH. This is because the probability that the input strings hit the

lookup tables (H1 and H2 for HMA and the prefix table for WM-PH) increases. HMA has

higher growth rate than WM-PH because the table size of HMA is much smaller than that

of WM-PH. WM-PH gains performance by having a large direct index table. The curves

of BMH seem flat withλ rising, since the tiny increment of BMH is caused by the

increasing number of comparisons with relatively low wI when compared to wE. Because

AC-C needs one external memory access in addition to time intensive popsum to count the

Chapter 3

 56

(a) wE = 250

(b) wE = 100

Figure 11. The average matching cost (Ψ) versus pattern set size (|P|) for HMA, WM-PH,
BMH and AC-C with different attack loads (λ), using Model I, and (a) wE = 250, (b) wE =
100.

next state for every character, its Ψ is high. In the case of wE = 250 and |P| = 200 (|P| =

1200), the matching time of HMA is about 26.5–68 (99.7–409.5) times less than that of

BMH, 4.2–10.6 (2.8–10.6) times less than that of WM-PH, and 15.5–34.8 (9.1–34.7)

times less than that of AC-C under different attack loads. In Figure 10, when λ is low,

HMA significantly outperforms WM-PH, BMH, and AC-C. Consequently, HMA is very

suitable for IDSs in a general network environment, because most packets are innocent

(0≈λ).

The simulation results shown in Figure 11– Figure 13 use Model I as input traffic.

Figure 11 compares Ψ of HMA, WM-PH, AC-C and BMH with different attack loads

Chapter 3

 57

(a) HMA

(b) WM-PH

(c) BMH

(d) AC-C

Figure 12. Iψ and Mψ versus attack load (λ), where |P|=1200 and wE = 100, using Model I. The
labeled value above each bar is Ψ . (a) HMA, (b) WM-PH, (c) BMH and (d) AC-C.

λ = 0 and λ = 4 respectively. It also shows the impact of |P| on Ψ . Simulation results

reveal that HMA outperforms WM-PH, BMH and AC-C even when |P| andλ are

increasing. For both λ = 0 and λ = 4, the matching costs of HMA and WM-PH both rise

with |P|. This is because while |P| rises, the number of patterns in P that have similar

substrings also rises. This leads to the increasing number of marked entries that request

for comparisons in HMA and WM-PH. Hence, HMA and WM-PH require more string

comparisons and memory accesses with increasing |P|. HMA has slightly higher growth

rate than WM-PH, because the table size of HMA (H1 and H2) is about 830 times smaller

than that of WM-PH. The increasing |P| makes the matching time of BMH rise steeply,

Chapter 3

 58

because the BMH is originally a single-pattern matching algorithm that simply executes

iteratively for every pattern. In the case of wE = 250 and λ = 0 (λ = 4), the matching time

of HMA is 14.5–35.8 (11.7–29.8) times less than that of BMH, 2–3.3 (1.9–2.8) times less

than that of WM-PH, and 11.9–22.2 (9.5–24.3) times less than that of AC-C under

different pattern set sizes. Figure 11 reveals that HMA is quite stable due to slight

increment of its Ψ while |P| increases.

The processing time Ψ includes the computation time (Iψ) and memory access

delay (Mψ). Figure 12 (a)–(d) illustrate the proportion of Iψ to Ψ and Mψ to Ψ

respectively for all approaches with |P| = 1200 and variousλ . In these figures, the upper

and lower part of the bar are represented as Mψ and Iψ respectively. The results show

that HMA’s Iψ is close to WM-PH’s, but HMA’s Mψ is much less than others.

Therefore, the hierarchical matching strategy of HMA is highly effective in reducing the

memory latency, only tiny overhead of the computation time is needed. The proportion of

Mψ to Ψ of BMH seems smaller than others. The reason is that the whole skip table of

a pattern is idealistically assumed to be loaded within one external memory access, and

kept in the cache during the matching process. Because AC-C compresses the size of each

node, it requires more time to calculate the next state pointer. Thereby, AC-C does not

have the smallest Iψ . Simulation results show that the Iψ does not significantly rise

with λ in any of the experiments, because each algorithm has already tried to reduce the

computation load (Iψ). However, Mψ dominates the overall matching cost. This reveals

that the number of external memory accesses is the bottleneck of almost all algorithms.

The result also reflects our opinion mentioned previously that the essential issue in

Chapter 3

 59

(a) Comparison

(b) Memory access

Figure 13. The average number of XOR comparisons and that of external memory access
versus the attack load (λ) for HMA, WM-PH and BMH with different pattern set sizes (|P|),
using Model I: (a) Comparison, (b) Memory access.

designing a high-speed detection engine is to reduce the number of required external

memory accesses.

Since different systems have different implementation overheads, Figure 13 extract

two basic measurements from overall costs to compare the algorithms themselves. The

results in Figure 13 (a) plot the average word comparisons (AVG
XORN) versus λ for every

approach, with |P| = 200 and 1200 respectively. Figure 13 (a) shows that AVG
XORN of HMA

grows moderately with λ and |P|, and is more efficient than others, especially when λ

is low. Figure 13 (b) shows the average number of external memory access (AVG
RAMN). It

Chapter 3

 60

Table 9. Analysis and simulation results of HMA with Model I and λ = 0.
AVG
RAMN AVG

XORN

|P| Analysis Simulation Analysis Simulation
200 0.109417 0.109965 0.0122 0.00282
400 0.144658 0.146164 0.0244 0.005762
600 0.191621 0.193972 0.0366 0.008785
800 0.226885 0.229967 0.0488 0.011705

1000 0.289458 0.293 0.0610 0.014587
1200 0.301327 0.305335 0.0732 0.017624

1

10

100

1000

10000

100000

Worst Best Average

T
im
e
 (
C
y
cl
e
s)

HMA

WM-PH

BMH

AC-C

Figure 14. The pure costs of the matching algorithms in the worst-case and best-case situations
using Model III .

demonstrates that HMA effectively reduces the number of required external memory

accesses. AVG
RAMN of HMA is only 0.109–0.369 when |P| = 200–1200 and λ = 0–4. In other

words, HMA can successfully filter out about 90%–63% payloads without any external

memory accesses and string comparisons.Table 9 lists both the analysis and simulation

results of AVG
XORN and AVG

RAMN respectively, using Model I and λ = 0. The simulation and

analysis results of AVG
RAMN are very close. The simulation results of AVG

XORN are a little

smaller than the analysis results. The reason is that the comparison between the input

s t r i n g a n d p a t t e r n s w i l l s t o p i n t h e

Chapter 3

 61

(a) Processing Time

(b) Normalized Costs

Figure 15. The processing time and the norrmalized costs using Model VI with wE = 100: (a)
Ψ and Mψ where |P| = 1200 (b) The matching costs normalized to HMA where |P| = 200 and
1200.

simulations if there is one unmatched word; while we assume that the whole string has to

be compared in the analysis.

Figure 14 plots the best-case, the worst-case and the average performance of HMA,

WM-PH, BMH and AC-C, using Model III with wE = 100. The matching time shown in

Figure 14 excludes the cost for loading packets from input modules into the processor,

because every algorithm has the same cost. Recall that different algorithms may have

different extreme scenarios. This simulation uses Model III and records the extreme and

Chapter 3

 62

average results for each algorithm respectively. Figure 14 shows that HMA outperforms

WM-PH and BMH in all cases. In the best case, HMA requires only seven instruction

cycles to process an input character. In the worst case, the performance of HMA is still

better than others. Therefore, HMA significantly improves the best-case and average-case

performance and has moderately worst-case performance for the multi-pattern matching,

enabling practical implementations.

The simulation results using a real trace (Model VI) are shown in Figure 15, where

wE = 100. Figure 15 (a) draws the overall cost (Ψ) and the memory access time (Mψ)

respectively, where |P| = 1200. To compare the performance of the state-of-the-art

algorithms, the matching time Ψ of WM-PH, AC-C and BMH are normalized to HMA

and shown in Figure 15 (b). Although the Defcon trace (Model VI) contains a lot of

malicious packets, Figure 15 shows that HMA performs well and much better than others.

It also demonstrates that the memory access time of HMA is much smaller than others

(note that figures are in logarithmic scale), which means HMA successfully reduces the

number of memory accesses. In other words, the small first-tier filter of HMA can still

work well even under heavy attacking loads.

Chapter 4

 63

4 THE ENHANCED HIERARCHICAL MULTI-PATTERN

MATCHING ALGORITHM (EHMA)

 Enhanced Hierarchical Multi-Pattern Matching Algorithm (EHMA) contributes

modifications to HMA [38], and introduces the idea of a sampling window and a Safety

Shift Strategy in addition. EHMA is a two-tier and cluster-wise matching algorithm, and

can perform fast skippable payload scan. Based on the occurrence frequency of grams,

this study discovers a small set of signatures from the patterns themselves to narrow the

searching domain. A Min-Max strategy is used in the EHMA. The hit rate of the first-tier

table in the EHMA is minimized, while the spread of patterns in the second-tier table is

maximized. Accordingly, EHAM significantly reduces the number of memory accesses

and pattern comparisons. EHMA can skip unnecessary payload scans by applying the

proposed Safety Shift Strategy, which is based on a frequency-based bad gram heuristic.

The frequency-based bad gram heuristic is a modification of the bad grouped character

heuristic of Wu-Manber algorithm (WM) [36]. Therefore, EHMA has the advantages of

both HMA and WM.

4.1 The Basic Idea of EHMA

Based on a hierarchical and cluster-wise architecture, EHMA comprises two small

index tables, namely the first-tier table (H1) and the second-tier table (H2). These two

tables act as filters to avoid unnecessary external memory accesses and pattern

comparisons, and thereby pass the innocuous packets quickly in the on-line matching

process. The second-tier procedure (Tier-2 Matching) activates only after the first-tier

Chapter 4

 64

Figure 16. A simple state machine of the EHMA matching process.

procedure (Tier-1 Matching) gets a match. Using H2, which indicates a small subset of

patterns that are similar to the input packet, EHMA compares only a few selected patterns

of P with the suspected substrings of the packet, rather than comparing all patterns with

all substrings of the packet. Furthermore, a frequency-based bad gram heuristic is

proposed in the EHMA to determine the safety shifts on the input strings during the

on-line matching process. In other words, some characters of the input packets can be

safely skipped without any process.

Figure 16 displays the simple state machine of the EHMA, which illustrates the

hierarchical and skippable matching flows. External memory accesses are needed only in

the Tier-2 matching state. Consequently, EHMA significantly enhances the matching

performance, and effectively reduces the number of external memory accesses, string

comparisons and character scans, by utilizing two small index tables.

This study proposes a general frequent-common gram searching algorithm (GFGS)

and a cluster balancing strategy (CBS) to lower the size of the tables H1 and H2. The

following subsections describe the GFGS, CBS and the Safety Shift Strategy in detail.

Chapter 4

 65

The hierarchical on-line matching using these two index tables, namely Tier-1 and Tier-2

Matching, are then shown.

4.2 The GFGS Algorithm

In the high-layer intrusion detection, patterns may appear anywhere in the packet

payload, making the attacking packets difficult to recognize. GFGS assumes that a small

set of signatures can be found from the patterns themselves, then the suspicious substrings

of T may be easier to distinguish from the innocent parts, and the pattern matching is

therefore faster. A set of significant grams is defined as representatives of a pattern set P,

given by ℑ ⊂ 1BΛ , where the size of a gram is B1 characters. The set ℑ is much smaller

than 1BΛ . Only when at least a significant gram occurs in the payload, a pattern may exist.

That is, when at least one B1-gram of pi belonging to ℑ occurs in the payload T, the

pattern pi ∈P may be found in T. Many innocent B1-grams of T, that do not belong to ℑ ,

can be filtered in the Tier-1 Matching when scanning the packet payload. Obviously,

smaller ℑ leads to fewer pattern comparisons, and thus faster pattern matching. The

GFGS is proposed to find the smallest ℑ from P.

Define Pg as a subset of P, that Pg = {pi | pi has the gram g, ∀ pi∈P}, where g is

called the common gram of those patterns in the set Pg. Notably, if a common gram

appears in the distinct patterns more frequently than other grams, and it is selected as one

of the significant grams, then a smaller ℑ is found. Based on this inference, the GFGS

algorithm is designed to find the frequent-common gram set F, such that F is the

minimum set of significant grams to represent a pattern set P. In the GFGS, the common

grams are searched only from the sampling window, which is defined as the last W

Chapter 4

 66

Figure 17. The sampling window.

 GFGS Algorithm;
 Input: Given a set of patterns P, the parameters: W, B2, B1, and m.
 Output: A set of frequent-common grams F.
1 Initialize: F←∅ , V and R are set to zero;
2 For each pattern pi of P, 0≤ i<|P| do /*build a matrix R */
3 Transfer the first W- B2 bytes of the sampling window of the pattern pi into B1-grams, and set the

element of a vector V: vj ← 1 if B1-gram = j; otherwise vj ← 0;
4 Read V. For each vj = 1, set the elements of matrix R: r jk ← r jk + vk, ∀ k, 0≤ k<|Λ|B1;
5 While (r ii ≠ 0, ∀ 0≤ i< |Λ|B1) do
6 Find a frequent-common gram g f, where rff = max{r ii |∀ i, 0≤ i< |Λ|B1};
7 Add this gram into F : F ← F ∪ { g f };
8 For 0≤ i< |Λ|B1 do /* refresh the diagonal of R */
9 r ii ← r ii – rfi, if r ii >rfi; otherwise, r ii ← 0;
10 Return;

Figure 18. The general frequent-common gram searching algorithm (GFGS).

characters of the first m characters of a pattern. The range of m is M ≤ m≤ |pi|, where M

denotes the minimum pattern length of all patterns, and |pi| is the current pattern length.

Figure 17 illustrates the sampling window, where B1 is the size of a frequent-common

gram, B1 ≤ W, and B2 is the size of the second pivot in the H2 table, which is explained

later.

The GFGS algorithm is presented in Figure 18. A bit-map vector V = (vi) and a

matrix R = (r ij) are temporary memory, where 0≤ i, j<
1BΛ . Vector V records the

occurrence of each B1-gram in a pattern; R is used for recording frequency, where r ij, i ≠ j,

indicates the number of concurrent occurrences of two B1-grams gi and gj in P; and r ii

records the frequency of the B1-gram gi occurring in distinct patterns. For instance, r ij = 2

Chapter 4

 67

means there are two patterns, each containing both gi and gj. In the GFGS algorithm, each

pattern is first transferred into a set of B1-grams, and the occurrence of each B1-gram is

recorded in the bit-map V, where B1 is pre-defined and depends on the available on-chip

memory space. Matrix R is then derived from V (as shown in line 4 of Figure 18). Second,

the largest occurrence frequency r ff is found, and its corresponding gram gf is selected as

one of F. The elements of R relating to gf are subtracted accordingly to renew R. GFGS is

repeated until all elements on the diagonal of R become zero. GFGS uses only a matrix

and a vector to discover F from P.

4.3 Cluster Balancing Strategy (CBS)

Most packets are innocent in general situations. Even a harmful packet may contain

only few patterns. Therefore, comparing all of the patterns in the large P with each input

packet is time consuming. If the patterns in P can be distributed into different small

clusters based on their similarity, then only the pattern in each cluster that is most similar

to the suspected packet needs to be compared, thus improving the efficiency of the

matching process. This subsection presents strategies to attain this goal. First, the method

of clustering a set P based on the similarity of patterns is described. Then a cluster

balancing strategy (CBS) is adopted to balance the cluster size. A second-tier table (H2)

for on-line matching can be constructed based on the clusters.

The clustering pivots are the keys used to distribute patterns, where each clustering

pivot is a common gram of patterns defined previously. Two common grams are

employed as a pair of clustering pivots, called a pivot pair, say (a, b), where the first pivot

is a frequent-common gram, and the second pivot is the substring following the

frequent-common gram. Let Pa,b represent a cluster of selected patterns (a subset of

Chapter 4

 68

patterns) with the pivot pair (a, b), which means that Pa, b = {pi | ‘ab’ ⊂ pi, a∈F and

b∈ 2BΛ }, where ‘ab’ is the combination of two strings a and b and is a substring of pi; F is

the result of GFGS, and B2 is the length of the second pivot. Notably, a pattern is assigned

to only one cluster in the clustering strategy, although a pattern may have more than one

pivot pair. That is, the clusters have the following properties: for any cluster Pa,b⊂ P, that

∪ all a, b Pa,b = P, and ∩ all a, b Pa,b =∅ . Since a pattern may have several opportunities to

select a cluster, a better assignment can lower the maximum cluster size, and thereby

improve the worst-case performance of EHMA.

The pattern grouping is based on F. To lower the worst matching time, CBS is

adopted to balance the size of all clusters. In CBS, an
2B

F Λ× matrix N = (na, b) is used

to record the current size of every cluster Pa, b during the pattern grouping procedure. The

CBS is as follows.

(1) First, read one pattern at a time from P and scan the pattern.

(2) According to GFGS, for any given pi, there exists a B1-gram g∈F, where B1 is the

length of a frequent-common gram. To balance the cluster size, CBS finds the smallest

na, b, given by nx, y, among all available pivot pairs (a, b)s of pi, for all a∈F and ‘ab’ ⊂ pi.

(3) After grouping pi into the smallest cluster Px, y, the corresponding nx, y is also

incremented.

All patterns are distributed sequentially into the designate clusters. Accordingly,

GFGS and CBS divide the large P into smaller subsets. Figure 19 illustrates the pattern

clustering architecture.

Chapter 4

 69

Figure 19. The pattern clustering architecture.

4.4 Safety Shift Strategy

This section presents a safety shift strategy to derive the values of the shift fields of

H1 and H2. H1 and H2 can use the same strategy to derive their safety shifts respectively.

As mentioned previously, as long as no frequent-common gram is matched in input

strings, then no pattern exists. Therefore, if no frequent-common gram is missed, then no

pattern will be missed. The safety shift strategy is based on a modified bad grouped

character heuristic [9], named frequency-based bad gram heuristic in this study. The

safety shift strategy ensures that no frequent-common gram is missed during a skippable

scanning process. The proposed strategy helps EHMA to speed up the on-line matching

process, since certain characters can be skipped unhesitatingly.

Assume that x identifies all possible index keys, and that the length of x is B. Because

the index keys of H1 and H2 are different, the parameters used to determine the shift fields

of these two tables are different. For H1, as the length of a frequent-common gram is B1,

thus x∈ 1BΛ and B = B1. For H2, since x is all the possible of the pivot pairs (a, b),

x∈F× 2BΛ and B = B1+B2. The basic concept of the safety shift strategy is that: if x is not

Chapter 4

 70

a gram of any pattern, and any suffix of x is not any prefix of any pattern in P, then it is

safe to shift m when x is scanned; otherwise, the number of safety shifts is the offset

between the rightmost occurrence position of x and the position of the frequent-common

gram nearest to x. Two parameters are needed to derive the safety shifts, namely W, and m,

as shown in Figure 17. Assume that B≤ W≤ m, and define the safety shifts of each entry

(H(x).shift) as follows:

(1) Initially, all shift fields of the table H are set as

If m > W, then

H(x).shift = m - W + q, (4-1)

where q = min{q | ∃ sub(x, q+1, B - q) = sub(p, 1, B - q), ∀ p∈P and 1 ≤ q < B} when

B > 1 and q exists; otherwise q = B.

Else

H(x).shift = r, (4-2)

where r = min{r | ∃ sub(x, r+1, B - r) = sub(f, 1, B - r), ∀ f∈F, 1 ≤ r < B, and r + B <

W } when B > 1 and r exists; otherwise r = B.

(2) Scanning every pattern p, for each i-th B-gram of each pattern pB[i], where 1≤ i ≤ m-W ,

set x ← pB[i] if the entry H(x) exists:

If the current H(x).shift > m-W-i+1, then update the entry, so that

H(x).shift = m-W-i+1. (4-3)

(3) For each i-th B-gram of each pattern pB[i], where m-W<i ≤ m-B+1, set x ← pB[i] if the

entry H(x) exists:

If x∈F, then

H(x).shift = 0; (4-4)

Chapter 4

 71

Else If the current H(x).shift > r, then update the entry:

H(x).shift = r, (4-5)

where r = min{r | ∃ sub(x, r+1, B-r) = sub(f, 1, B-r), ∀ f∈F, 1 ≤ r < B, and r+B < W }

when B > 1 and r exists; otherwise r = B.

Notably, the maximum shift of EHMA is m while W = B. The frequent-common

grams and the sampling window are introduced in the proposed frequency-based bad

gram heuristic to improve the flexibility and the efficiency. Additionally, comparing

EHMA with WM, the maximum safety shift is raised from m−B+1 to m. The shift value of

the proposed EHMA is similar to but larger than the shift value of WM, when the given

parameters are m = M and W = B.

4.5 Table Construction

The result of GFGS, F, is used to construct the small table H1, which is stored in the

on-chip memory. A direct index table of
1BΛ entries is used for H1 to achieve fast

lookup. B1 is usually very small (B1 = 1 or 2), and is pre-defined according to the available

size of on-chip memory. An entry of H1 is denoted as H1(a), where a is a B1-gram, and

each entry has three fields: the frequent-common gram ID, H1(a).fid; the pattern ID when

a itself is a pattern, H1(a).pid, and the safety shift number in the Tier-1 Matching,

H1(a).shift. Namely, H1(a).fid = { i | a = fi ∈F}, and H1(a).pid = { i | |pi| = |fi| = B1, pi = ‘a’

and pi ∈P}. The unused fields of H1 are set to NULL. Since H1 is a small table (for

instance, 256 entries in the case of one-byte coding and B1 = 1), it can be stored in the

on-chip cache. Later, H1 acts as a filter in the on-line matching to quickly discover

whether the packet contains a pattern. Namely, EHMA employs H1 to quickly scan and

Chapter 4

 72

jump over the innocent substrings of the input packets, and to narrow the searching field

to the most likely clusters.

The H2 table is built based on the cluster assignments. H2 contains the pattern

contents and formatted information of patterns for fast on-line matching. Let H2(a, b)

denote an entry of H2, indicating the head pattern of the cluster Pa,b , and defined as

H2(a, b) = H1(a).fid× 2BΛ +b, (4-6)

where B2 is the length of the second pivot b, and is pre-defined according to the available

size of the external memory. Each entry H2(a, b) consists of six fields1: the safety shift

number in the Tier-2 Matching H2(a, b).shift, the position of the frequent-common gram

in the pattern H2(a, b).offset, the pattern size H2(a, b).size, the pattern content

H2(a, b).data, the pattern ID H2(a, b).pid, and a pointer H2(a, b).next to the entry of the

next pattern in the same cluster Pa, b or the fragmented content of the current pattern.

Transferring the information of patterns into a predefined format can accelerate the

matching procedure. The patterns in the same cluster Pa, b point to the same head entry

1 Only the first two fields are specialized for EHMA. The other four fields are used for structured patterns as

other algorithms.

Chapter 4

 73

(a) An example of GFGS.

(b) The architecture of the hierarchical hash tables.

Figure 20. An example of EHMA, where B1 = 1, B2 = 1, m = M = 6, W = 3 and F={ e, h}.

H2(a, b), and are linked by the linked-list structure to optimize the memory usage. The

required memory size of H2 is
2B

F Λ× entries plus the share memory pool.

For example, if pi is clustered to Pa, b by CBS and H2(a, b) is empty, then the

information of pattern pi is saved into H2(a, b), where H2(a, b).size = |pi|, H
2(a, b).data =

pi, H
2(a, b).offset = k if the k-th B1-gram of pi is a, H2(a, b).pid = i, and H2(a, b).next is

NULL. If another pj is also clustered to Pa, b, then a free entry is also assigned to pj and

Chapter 4

 74

linked with the previous pattern pi. Similarly, if the pattern size of pi is larger than the

width of data field, then pi is fragmented, and the remaining part is saved in a free entry of

the share memory pool, and the address is saved in H2(a, b).next.

Figure 20 shows an example of EHMA, which has five patterns: ‘actress’, ‘teacher’,

‘firefighter’, ‘farmer’, ‘architect’, where the alphabet set comprises the 26 English letters.

The parameters for EHMA are assumed B1 = 1, B2 = 1, m = 6 and W = 3. Figure 20 (a)

demonstrates the GFGS. According to the GFGS (lines 2 – 4 of Figure 18), after scanning

the first W-B2 characters of the sampling window of every pattern (the underlined

characters of the patterns in Figure 20 (a)), the matrix R is obtained and shown in the

figure. In the first run, the maximum value on the diagonal of R is three, and thus the

corresponding gram ‘e’ is added into F. After refreshing the elements on the diagonal of R

(lines 8 – 9 of Figure 18), GFGS finds that the maximum value on the diagonal of R is two

in the second run, and the corresponding gram is ‘h’. GFGS stops while all elements on

the diagonal of R are zero, and gets F= { e, h}. Figure 20 (b) displays the logical

architecture of the two-tier tables of EHMA. Because B1= 1, and the H1 table has only 26

entries, the H1 table can be stored in the cache memory. The fid fields of H1 point to the

corresponding offsets of H2. As the pattern ‘actress’ has ‘e’ ∈F and the pivot pair ‘es’,

according to CBS it is grouped to the cluster Pe, s. The shift fields of H1 and H2 are

obtained from the proposed safety shift strategy. Initially, since B1 ≤ 1, H1.shift = 4. While

B1+B2 > 1, H2.shift is set to 5 for those entries whose second pivot is not the prefix of any

pattern (that is, b∉{‘a’, ‘f’, ‘t’}); otherwise, H2.shift is set to 4. When scanning the pattern

‘actress’, the shift fields of H1(‘a’), H1(‘c’) and H1(‘t’) are updated to 3, 2 and 1

respectively (the 2nd safety shift strategy); the shift fields of H1(‘r’) and H1(‘s’) are both

Chapter 4

 75

Figure 21. The processing flows of the on-line matching.

updated to 1, while the H1(‘e’).shift is updated to zero, because ‘e’∈F (the 3rd strategy).

As for the table H2, only the existing entry H2(‘e’, ‘s’) has to be updated to two, because B

= B1+B2 = 2, and no prefix of F is the suffix of ‘es’ (the 3rd strategy). The remainders of

the patterns follow the same clustering and safety shift strategy. The shift fields of H1 and

H2 tables are updated when the new shift is less than the previous one. Let us see H1(‘a’)

for example. When scanning the pattern ‘actress’, H1(‘a’).shift = 3 (as p1[i] = ‘a’, i = 1 and

m-W-i+1 = 3); while scanning the pattern ‘teacher’, H1(‘a’).shift is updated to 1 (as ‘a’ is

the third character of ‘teacher’: i = 3, then m-W-i+1 = 1), because the new value is smaller

than the previous one (the 2nd strategy). Finally, H1(‘a’).shift = 1 is saved in the table

because the remaining patterns do not have H1(‘a’).shift smaller than one. Notably, the

maximum shift of H1 and H2 is large (4 and 5 respectively). Consequently, the number of

scans and comparisons can be significantly reduced.

4.6 The On-line Hierarchical and Cluster-wise Matching

The previous subsections presented the off-line stage of EHMA, which builds two

index tables H1 and H2, holding the indexing and pattern information in the cache memory

Chapter 4

 76

and external memory respectively. These two tables are regarded as the two-tier filters

and indices for the on-line matching. This subsection presents the on-line matching

procedure in detail.

In network intrusion detection systems, an input packet is forwarded to a detection

engine. The detection engine then returns the search results of matched patterns PM. This

study focuses on the payload inspection, and assumes that each input is a packet payload T.

As a hierarchical matching, the on-line matching procedure of EHMA is divided into two

tiers: Tier-1 Matching and Tier-2 Matching. The hierarchical architecture is applied to

decrease the number of external memory accesses. The small H1 is stored in the cache of

the processing unit for Tier-1 Matching, while the H2 with pattern content is in the

external memory for Tier-2 Matching. Figure 21 illustrates the processing flows of

EHMA, and shows that the on-cached Tier-1 Matching does not access the external

memory, but does act as a pre-filter. The external memory access is necessary only when

the Tier-2 Matching is invoked. This process is described in detail in the following

subsections.

4.6.1 Tier-1 Matching

In on-line matching, the payload T is scanned from left to right, and each B1-gram of

T is the key to fetch the entry H1(t1), where t1 =][1 iT B . The H1 acts as the first-tier filter of

EHMA, by checking whether T may likely contain patterns belonging the pattern set P.

Because H1 is small enough to be stored in the on-chip memory during the on-line

matching procedure, the latency of accessing H1 is very small.

In the Tier-1 Matching, first the shift field is checked. If H1(t1).shift ≠ 0, i.e., t1∉F,

then no external memory is necessary. The obtained H1(t1).shift also determines the

Chapter 4

 77

number of grams that can be skipped without further process. The next gram to check is

then 1 1
1[().]BT i H t shift+ . After read the next gram, the matching process repeats as in the

previous steps, and remains in the Tier-1 Matching. Because |F|≪≪≪≪
1BΛ , the probability of

t1∈F is small and most grams of T gain the shifts, thus avoiding the Tier-2 Matching.

Consequently, both the number of string comparisons and the costly memory accesses can

be significantly reduced.

Otherwise, if t1∈F, then T may contain a malicious pattern pk∈P, where t1⊂ pk.

Simply stated, if H1(t1).shift = 0, then T may have a pattern that belongs to the cluster of

pivot pair (t1, t2), where t2 =][1
2 BiT B + . Therefore, the matching procedure activates

Tier-2 Matching to identify the pattern. If H1(t1).pid is not NULL, then the current gram t1

itself is a pattern, and this matched pattern is also added into PM.

4.6.2 Tier-2 Matching

After the Tier-1 Matching, if H1(t1).shift = 0, then the matching procedure proceeds

to the Tier-2 Matching. The function H2(t1, t2) indicates the location of the corresponding

cluster according to input T. Since EHMA is a cluster-wise matching algorithm, only the

patterns in the small cluster of pivot pair (t1, t2), which are similar to T, are loaded to the

processing unit for further checks.

Tier-2 Matching first checks the pid field of H2. If H2(t1, t2).pid is NULL, then the

cluster (t1, t2) contains no pattern, and no pattern comparison is necessary. Otherwise, if

H2(t1, t2).pid is not NULL, then this cluster contains patterns. The pattern content in the

H2(t1, t2).data is then compared with the corresponding substring of T: sub(T,

i-H2(t1, t2).offset, H2(t1, t2).size). If H2(t1, t2).next is valid, and points to the next entry, here

Chapter 4

 78

 Procedure Tier-1Matching(T, H1, M, W, B1)
 Input: Packet payload T, a first-tier hash table: H1, the minimum pattern length M, the length of the

frequent-common gram B and the length of the sampling window W.
 Output: The output of Tier-2Matching.
1 i←M-W+1;
2 While i <= |T|- B1 do
3 Read the i-th B1-gram of T: gram←TB1[i];
4 If H1(gram).shift > 0, then shift←H1(gram).shift;
5 Else
6 If H1(gram).fid ≠ NULL, then shif←Tier-2Matching(T, H2, B2, i);
7 If H1(gram).pid≠ NULL, then
 PM←PM ∪ { gram};
 If shift == 0, then shift←1;
8 Jump over the string: i←i+shif; /*shift and read the next*/
9 End While
10 Return;

 Procedure Tier-2Matching(T, H2, B2, i)
 Input: Packet payload T, a preprocessed indexing table: H2, the length of the second pivot B2, and the

current pointer i
 Output: A safety shift number for Tier-1 Matching: shift, the matched pattern set of T: PM, and its

corresponding pid PIDM
1 Load data from the external RAM at entry H2(TB1[i], TB2[i+B1]) to a local buffer LB;
2 shift←LB.shift;
3 While (k←LB.pid) ≠ NULL do
4 Compare the substring of T: sub(T, i-LB.offset, LB.size) with the pattern LB.data; /*Assume no

fragmentation here*/
5 If it is matched then PM←PM ∪ { pk} and PIDM←PIDM ∪ { k};
6 If LB.next≠ NULL then
7 Load data from the external RAM at entry LB.next to the local buffer LB;
8 Else
9 Jump to Line 10;
10 End While
11 Return shift;
Figure 22. The on-line matching procedure, including Tier-1 Matching and Tier-2 Matching.

given by H2(a, b), then the cluster contains other patterns. Similarly, the pattern in

H2(a, b).data is also fetched and compared with the substring of T starting at

T[i−H 2(a, b).offset] of length H2(a, b).size. Every matched pattern is added to the matched

pattern set PM and its corresponding matched pid set PIDM in order. Until all patterns in

this cluster are checked, the next gram 1 2
1 2[(,).]BT i H t t shift+ is then read, and the

on-line matching procedure returns to the Tier-1 Matching. H2(t1, t2).shift also indicates

Chapter 4

 79

the number of characters of T that can be skipped, since the next possible

frequent-common gram may only appear far than H2(t1, t2).shift away.

Notably, if a pattern pk exists in T, then all grams of pk appear in T. The clustering

pivot pair of pattern pk, (][1 jp B
k ,][1

2 Bjp B
k +) is certainly scanned, say at t1 and t2, so

that t1=][1 jp B
k ∈ F and t2=][1

2 Bjp B
k + . Pattern pk is then recognized when T is

compared with the patterns in the cluster (t1, t2) during the on-line matching procedure.

Based on the Safety Shift Strategy, EHMA never skips any frequent-common gram.

Consequently, no patterns in the payload T are missed.

The on-line matching procedure of EHMA is described in Figure 22, including

Tier-1 Matching and Tier-2 Matching. Since EHMA introduces H1 and H2 as filters, and

CBS is employed, only a few suspected patterns are loaded from external memory and

compared with T. Because generally most of the packets are innocent over the network,

and the frequent-common grams (F) narrow the searching field, EHMA performs a fast

scan over the packets. The returned result PM includes all matched patterns for a given T,

and is applied to make the final decision and to analyze the impending attacks. The final

decision depends on decision-making rules.

An example is provided to demonstrate the online matching of EHMA. Assume that

the H1 and H2 tables have been built as Figure 20 where W = 3 and M = 6. Assume that the

input T is ‘kangaroo’ as given in Figure 23. The scan runs from left to right. The scan

starts at ‘g’ ((M−W+1)-th gram), obtaining H1(‘g’). shift = 4. Therefore, Tier-1 Matching

shifts four characters. Because the pointer goes beyond |T|−B1 after the shift, EHMA

completes scanning the input T. This example only requires one on-cache table lookup,

Chapter 4

 80

Figure 23. An example of matching process with input ‘kangaroo’.

Figure 24. An example of matching process with input ‘iamanactress’.

and no external memory access. By only checking T with the embedded table H1, EHMA

can know that T contains no pattern.

Considering another example where T = ‘iamanactress’ as shown in Figure 24, the

first scanned B1-gram is ‘a’, yielding H1(‘a’).shift = 1. Thus the matching process stays in

the Tier-1 Matching, and the next B1-gram ‘n’ is read after shifting one character, yielding

H1(‘n’). shift = 4. Similarly, staying in the Tier-1 Matching, and the next B1-gram ‘n’ is

read after shifting one character, yielding H1(‘n’). shift = 4. Similarly, staying in the Tier-1

Matching, the matching process obtains H1(‘r’). shift = 1 and H1(‘e’).shift = 0 in order after

shifting. While H1(‘e’).shift = 0, the Tier-2 Matching is activated. After checking the field

H2(‘e’, ‘s’).pid and finding that it is not NULL, EHMA knows a suspected pattern may

exist. The Tier-2 Matching then compares input T with the pattern in the cluster Pe,s,

where H2(‘e’, ‘s’).data = ‘actress’, and gets a match. Because this cluster contains no

other patterns, the matching process returns to Tier-1 Matching with H2(‘e’, ‘s’).shift = 2.

Since the pointer goes beyond |T|−B1 after shifting two characters, the matching process

Chapter 4

 81

for the input T is finished. In this case, H1 is checked four times, and H2 is fetched only

once for the string T of twelve characters. EHMA thus significantly reduces the latency

caused by memory accesses.

4.7 Incremental Update

EHMA can achieve incremental update by adding a count field in the H2, which

records the current size of every cluster. The count field has the same function as the

matrix N of CBS. When a pattern p is added into P, after checking the count fields of the

possible entries according to the pivot pairs of p, the smallest cluster, say Px, y, can be

found. Then, p is added into the cluster Px, y by following the steps of the table

construction mentioned previously. If no B1-gram of p belongs to F and p finds no

existing entry in the H2, then a random B1-gram of p, say g, is chosen and added into F

(H1(g) is modified accordingly), and a memory space is allocated for cluster set Pg in the

H2. A random pivot pair of p, say (g, h), is chosen and then p is added into the cluster Pg, h.

The shift fields of H1 and H2 may be modified because of the added p. Since the safety

shift strategy scans the patterns one by one to calculate the shift values, no modification to

the safety shift strategy is required for pattern addition. The added p can be recognized as

the last scanned pattern of the safety shift strategy. At most |p|-B1+1 fields of H1 and

|p|-B2+1 fields of H2 are modified for a pattern addition.

To delete a pattern p from P, first step is to find the pattern. When p is found, just link

p’s previous entry to p’s next entry by modified its next field in the H2, and delete p from

tables. Then, subtract the count field of the cluster that p belongs to. The shift fields are

not modified for pattern deletion. Because the shift values are universal minimum in the

safety shift strategy, they may not be optimum after pattern deletion. However, no error

Chapter 4

 82

will occur after pattern deletion, even while the shift fields are not modified.

Consequently, EHMA needs not recalculate the whole index tables as long as the pattern

database is changed. EHMA can refresh the index tables when the system is not busy.

4.8 Worst Case

If a given string T is formed badly that has to do the exact string comparisons the

most times, and no character of T can be skipped during the on-line matching process,

processing this bad-formed T is the worst case of EHMA. Assume the largest cluster size

is Lc. When every character T[t]∈F, H1(T[t]).shift = 0, and each corresponding indexed

cluster is the largest (|PT[t],T[t+1]| = Lc), T is a bad-formed string and this is the worst

scenario of EHMA. As for all T[t], T[t]∈F and H1(T[t]).shift = 0, the probability to fetch

the table H2 for the bad-formed T is one. Thus, the number of external memory accesses

per character in the worst case is

T

LBT
N cWST

RAM

×−
=

)(2
< Lc, (4-7)

where assume that fetching one pattern needs one memory access. Define the largest

pattern size in P as Lp. When every input character points to the largest cluster, in which

every pattern has the longest size, this bad-formed T requires the largest number of

comparisons. Hence, the number of character comparisons per input character is

pcp
WST
RAM

WST
CMP LLLNN ×<×= . (4-8)

Obviously, the worst-case performance depends on Lc. To derive Lc, assume there is

a largest cluster, say Px, y. Since Px, y is the largest cluster, assume that the cluster size is

always larger than one, and initially the probability that its cluster size increases from 0 to

1 is one.

Chapter 4

 83

As Px, y is the largest cluster, based on CBS, a given pattern p will not be clustered

into Px, y, unless all available pivot pairs of p are not in the set FFFF×Λ except (x, y). Since the

pattern database is usually predefined and static, assume the given patterns are uniformly

distributed. Therefore, the probability that |Px, y| increases from i to i+1 is

1

2

2

,

2

1
}1Pr{

−−

Λ

+Λ×−Λ
=+→=

Bp

yx

F
iiP . (4-9)

As in the worst-case scenario, every pattern has the longest size Lp, the equation is

rewritten

1

2

2

,

2

1
}1Pr{

−−

Λ

+Λ×−Λ
=+→=

BL

yx

p

F
iiP . (4-10)

Thereby, the probability that the cluster size of Px, y is maximum (Lc) is derived

)1)(1(

2

2

,

2

1
}Pr{

−−−

Λ

+Λ×−Λ
==

cp LBL

cyx

F
LP . (4-11)

When |P| is 1200 with |F| = 77, |Λ| = 256 and Lp = 128, the probability that Lc = 4 is

only 7× 10-79. When replacing Lp with the average pattern size, which is about eleven in

the Snort, then the probability that Lc = 4 is about 3.6× 10-6. The probability that Lc = 4 is

tiny, which infers that EHMA has a small Lc, and thus WST
RAMN and WST

CMPN are small.

Consequently, the worst-case performance of EHMA is moderate and acceptable because

Lc is much smaller than |P|.

Chapter 4

 84

4.9 Results

As the number of network security threats rises, the NIDS has become one of the

most important applications of packet inspection [20], [23]. Therefore, this study

demonstrates the feasibility of integrating the proposed EHMA with the promising NIDS.

This section presents the simulation results of EHMA deployed in the NIDS, compared

with the original hierarchical matching algorithm (HMA) [38], the

Boyer-Moore-Horspool algorithm (BMH) [21], the Wu-Manber algorithm (WM) [36], a

variant of the Wu-Manber algorithm using a grouped prefix hash (WM-PH) [27], and

the Aho-Corasick algorithm with memory compression (AC-C) [34]. In the simulations,

the assembly-like microprograms were emulated for EHMA, BMH, WM, WM-PH and

AC-C using RISC instructions of general network processors (such as ADD, XOR, MOV),

and the number of instructions and the number of memory accesses needed to process a

packet were calculated. To simplify the evaluation, the simulation assumed that one

microprocessor was employed.

4.9.1 Measurements

Define I as the average number of RISC instructions (including comparisons and

calculations), and L as the average number of local memory accesses (including reading

data from the cache to the registers for further processes), for each payload character in

the pattern matching. E represents the average number of external memory accesses per

input character, which includes loading the input packets, querying the entries of tables in

the external memory, and fetching the patterns. wI indicates the time needed by one

instruction or one local memory/register access, and wE indicates the time for one external

memory access. The following measurements are given: the average computation cycles

Chapter 4

 85

Table 10. The simulation parameters.
Items Value

Time of one RISC instruction or one local memory access (wI) 1 cycle
Latency for each external memory access (wE) 10, 100 cycles
Packet payload length for Model I 512 bytes
Number of patterns in P (|P|) 200, 400,…,5000
Simulation time for Model I 10 million packets

Table 11. The pattern size distribution of Snort rule set R1.
Pattern Size =1 ≤ 4 ≤ 8 ≤ 12 ≤ 16 >16
Ratio 0.028 0.245 0.482 0.653 0.813 0.187

Iψ = I × wI; the average memory latency Mψ = E× wE + L × wI; and the total average

matching time Ψ = Iψ + Mψ , which is regarded as the overall performance.

In the simulations, the skip table of BMH was assumed to be small enough to be

loaded into the cache memory, and therefore only one external memory access was

counted during the matching process of BMH for each pattern. One external memory

access was assumed for AC-C, although it typically needs two memory references to fetch

the transition matrices, and the fail table or the matched patterns. Table 10 lists the

simulation parameters.

4.9.2 Traffic Models

The simulations used two free and real pattern sets, R1 and R2, from Snort in Aug.

2004 and May 2008 respectively [1], although the pattern set can be self-defined or any

commercial pattern set. The number of distinct patterns is about 1250 in the R1, where the

average length of a pattern is about 11.2 bytes (the statistics of the pattern set listed in

Table 11); while the number of distinct patterns becomes up to about 5000 in the R2. Since

Snort patterns are written in mixed plain text and hex formatted bytecodes, the alphabet

Chapter 4

 86

size (|Λ|) was set to 256 in the simulations. In the simulation traffic models, Model I and

II use R1, and Model III uses R2 as the matching pattern sets.

Table 8 shows the relationships between the number of patterns |P| and the number

of frequent-common grams |F| of the EHMA, where the lengths of patterns are in the

range from 1–122, m = |pi|, and the patterns are randomly selected from R1. The results in

Table 8 reveal that the growth rate of |F| is much slower than that of |P|.

4.9.2.1 Model I

In the Model I, the synthetic malicious packets are generated by randomly choosing

patterns from the pattern set P and spreading over the packet payloads. The attack load λ

is defined to represent the expected number of malicious patterns existing in one packet.

For instance, if λ = 2, then each packet contains two harmful patterns on average. Except

for the injected patterns parameterized byλ , the background characters of a packet were

randomly drawn from Λ to imitate the normal packet content. Hence, the random

background may unconsciously contain patterns.

4.9.2.2 Model II

To evaluate the performance of algorithms in a real intense attack, a trace from the

Capture-the-Flag contest held at Defcon9 was adopted as the input traffic in the Model II.

The Defcon Capture-the-Flag contest is the largest security hacking game, in which

competitors try to break into the servers of others while protecting their own servers, each

hiding several security holes [14].

Chapter 4

 87

Table 12. The statistics of the traffic traces.
Statistics Model II Model III

Average Packet Size (Byte) 467.71 896.1
The Standard Deviation of the Size of each Packet (Byte) 651.06 690.99
Data Transmission Rate (Kbps) 254.13 280.03
Number of Packets per second 69.55 40
Packet Type: TCP (%) 48.48% 97.18%

UDP (%) 0.65% 2.56%
Others (%) 50.87% 0.26%

4.9.2.3 Model III

Model III uses a real 2-hour trace as the input traffic, and the more recent Snort rules

R2 as the pattern set |P|. This real trace recorded all IP packets in a laboratory of

Providence University for 2 hours. The laboratory has an FTP server, a web server, and

three PCs running several network application clients.

Table 12 lists the statistics of the traffic traces used in Model II and Model III,

where the values are measured by traffic analysis tools: tcpstat and tcptrace.

4.10 Memory Requirements

For fast lookup and matching, the lookup information and patterns are usually saved

in the memory using a tabular structure. Therefore, the memory requirements are

estimated according to the number of entries. Since all algorithms need to keep the pattern

content in the (external) memory, this section only discusses the extra memory

requirement for the tables of each algorithm. In the simulations, the numbers of characters

in the clustering pivots (B1 and B2) were both assumed to be 1. Because the H1 of EHMA

is a direct index table, the cache memory space (MI) of EHMA comprises |Λ| entries.

Based on GFGS and CBS, the number of entries in H2 is the total number of possible

clusters (plus a small memory pool). Since the domain of possible pivot pairs is F× Λ, the

Chapter 4

 88

Table 13. The memory requirements.
 EHMA HMA WM WM-PH AC-C BMH BMH-O

Cache Memory O(|Λ|) O(|Λ|) O(1) O(1) O(1) O(|Λ|) O(1)
External Memory O(|F|× |Λ|) O(|F|× |Λ|) O(|Λ|3) O(|Λ|3) O(S) O(|P|× |Λ|) O(|P|× |Λ|)

Table 14. A list of symbols.

Notation Meaning
pi A pattern with an identification number (ID) i
P Pattern set. P = {pi}
|P| The size of pattern set P
Λ Alphabet set
T Input string
ℑ Significant gram set
F Frequent-common gram set

B-gram A gram is defined as a group of characters, and B is the number of
characters in a gram.

B1 The size of a frequent-common gram
B2 The size of the second pivot in the H2 table
M The minimum pattern length of all patterns
W The size of sampling window
I The average number of RISC instructions per input character (including comparisons and

calculations)
L The average number of local memory accesses (including reading data from cache to

registers)
E The average number of external memory accesses for loading the packet, querying the

entries of tables in the external memory, and fetching the patterns
wI The time of one instruction or one local memory/register access
wE The time of one external memory access

Iψ The average computation cycles:
Iψ =I × wI

Mψ The average memory latency:
Mψ = E× wE + L× wI

Ψ Total average matching time: Ψ =
Iψ +

Mψ

external memory space for H2 (ME) of EHMA is O(|F|× |Λ|). HMA has the same memory

requirement as EHMA. The shift table of WM is also a direct hash table. The gram size of

WM (block size B) was 3 in the simulations, so the shift table of WM had |Λ|3 entries. The

grouped skip table of WM-PH used in the simulations was a direct prefix hash table with a

prefix length of three characters. Therefore, the skip table of WM-PH comprises |Λ|3

entries. Every pattern in the BMH has its own skip table of |Λ| entries, so that the table of

BMH has |P|× |Λ| entries. Because each skip table of BMH (for one pattern) is small

Chapter 4

 89

enough to be loaded into the local memory, for fairness, a cache memory space was

allocated to lower the number of external memory accesses. The BMH-O is the original

BMH with no local cache and assesses the latency penalty. Notably, WM-PH, AC-C and

BMH-O also require cache memory to store the skip value or one state during the

matching process. Table 13 lists the memory requirements of EHMA, HMA, WM,

WM-PH, BMH and AC-C. The scale relation of the parameters is |F| < | Λ| ≪≪≪≪ |P| < S ≪≪≪≪

|Λ|3.

In the simulations using Model I, when |P| is 1200, the H1 and H2 of EHMA needs

256 and 19712 entries respectively (about 768 bytes on-chip memory and 38.5KB

external memory, including the shared memory pool); HMA has the same number of

entries as EHMA, but needs smaller entry size as HMA has no shift field; the table of WM

needs more than 16M entries (16MB external memory, in the case without using an

additional prefix table); the table size of WM-PH is the same as that of WM; BMH and

BMH-O need more than 300K entries (300KB external memory); and AC-C needs 10731

states (461KB with each node of 44 bytes). The memory size of all algorithms listed

previously excludes pattern content. Obviously, the required memory space of EHMA is

quite small. Table 14 lists the symbols used in the Section 4.

4.11 Results and Discussion

The minimum pattern length of the feeding patterns in Figures 24–27 is only one

character, i.e., M = 1. Because the minimum pattern length of WM is restricted to be

larger than the gram size, in this case three characters, WM is not compared in these

figures. In Figures 24–27, the results labeling EHMA in the following simulations use the

Chapter 4

 90

1

10

100

1000

10000

100000

200 400 600 800 1000 1200

Number of Patterns

C
yc

le
 T

im
e

EHMA = 0

EHMA = 4

HMA = 0

HMA = 4

WM-PH = 0

WM-PH = 4

AC-C = 0

AC-C = 4

BMH = 0

BMH = 4

BMH-O = 0

BMH-O = 4

Figure 25. The average matching time (Ψ) versus the number of patterns (|P|), using Model I
with λ = 0 and λ = 4, where wE = 100.

sampling window with parameters W = m = |pi|, which means that each pattern is sampled

in its entirety.

Figure 25 compares the average matching time (Ψ) of EHMA, HMA, WM-PH,

AC-C, BMH and BMH-O using Model I with different attack loads λ = 0 and λ = 4

respectively. It also shows the impact of the number of patterns (|P|) on the matching time.

Simulation results reveal that EHMA outperforms HMA, WM-PH, AC-C, BMH and

BMH-O even when |P| andλ increase. EHMA has slightly higher growth rate than

WM-PH, because it has a much smaller table size. WM-PH gains performance by having

a large direct index table. Notably, the matching time of the original AC using basic

structure is independent from |P| and λ . The curves of AC-C increase with |P| and λ

owing to the popsum used in the AC-C algorithm. The increasing |P| makes the matching

time of BMH (BMH-O) rise steeply, because the BMH is originally a single-pattern

matching algorithm that simply executes iteratively for multi-pattern matching.

Chapter 4

 91

0

5000

10000

15000

20000

25000

EHMA HMA WM-PH AC-C BMH BMH-O

C
yc

le
 T

im
e

Memory Access Instrruction

0

20

40

60

80

100

(a) λ = 0 and |P| = 1200.

0

5000

10000

15000

20000

25000

EHMA HMA WM-PH AC-C BMH BMH-O

C
yc

le
 T

im
e

Memory Access Instrruction

0

20

40

60

80

100

120

(b) λ = 4.0 and |P| = 1200.

Figure 26. The proportion of
Iψ to Ψ and

Mψ to Ψ using Model I with |P | = 1200 and

wE = 100: (a) λ = 0 and (b) λ = 4.

The case λ = 0 means that the traffic has no malicious packets. In this case, the

proposed EHMA needs only 9.5–19.9 cycles per character on average, which is about 0.9,

3.3–5.3, 16.3–26.8, 40–117 and 408–1161 times less than the matching time of HMA,

WM-PH, AC-C, BMH and BMH-O, respectively, under various pattern set sizes. We can

say that EHMA is very appropriate for network equipment, because generally most

packets are innocent (0≈λ). The time available for the detection engine to process the

malicious packets rises as the innocent packets are processed more quickly.

When λ = 4, then the systems are under heavy attack, and the traffic contains many

monitored patterns. In this situation, the matching time of EHMA is about 0.89–0.94,

Chapter 4

 92

3.1–4.5, 14.1–24.9, 33.2–96.4 and 335–957 times less than that of HMA, WM-PH, AC-C,

BMH and BMH-O respectively. Additionally, the performance of EHMA is quite stable,

since Ψ rises only slightly as λ or |P| rises.

The processing time of the pattern matching includes the time necessary for

instructions (Iψ) and the time for memory accesses (Mψ). To investigate their impacts on

the algorithms, these two measurements are separated from overall matching costs since

different systems introduce different implementation overheads. Figure 26 displays the

proportion of Iψ to Ψ and Mψ to Ψ respectively, for all approaches using Model I

with |P| = 1200, where Figure 26 (a) shows the results underλ = 0, and Figure 26 (b)

shows the results underλ = 4. In Figure 26, the upper part of the bar is Iψ and the lower

part of the bar is Mψ . The results show that the Iψ of EHMA is close to HMA’s and

WM-PH’s, but Mψ of EHMA is much less than others. The proportion of Mψ to Ψ of

BMH seems smaller than others, because the whole skip table of a pattern is idealistically

assumed to be loaded within one external memory access and kept in the cache during the

matching process for each pattern. Because AC-C compresses the data structure of the

state machine, it requires more time to derive the next state pointer. Therefore, AC-C does

not have the smallest Iψ . Simulation results show that the Iψ does not significantly rise

with λ in any of the experiments, because each algorithm has already tried to reduce the

computation load (Iψ). However, Mψ dominates the overall matching cost. This reveals

that the number of external memory accesses is the bottleneck of almost all algorithms.

This result also reflects our opinion mentioned previously that the essential issue in

designing a high-speed detection engine is to reduce the number of required external

memory accesses.

Chapter 4

 93

0.01

0.1

1

10

100

1000

EHMA HMA WM-PH AC-C BMH BMH-O

A
ve

ra
g

e
N

um
be

r
o

f E
xt

er
na

l A
cc

es
se

s 200 patterns 1200 patterns

(a) λ = 0.

0.01

0.1

1

10

100

1000

EHMA HMA WM-PH AC-C BMH BMH-O

A
ve

ra
g

e
 N

u
m

b
e

r
o

f E
xt

e
rn

a
l A

cc
e

ss
e

s 200 patterns 1200 patterns

(b) λ = 4.

Figure 27. The comparisons of average number of external memory accesses (E) using
Model I with wE = 100: (a) λ = 0 and (b) λ = 4.

Figure 27 compares the average number of external memory accesses per character

(E) of the state-of-the-art pattern matching algorithms. The figure shows that the E of

EHMA is only 0.06–0.19, which is much smaller than others. In other words, EHMA can

successfully filter out about 94% payloads when |P| = 200, and 81% when |P| = 1200,

requiring no external memory accesses and string comparisons. The E of EHMA rises

only slightly with rising λ . The increasing rate of E is slightly higher in EHMA than in

WM-PH when |P| rises, because EMHA has much smaller table size than WM-PH. Since

BMH is based on the single-pattern-matching algorithm, its E is proportional to |P|.

Consequently, the hierarchical matching along with the safety shift strategy is highly

effective in reducing the memory latency.

Chapter 4

 94

1

10

100

1000

10000

100000

EHMA HMA WM-PH AC-C BMH BMH-O

C
yc

le
 T

im
e

200 patterns 1200 patterns

(a) wE = 100.

1

10

100

1000

10000

100000

EHMA HMA WM-PH AC-C BMH BMH-O

C
yc

le
 T

im
e

200 patterns 1200 patterns

(b) wE = 10.

Figure 28. The average matching time (Ψ) versus the number of patterns (|P|), using Model II:
(a) wE = 100 and (b) wE = 10.

Figure 28 and Figure 29 adopted the Model II as a real-life network environment

under intense attack to evaluate the performance of the state-of-the-art algorithms. Since

different implementation systems may have different external memory costs (wE), Figure

28 illustrates two results with wE = 100 and wE = 10 respectively. To lower the impact of

wE on an algorithm, a very small value of wE is adopted in Figure 28 (b). The results in

Figure 28 indicate that EHMA significantly outperforms others in both cases of small and

large pattern set size even in the intense attack. EHMA still performs better than others

even when the penalty on the external memory access (wE) is reduced (as shown in Figure

28 (b)). Comparing EHMA with HMA in the Figure 25 - Figure 28 reveals that the

Chapter 4

 95

proposed safety shift strategy significantly reduces the number of external memory

accesses and thus improves the matching performance.

The minimum length of Snort patterns is one character. However, some detection

systems, such as virus detection systems, have larger minimum pattern lengths. The

performance of matching algorithms with long minimum pattern lengths was examined

using Model II, including only the patterns with lengths greater than 10 (M = 10) from

Snort patterns, as drawn in Figure 29. Since the number of patterns whose length larger

than ten characters in R1 is around 500, Figure 29 shows the cases of |P| = 200 and |P| =

500, respectively. Figure 29 (a) shows the average processing time (Ψ);Figure 29 (b)

shows the memory requirement of the fast index/hash tables, excluding the memory for

pattern contents, and Figure 29 (c) compares the average number of external memory

accesses (E) of all algorithms. Since here M is larger than the gram size of WM, which is

three as mentioned before, the performance of WM is compared here. The result labeling

EHMA(W=5) is the case using EHMA algorithm with m = M = 10 and W = 5. Recall that

the sampling window of EHMA is entire pattern content, that is, m = M = |pi|. To observe

the performance of WM and WM-PH with smaller hash tables, Figure 29 also displays

two additional cases with block size of two characters, WM(B = 2) and WM-PH(B = 2).

Before discussing the simulation results of Figure 29, Table 15 presents the effect of

the size of sampling window (W) on the performance of EHMA in terms of the average

shift values of H1 and H2, the size of the set of frequent-common grams (|F|) derived from

GFGS, the average number of actual shifts and the average number of external memory

accesses, using the same traffic model as in the Figure 29.

Chapter 4

 96

Table 15. The impact of the size of sampling window (W) on the shift values of tables (H1.shift and
H2.shift), |F|, actual average shifts and E, using Model II.

|P| 200 500

 EHMA
EHMA
(W=7)

EHMA
(W=5)

EHMA
(W=3)

EHMA
EHMA
(W=7)

EHMA
(W=5)

EHMA
(W=3)

H1.shift 0.94 2.71 3.66 4.74 0.91 1.86 2.02 2.49
H2.shift 1.99 4.89 6.79 8.71 1.99 4.84 6.72 8.65

|F| 13 20 25 39 23 33 47 65
Average Shift 1.5 1.74 1.79 1.84 1.49 1.68 1.74 1.8

E 0.0377 0.0441 0.0431 0.0434 0.1243 0.16 0.1635 0.2512

Table 15 shows that the number of candidate common grams increases with

increasing W, resulting in smaller |F|. The average number of H1.shift and H2.shift

increases when W decreases. Since the traffic spectrum is not normally distributed, the

actual average number of shifts during matching process is not the same as the average of

H1.shift and H2.shift. However, the trend is the same. E is effected by both |F| and the

actual average shift.

Figure 29 (a) shows EHMA(W = 5) outperforms EHMA and others when |P| = 200;

while EHMA performs better than EHMA(W = 5) and others when |P| = 500. Therefore,

reducing |F| becomes more important than increasing the average number of shift values

when |P| is large. Since all algorithms need a copy of the pattern contents, Figure 29 (b)

only displays the extra memory requirement of every algorithm for the index/hash tables.

Figure 29 (b) shows that the required memory of EHMA is only slightly larger than that of

HMA but much smaller than that of others. The required memory of EHMA grows

moderately with |P|. The memory of EHMA(W = 5) is greater than that of EHMA due to

the larger |F|. As shown in Figure 29, EHMA is highly effective in reducing the required

external memory, providing efficient performance even in the virus-detection-like model.

Chapter 4

 97

0

500

1000

1500

2000

2500

3000

3500

4000

E
H

M
A

 (W
=

5
)

E
H

M
A

H
M

A

W
M

 (B
=

2
)

W
M

 (B
=

3
)

W
M

-P
H

 (B
=

2)

W
M

-P
H

 (B
=

3)

A
C

-C

B
M

H

B
M

H
-O

C
yc

le
 T

im
e

200 patterns 500 patterns

0

20

40

60

80

100

(a) Average matching time.

1

10

100

1000

10000

100000

E
H

M
A

 (W
=

5
)

E
H

M
A

H
M

A

W
M

 (B
=

2
)

W
M

 (B
=

3
)

W
M

-P
H

 (B
=

2
)

W
M

-P
H

 (B
=

3
)

A
C

-C

B
M

H

B
M

H
-O

M
e

m
o

ry
 S

iz
e

 (
K

B
)

200 patterns 500 patterns

(b) Memory Requirement.

0.01

0.1

1

10

100

E
H

M
A

 (W
=

5
)

E
H

M
A

H
M

A

W
M

 (B
=2

)

W
M

 (B
=3

)

W
M

-P
H

 (B
=

2
)

W
M

-P
H

 (B
=

3
)

A
C

-C

B
M

H

B
M

H
-OA

ve
ra

g
e

 N
u

m
b

e
r

o
f E

xt
e

rn
a

l A
cc

e
ss

e
s

200 patterns 500 patterns

(c) The average number of external memory accesses.

Figure 29. The costs versus the number of patterns (|P|), using Model II, wE = 100 and M = 10:
(a) Average matching time, (b) Extra memory requirement, and (c) The average number of
external memory accesses.

Chapter 4

 98

1

10

100

1000

10000

100000

EHMA HMA WM-PH AC-C BMH BMH-O

C
yc

le
 T

im
e

200 2500 5000

Figure 30. The average matching time (Ψ) versus the number of patterns (|P|), using Model III,
wE = 100.

Figure 30 uses Model III as real-life normal traffic to show the performance of the

algorithms. Meanwhile, to demonstrate the effect of the rising number of patterns on the

matching performance, a more recent Snort ruleset R2 of about 5000 patterns are used in

Model III. Figure 30 shows that EHMA performs better than others even when the patter

set is very large. The matching time of EHMA only moderately increases with the rising

|P|.

Chapter 5

 99

5 AC WITH MAGIC STRUCTURES (ACM)

To deal with the ever-increasing data volume over the network, many algorithms

have been proposed to improve the performance of variant network equipment. Usually,

the network equipment has to inspect all incoming packets and compares the packets with

pre-defined data to find a match or multiple matches. Tri- and automaton-based lookup

algorithms have been proposed and widely used in these network applications.

For example, many IP-lookup algorithms use multi-bit tries on longest prefix

matches to speed up searching time, such as Lulea algorithm [40] and Etherton algorithm

[41] which is now reaching wide deployment in routers. Aho-Corasick (AC) algorithm, an

automaton-based algorithm, is a fast multi-pattern matching algorithm [1]. AC algorithm

has the best worst-case computational time complexity, and thus it has been modified for

intrusion detection systems (IDSs) and network content searching engines [18], [34].

Additionally, deterministic finite automata (DFAs) and nondeterministic finite automata

(NFAs) are often employed in regular expression matching and deep packet inspection

[26], [42]. While tri- and automaton-based schemes are utilized in different applications,

they are very much analogs of one another in that both need similar data structures. To

implement these algorithms on real-life appliances, an efficient structure is the most

essential part to the performance of appliances. However, the existing algorithms usually

did not consider the implementation issues.

Furthermore, as many critical and personal data are accessible on the Internet, people

demand more secure networks and systems. Intrusion Detection Systems (IDSs) are one

Chapter 5

 100

of the most useful tools to identifying the malicious attempts and protecting the systems

without modifying the end-user software. Different from firewalls that only checks

specified fields of the packet headers, IDSs detect the malicious information in the

payloads. IDSs must be capable of real-time packet analyzing even when suffering

serious attacks; otherwise the protectorate will not be defended strictly. Many studies

recently have aimed for upgrading the performance and accuracy of IDSs.

As mentioned previously, the required memory capacity of the existing

multi-pattern matching algorithms for Snort’s database is usually larger than 300 KB. The

number of patterns is still growing. Therefore, an IDS requires a pattern detection engine

capable of in-depth packet inspection. Without exception, the most essential technology

of a detection engine is a powerful multi-pattern matching algorithm.

Many multi-pattern matching algorithms have been proposed, and most of them are

filter-based searching algorithms, such as BM-based algorithms, WM, WM-PH, and

BF-based algorithms. However, in these filter-based algorithms, if there is a match in the

pre-filters, the exact string matching (usually using sequential search) in the second stage

is also required. Furthermore, the performance of these algorithms decreases while the

number of patterns increases. Consequently, these algorithms have bad worst-case

performance.

Guaranteed performance is very important especially for the equipment in the core

and edge network. The Aho-Corasick algorithm (AC) had the best worst-case

computational time complexity, where the number of state transitions for each input

symbol is at most two [1], [19]. However, as for realistic implementations, the

performance of an algorithm is not only affected by the computation time, but also

Chapter 5

 101

strongly affected by the number of required memory references. The off-chip memory

reference costs about 80 ~ 200 clock cycles and the gap may keep increasing [19].

Because of requiring large memory space, the AC needs frequent off-chip memory

references and then results in poor performance. Tuck et al modified the AC with a

compressed data structure, which reduced the memory size, but also increased the

processing time [34].

Therefore, this study proposes a practical multiple-pattern matching algorithm that

has better worst-case performance as well as smaller required memory, called ACM. The

proposed ACM uses Magic Structures based on the property of Chinese Remainder

Theorem, and contributes modifications to the AC algorithm for fast in-depth packet

inspection.

5.1 Previous Works

5.1.1 The Aho-Corasick Algorithm (AC)

The Aho-Corasick algorithm (AC) provided the best worst-case computational time

complexity. AC is an automaton-based algorithm. There are three functions in the AC:

Goto(st, code), Fail(st) and Output(st), where st is the state identification and the code is a

scanned character. In other words, the Goto function is a state transition function, which is

constructed by a set of patterns (or keywords): P. The Goto function maps a pair (st, code)

into a state or a fail message. In the state machine, every prefix of the patterns is only

represented by one state. The Fail function points to a next state that is the longest suffix

of the current state. The Output function stores the matched patterns belonged to P

corresponding to the current state. These three functions are constructed off-line and will

be used in the in-line matching stage.

Chapter 5

 102

(a) Goto function.

(b) Fail and Output Function

Figure 31. The Aho-Corasick algorithm.

Figure 31 shows the Goto, Fail, and Output functions of the AC algorithm with a

pre-defined pattern set P = {she, he, his, hers}. In the matching stage, given an input T =

‘sihe’ for example, the matching procedure scans one character at a time and starts from

the rooted state of the automaton, say state 0. Since, Goto(0, s) = 1, the machine goes to

state 1 and read the next character ‘i’. Because ‘i’ is not an expected character in the state

1 (Goto(1, i) = fail), the Fail function is called and get Fail(1) = 0. Then the machine goes

to the state 0, and read the next character ‘h’. As Goto(0, h) = 4, and with the same steps as

before we get Goto(4, e) = 5, the state machine goes to state 5 and have a valid output

value: Output(5) = {he}. As a result, we can know that the input T contains one pattern

‘he’. This example illustrates how the AC matching algorithm works.

5.1.2 The Basic Implementation of the Aho-Corasick Algorithm

Tries and automata have the same architecture that a parent node has several paths to

its child nodes. In both tries and automata, since the next node only depends on the current

node and the current input while traversing the graph, we can simply consider only one set

Chapter 5

 103

Figure 32. A parent-child set.

at a time: one parent and all of its child nodes (Figure 32). Assume the input is drawn from

a set }2,..,2,1|{ n
i ia ==Λ , where 2n is the number of paths and n is the bit-width of the

input code (the stride size of tries and automata).

A simple data structure to implement tries and automata is to save all pointers of

child nodes in the parent node. When the branch size is four, it means every node in tries

and automata needs four pointers to indicate its four child nodes while using the simple

structure. The space complexity of the simple structure is O(2n). Since the paper [1]

mentioned that the Goto and Fail functions could be combined into one next function:

(,)st codeδ , the basic original data structure ACO is shown as follows.

struct ACO{
struct ACO *next_state[| Λ |];
struct Result *pattern_list;
};

The pointer next_state will indicate the address of the next state directly and the

pointer pattern_list is the memory block storing corresponding patterns of this state. Since

every next pointer is saved in a state, the address of the next state can be obtained directly

and only one memory reference is required per character.

Chapter 5

 104

However, in a system with 32-bit pointers and |Λ | = 256, the ACO structure requires

1028 bytes per state. For example, retrieving 1200 distinct patterns from the Snort rule

database, 10213 states are built in the AC algorithm, which means about 10 MB is

required for the state machine. Moreover, the size of the commercial on-chip memory

capacity to date is only several kilobytes in the microprocessors and Application Specific

Integrated Circuits (ASICs), and 128–512 KB in the general CPUs. Although a few

high-end ASICs providing large embedded memory are available, linking many memory

blocks degrades the chip performance and poses challenges to power consumption issues.

To build a full graph for a detection rule database usually requires large amounts of

memory. Hence external memory is required in this case. As mentioned previously, the

time to read data from external memory is very long and indeterminist. A compact and

efficient data structure is essential to tries and automata.

5.1.3 The AC Algorithm with Bitmap (ACB)

Tuck et al proposed a data structure with a bitmap for the AC algorithm, named ACB

in short, to compress the nodes in the state machine [34].

struct ACB {
bitmap next_flag[| Λ |];
struct ACB *fail_ptr;
struct ACB *next_start;
struct Result *pattern_list;
};

The state machine is still constructed based on the Goto and Fail functions of the AC

algorithm. The bitmap next_flag[a] indicates whether there is a valid forwarding path for

the given character a (in other words, Goto(st, a)≠fail). Thus, if Goto(st, a)≠fail, the

next_flag[a] will be set as one; otherwise, it means the next state will traverse along the

Chapter 5

 105

 Procedure ACB_Matching
 Input: A string: T, the starting pointer of the ACB state machine: State.
 Output: The matched pattern set T: PM.
1 Initialize: PM ← ∅ .
2 For each input character: InCode ← T[i] do
3 If State->next_flag[InCode] is set then
4 pop_count ← 0 and j ← 0;
5 While j<InCode do
6 pop_count ← pop_count+State->next_flag[j];
7 End
8 State ← State->next_start + pop_count*Sizeof(ACB);
9 PM ← PM ∪ Out(State->pattern_list);
10 Else
11 State ← State->fail_ptr;
12 End
13 Return;

Figure 33. The ACB_matching Procedure

Fail function, and the bitmap next_flag[a] will be set as zero. This structure can

successfully reduce the memory requirement to only 44 Bytes for each state (on a 32-bit

pointer system and |Λ | = 256).

However, there is only one pointer, next_state, to indicate the address of the first

valid next state. To obtain the address of a valid next state with a given character a, the

matching process has to scan every bits in the bitmap next_flag prior to a and accumulates

the number of valid prior bits. The accumulation routine is called “popcount”. The

matching procedure using the ACB structure is shown in Figure 33.

The accumulation routine in lines 5-8 of the ACB_matching procedure is very time

consuming. In the worst case, it costs |Λ | bit-access and |Λ | adds for each input character.

Tuck et al admitted that the popcount is very expensive for software implementation.

Although in the hardware implementation the popcount may have the opportunity to be

optimized, the complexity and cost are still high.

Chapter 5

 106

Therefore, an efficient function to calculate the address of the next node is required.

Consequently, this stidy will focus on providing an efficient data structure which has

compact memory without sacrificing processing time.

5.2 The ACM Algorithm

Taking the commercial hardware/software constraints into account, this study

proposes an efficient data structure, based on Chinese Remainder Theorem, named Magic

Structure. The Magic Structure is suitable for both tri- and automaton-based lookup

schemes. The Magic Structure needs only a small amount of memory and also reduces the

number of external memory accesses, when compared with conventional data structures.

Therefore, the performance of network equipment using the tri- and automaton-based

algorithms can be efficiently improved.

Generally most nodes of tries and automata have only a few valid child nodes. Hence,

allocating continuous memory only for the existing child nodes is much more efficient

than for all child nodes. Additionally, assume that we can find a simple magic function,

say ℜ , so that the corresponding child nodes can be found very fast according to the

inputs. As for the invalid input that does not have a valid path, a virtual node is assigned.

That is, the function ℜ of Figure 32 is

}0,2,0,1{},,,{ 4321 →ℜaaaa , (5-1)

where ai are the input codes and the identification of the virtual node is zero. Assume there

is a magic number χ and define the magic function ℜ as

,)(%: kaf ii =ℜ χ (5-2)

Chapter 5

 107

where f is a function that maps the code set Λ into a numerical set, n % m returns the

remainder when n is divided by m, and k is the index number of a child node (Ck). In other

words, ℜ acts as a path decoder that returns the correct next node for each input. Thus, if

we can prove that the magic number χ exists, we can obtain the ℜ .

5.2.1 Chinese Remainder Theorem

Because ℜ needs only one simple modulo operation, the path traversing process

will go fast. It is interesting that the famous Chinese Remainder Theorem (CRT) can be

applied here for this purpose [43]. The theorem is as follows:

Chinese Remainder Theorem (CRT). Let
1

k

i
i

M m
=

= ∏ , where mi are integers and

relatively prime; that is, gcd(mi, mj) = 1 for 1 ,i j k≤ ≤ , and i j≠ .2 Let x1, x2,..., xk be

integers. Consider the system of congruences:

1 1(mod)X x m≡

2 2(mod)X x m≡ (5-3)

...

2The gcd(a, b) means the greatest common divisor of a and b.

Chapter 5

 108

(mod)k kX x m≡ ,

where X and xi are said to be congruent modulo mi, 1 i k≤ ≤ . Then there exists exactly

one X and { }0,1,..., 1X M∈ − . ■

Therefore, if let the function f number the symbols by prime numbers, that means

{ }1 2 1 2, ,..., { , ,..., }f
k ka a a m m m→ , then by CRT we know the magic number χ exists. χ is

now the X in CRT. Since f is one-to-one mapping, a Prime table can be used to store the

prime number for each possible input symbol. The Prime table has at most |Λ | entries, and

so that it is very small and can be kept in the on-chip cache. Thus the prime number of an

input symbol can be obtained by a fast lookup. To obtain the magic number χ, the

following algorithm is applied.

Chinese Remainder Theorem Algorithm. Let zi = M/mi and yi = 1(mod)i iz m− for

each i = 1, 2,..., k, where 1
iz − means the multiplicative inverse of zi. (Note that 1

iz − exists

if gcd(zi, mi) = 1.) Then the solution to the congruence system of the Chinese Remainder

Theorem is

1
()mod

k

i i i
i

X x y z M
=

= ∑ . (5-4)

■

For example, assume the inputs {a1, a2, a3, a4} in Figure 32 maps to the relatively

prime set {2, 3, 5, 7}. We want to find a magic number χ that satisfies χ% 2 = 1, χ% 3 = 0,

χ % 5 = 2, and χ% 7 = 0. Then, we get χ= 147.

Chapter 5

 109

Figure 34. Magic structure.

5.2.2 The Magic Structure

Based on CRT, a Magic Structure (MS) is defined as shown in Figure 34, including a

pointer to the first child node of this set (Ptr) and a magic number χ in addition to the data

in a node. The address of the next node (next_ptr) for the input ai can be fast obtained by

≠×−+
=

=
,0)(% if,sizeof_MS)1)(%(

;0)(% if,Null
_

ii

i

afafPtr

af
ptrnext

χχ
χ

 (5-5)

where sizeof_MS is the size of the Magic Structure, which is the size of one pointer plus

χ2log in addition to the size of data in a node. The size of MS is much smaller than

that of the simple structure of 2n pointers.

Furthermore, MS has a special property: if a node has only one child, then the magic

number χ will be one. Observing most tri- and automaton-based algorithms, we find that

while approaching the leaf nodes, more and more nodes have only one child. Therefore, to

improve the performance, a simple check on χ is done before operating next_ptr. If χ=1,

next_ptr is Ptr. The next node can be obtained directly without computing.

Chapter 5

 110

Figure 35. The architecture of ACM state machine, where the number in the parentheses is the
magic number.

5.2.3 AC with Magic Structures

In this section, we will show a case of using AC algorithm with Magic Structures for

multi-pattern matching. Modifying the original Magic Structure and adding some

required fields, the data structure for AC, named ACM, is proposed as follows:

struct ACM{
bitmap next_flag[| Λ |];
struct ACM *fail_ptr;
struct ACM *next_start;
struct Result *pattern_list;
long_int MagicNum;
};

In the structure ACM, a bitmap next_flag is used for fast checking whether there is a

valid child. To reduce the size, only one pointer next_start pointing to the first valid child

state is stored in the data structure. The MagicNum stores the magic number χ. The ACM

state machine is organized based on the Goto and Fail functions of the AC algorithm.

Figure 35 illustrates the memory organization of the ACM state machine when using the

same example shown in Figure 31(a), and the prime numbers for possible input codes are

Chapter 5

 111

 Procedure ACM_Matching
 Input: A string: T, the starting pointer of the ACM state machine: State, and an array with

prime numbers: Prime.
 Output: The matched pattern set T: PM.
1 Initialize: PM ← ∅ .
2 For each input character: InCode ← T[i] do
3 If nextState->next_flag[InCode] is set then
4 If nextState->MagicNum = 0 then
5 nextState ←nextState->next_start;
6 Else
7 nextState ←nextState->next_start +

((nextState->MagicNum)%Prime[InCode])*Sizeof(ACM);
8 PM ← PM ∪ Out(nextState->pattern_list);
9 Else
10 nextState ←nextState->fail_ptr;
11 End
12 Return;

Figure 36. The matching procedure using the ACM structure.

also listed. Note that when there is no valid child for the leaf nodes, the magic numbers of

the leaf nodes are labeled NULL.

Note that since a bitmap next_flag is used for fast checking in ACM, the mapping

organization is slightly modified, and virtual node is not used. Thus the first valid child

node will have ℜ = 0. Using Figure 35 as an example, the MagicNum of the root state

(state 0) has to satisfy that {‘s’, ‘ h’}→{0, 1}, where the prime numbers for ‘s’ and ‘h’ are

11 and 3, respectively. This means MagicNum % 11 = 0, and MagicNum % 3 = 1. Then

the MagicNum is 22.

The matching procedure using the ACM structure is illustrated in Figure 36. In the

ACM matching, given an input symbol a for example, if next_flag[a] is not flagged, then

the machine traverses the pointer fail_ptr until a state has a flagged next_flag[a] or the

machine returns to the root state. If the machine traverses to the root state and the

next_flag[a] is not flagged, the machine will stop in the root state and read the next

Chapter 5

 112

symbol. Otherwise, while next_flag[a] is flagged, slightly modifies the Equ.(5-5), the

pointer to the next state is

nextState = next_start + ℜ × sizeof_ACM (5-6)

= next_start + (MagicNum % Prime[a]) × sizeof_ACM,

where sizeof_ACM is the structure size of ACM, ℜ is the offset to the first valid next

state (next_start), and Prime is a small on-cache table keeping the prime number for each

possible input character. Obviously, only three reads (next_start, MagicNum and

Prime[a]) and three operations are required for indicating the next state. According to

lines 7-10 of the ACM matching procedure in Figure 36, the worst case cost is three read

sand three operations. As the number of fail transitions is never more than the depth of a

state, the number of state transitions for each input symbol will be at most two.

Consequently, the cost of fail transition is small.

Due to the definitions of ℜ and CRT, ACM matching has a special property as

mentioned before: if there is only one child, MagicNum will be zero. Observing the ACM

state machine, we can find that approaching the leaf nodes, more and more states have

only one child state. Therefore, this heuristic can be used in the ACM matching to reduce

the computation. That is, if the next_flag[a] is set and the MagicNum in the current state is

zero, then there is only one child state and the pointer to the next state for the symbol a is

next_start. The forwarding path can be obtained directly without computing the ℜ .

The ACM structure needs only 52 bytes for each state when the size of magic

number is 8 bytes, which is much smaller than the ACO structure of 1028 bytes, and so

that it successfully reduces the memory requirement. Additionally, the state transition

time will be fast because of the simple path decoder ℜ and the magic number heuristic.

Chapter 5

 113

Figure 35 illustrates the ACM matching, and assumes that the input string is ‘ish’.

Scan the string from left to right, and start from the root state at 0x000. As the bitmap

next_flag[‘ i’] is not flagged, the machine stays in the state at 0x000. Reading the next

symbol ‘s’, the process finds that it is flagged, and then gets MagicNum = 22 in the state

0x000. As Prime[‘ s’] = 11 and the next_start of the state 0x000 is 0x040, the address of

the next state for ‘s’ can be calculated by 0x040+(22%11)×0x34 = 0x040, where the size

of ACM is 52 bytes (0x34). Then the machine goes to the state at 0x040 and checks the

bitmap for the next symbol ‘h’. Since the next_flag[‘ h’] is flagged and the MagicNum is

zero, ACM matching knows that it is the only child and the address of the next state is

0x0c0, which is read directly from the next_start of the state 0x040.

5.2.4 Implementation Issues

According to the magic number definition and the CRT theorem, it is noted that if

there are too many child states and the alphabet set is large, the magic number will be a

large number. In the hardware implementations, this is not a problem. Many papers have

proposed optimized hardware designs for high performance modular arithmetic with long

operands, which can archive one operation per clock cycle [44]. Therefore, the ACM

matching algorithm can be easily implemented in the hardware and gain high

performance.

However, in the software implementations, software has its limitation on the length

of an operand. Two mechanisms can be employed to overcome this: (a) use a bitmap

check before ℜ ; (b) if the magic number is still too large, then use running sums in

partial nodes. In the first method, the bit of a valid input is set; otherwise, it is not. Then

only the valid inputs have to find their next nodes. This is the method that used in the case

Chapter 5

 114

study: ACM matching. The invalid inputs pointing to the virtual node are not involved in

calculating the magic number. For example, in the Figure 32 only {a1, a3}→{1, 2} are

used in calculating χ and get χ =7, which becomes much smaller.

In the second method, the running sum scheme is employed instead of ℜ in partial

nodes. A union structure is used here and then eight running sums and the 64-bit magic

number share the same memory space. Fortunately, in the case of importing 1200 distinct

patterns from the Snort database, only 0.078% states of the state machine has to use the

running sum scheme. Another issue of implementing ACM on some general processors is

sometimes the expensive cost of modulo operations. This study will show the simulation

results later and illustrate that ACM outperforms ACB even when running on a general

processor without optimized modulo instruction.

5.3 Performance Analysis

Different algorithms use different ways to construct and traverse their graphs, but

while in searching processes, they all need to calculate the address of the next node, which

is a required cost. Based on the heuristic of the magic number and the magic structure,

the average time to calculate the address of the next node (average addressing time, Tnext)

is

Lnext TTTT +−+= ≠= 11)1(χχ αα , (5-7)

where α is the probability that a parent node has only one child node, 1=χT and 1≠χT are

the time spent on getting the address of the next node when χ =1 and χ ≠ 1 respectively,

and TL is the time of one lookup to check the magic number. When χ =1, it implies that

the current node has only one child node, and the address of the next node is Ptr. Thus,

Chapter 5

 115

1=χT = Tread, (5-8)

where Tread is the time of one read. If 1≠χ , the pointer of the next node is calculated by

Equ. (5-5). Hence,

readLmulsubadd TTTTTTT 3mod1 +++++=≠χ , (5-9)

where Tmod, Tadd and Tmul are the time of one modulo, add and multiply operation

respectively, and TL is the time of one lookup on the direct mapping table (f). It requires

three reads while reading operands from data structures or registers is considered. When

the structures can be kept on cache, Tread is very small. Assume that Tadd, Tsub, Tread, TL, and

Tmul each needs τ cycle time since the multiplication in Equ. (5-5) is a simple constant

multiplication, and Tmod needs τb cycles. b is very small because the optimizations for

modulo operations in hardware and software have been proposed in many articles [44].

By substituting Equ. (5-8) and Equ. (5-9) into Equ. (5-7), the average addressing time is

αττ)6()8(+−+= bbTnext . (5-10)

In the worst case, the addressing time is

τχ)8(}max{ 1 +=+= ≠ bTTT Lnext . (5-11)

As a bitmap is involved in MS, the average addressing time is

αβττββ)6())8(1(+−++=+= bbTTT Lnext
B

next , (5-12)

where β is the probability that the current code exists a path for a certain input. For a

sparse graph, α and β are very small. The addressing time of Tuck and Lulea

algorithms which used popcount to obtain the offset of a child node is

Lreadaddmul

k

i
readaddk

pop
next TTTTTTaT +++++= ∑

=1
)()(, (5-13)

Chapter 5

 116

Table 16. The memory size (in Bytes) of a node for path traversing using simple structure, Bitmap
structure, and MS plus bitmap.

2n Valid Children Simple Bitmap MS+bitmap
8 4 32 5 7
16 8 64 6 12.25
64 16 256 12 28.125
256 16 1024 36 56.875

where ak is the current input code. The worst case of pop
nextT is

τττ)42(422}max{ 1 +=+×= +nnpop
nextT , (5-14)

when the input code is n-bit coding. Compared Equ. (5-11) with Equ. (5-14), we can see

that MS outperforms BM structure, while n is usually larger than two and b is very small.

Notably, pop
nextT increases exponentially. Consequently, MS performs much better than

BM structure, especially for the algorithm that has a sparse graph or that uses larger

strides to reduce the searching depth.

5.4 Results and Discussions

Firstly, Table 16 lists the required memory of simple structure, bitmap structure (BM)

and MS plus bitmap for path traversing in a 32-bit addressing system. This shows only the

memory for node addressing, excluding the data for algorithms themselves. Recall that

the simple structure has to save all pointers to child nodes, and the bitmap structure uses

an n-bit bitmap and one pointer that indicates the starting address of the first child node.

Table 16 shows that MS needs only a small amount of memory. Although MS requires a

little larger memory than BM structure, it is still small enough to be stored in the cache

memory.

Chapter 5

 117

To show the performance of these structures on a real system, we implement an IDS

of 1200 rules using the AC algorithm with different data structures. In the following

simulations, with detachment we use the free and real pattern set released by Snort [1]

Since the patterns of Snort are written in mixed plain text and hex formatted bytecodes,

we assume that the alphabet size (|Λ |) is 256 in the simulations.

To evaluate the performance of algorithms in a real intense attack, we use a trace

from the Capture-the-Flag contest held at the Defcon9 as the input streams of the

programs. The Defcon Capture-the-Flag contest is the largest security hacking game,

which tries to break into the servers of others while protecting your own server hiding

several security holes [14]. In the simulations, we evaluate the performance by calculating

the number of instructions used in the algorithms and then multiplying the cost of each

instruction. The costs of the instructions refer to a real AMD processor [45], where the

number of instructions per clock for add, mov, mul, cmp, bt, and mod is 3, 3, 1, 3, 3, 1/71

respectively, and the operation cost of mod is high.

Let CM represent the total memory requirement and CT be the average execution time.

Figure 37 and Figure 38 show CM and CT for the ACM, ACB and ACO matching

respectively in the case of 200 patterns and 1200 patterns. Note that the CM of ACM

includes the memory requirement of the Prime table. We can see that the total memory

requirement of ACM is 519.2 KB in the case with a big pattern set |P| = 1200, which is

only 5.1% of the basic AC and a little (18%) more than that of ACB. Furthermore, the

memory size of ACM is still in the scale of the on-chip cache that general chipsets support.

Therefore, we can say that the ACM can be easily implemented in the hardware and

software, and can gain high performance due to no off-chip memory access.

Chapter 5

 118

519.1 438.8

10252.9

1912.4

81.997.2

1

10

100

1000

10000

100000

ACM ACB ACO

M
e

m
o

ry
 (K

B
)

1200 patterns 200 patterns

Figure 37. The total memory requirement for the ACM, ACB and ACO structures in the case of
1200 and 200 patterns respectively.

0

20

40

60

80

100

ACM ACB ACO ACO-100

T
im

e
(c

yc
le

s)

1200 patterns 200 patterns

Figure 38. The average execution time per symbol of ACM, ACB, and ACO matching in the case
of 1200 and 200 patterns respectively.

To date, the largest size of on-chip memory supported by the FPGAs is about 1 MB

and the size of L1 cache and L2 cache of general processors is only 128 KB ~ 2 MB [22].

Therefore, according to the memory requirement shown in Figure 37, the full state

machine of ACO can not be stored in the on-chip memory. The external memory

references are required in the ACO matching draws the average execution time per byte

of ACM, ACB and ACO matching respectively in the case of importing 200 and 1200

patterns. There are two cases for ACO matching: the result labeling ACO is not assessed

Chapter 5

 119

Table 17. The normalized cost of ACM, ACB and ACO in the case of 200 and 1200 patterns.

 C/CACM

(Num. of Patterns = 200)
C/CACM

(Num. of Patterns = 1200)
ACM 1 1
ACB 4.492 4.795
ACO 2.141 3.048

ACO-100 323.306 460.197

any latency penalty for the external memory references, and the other one labeling

ACO-100 needs 100 cycles for each external fetch.

Figure 38 shows that ACM performs about 4.67 times better than ACB in the case of

1200 patterns, and 4.34 times over ACB in the case of 200 patterns. Comparing ACM

with ACO and ACO-100, we can see that ACM outperforms ACO-100 and the external

memory references drastically affect the performance of ACO matching. Note that the

cost of modulo operation in the simulations is extremely higher than others. Even assessed

the penalty of high operation cost, ACM still outperforms ACB and is moderately slower

than ACO. If implemented in embedded systems or FPGAs, ACM will be more efficient.

As the required time and memory are usually trade-off, to compare the overall costs

of these three algorithms, we define an evaluation function C: C = CM × CT. The higher C

means the more cost is required in the implementations. The total cost for ACM, ACB and

ACO is labeled CACM, CACB, and CACO respectively.

For easy comparison, we show the normalized cost (=C/CACM) of each algorithm in

Table 17.

Table 17 demonstrates that the cost of ACM is smaller than others. Even requiring a

little more memory than ACB, ACM has better overall efficiency, which is about 3.4–3.7

times better than ACB. Although the theoretic execution time of ACO is shorter than that

Chapter 5

 120

of ACM, the overall cost of ACM is about 1.1–2 times smaller than ACO. For realistic

implementations, we can see that the overall cost of ACM is about 322–459 times better

than that of ACO-100. Therefore, we can say that ACM is a time- and memory-efficient

algorithm for IDSs, and the Magic Structure is efficient for the automaton-based

algorithms.

Chapter 6

 121

6 CONCLUSIONS AND FUTURE WORKS

The increasing variety of network applications and stakes held by various users are

creating a strong demand for fast in-depth packet inspection. The most important

component of in-depth packet inspection is an efficient multi-pattern matching algorithm.

This study has proposed three novel multi-pattern matching algorithms for network

content inspection: a hierarchical multi-pattern matching algorithm (HMA), an enhanced

hierarchical multi-pattern matching algorithm (EHMA), and an Aho-Corasick with

Magic Structures (ACM) algorithm. HMA and EHMA have better average-case

performance, while ACM has better worst-case performance than the state-of-the-art

algorithms. This study also has discussed and evaluated current multi-pattern matching

algorithms for NIDSs.

HMA applies the most frequent-common codes to quickly filter out innocent packets,

and to reduce memory accesses. The frequent-common codes are used to build small

hierarchical index tables for simple and fast checks. The hierarchical scheme improves

the matching performance significantly by reducing the average number of external

memory accesses to only 10%–37%. The required memory of HMA is only about 350 KB

including the 1200 patterns of Snort rules. Particularly, HMA use simple architecture and

functions, and it can be easily implemented in both software and hardware. Simulation

results have shown that HMA performs about 0.9–409 times better than others. HMA

significantly improves the best-case and average-case performance, and also provides

moderately worst-case performance of the multi-pattern matching. Moreover, an

incremental pattern update mechanism has also proposed for HMA.

Chapter 6

 122

Improving HMA, EHMA applies the frequent-common grams obtained by the

proposed GFGS to narrowing the searching scope and to quickly filtering out the innocent

packets. The matching process then focuses only on the most suspected packets. EHMA

concentrates the patterns into a small on-chip table, and performs simple and fast checks.

Additionally, EHMA uses the frequency-based bad gram heuristic to speed up the

scanning process. The hierarchical matching significantly reduces the average number of

external memory accesses to only 6%–19%, thus improving the matching performance.

The required memory of EHMA is only about 40KB in additional to the pattern contents

of Snort rules. Particularly, EHMA is very simple and can be easily implemented in both

software-based and hardware-based platforms. Simulation results have shown that

EHMA performs about 0.89–1161 times better than others. Even under real-life intense

attack, EHMA significantly outperforms others. EHMA also works well for the systems

with larger minimum pattern size, such as virus detection systems. Consequently, HMA

and EHMA facilitate the creation of efficient and cost-effective packet inspection

engines.

In this study, an efficient Magic Structure (MS) for multi-pattern matching

algorithms has been proposed in ACM, and the proposed algorithm ACM contributes

better worst-case performance of pattern detection for NIDSs. The MS is based on an idea

behind congruence systems, and uses a magic number derived from Chinese Remainder

Theorem. The analysis and simulation results have shown that ACM can efficiently

reduce the required amount of external memory access. ACM is an automaton-based

algorithm, and it features fast traversing between the nodes in the state machine.

Furthermore, ACM uses only simple instructions other than specific operations or

Chapter 6

 123

hardware. Therefore, ACM can be easily implemented in hardware and software. The

results have shown that ACM outperforms others. The overall cost of ACM is about

1.1–459 times better than the existing implementations. Consequently, ACM enables an

efficient IDS that can survive under heavy attacks.

As the proposed EHMA has nice average-case performance and the ACM has good

worst-case performance, combining this two algorithms for a powerful and adaptive

multi-pattern matching algorithm is worthy of further research in the future.

Furthermore, the proposed Magic Structures may be able to apply to different network

applications, such as tri-based algorithms and IP lookup algorithms. In this study, the

proposed three algorithms are applied to in-depth packet inspection in wired intrusion

detection systems. The multi-pattern matching algorithms can also be applied to other

research areas, such as wireless network security, searching engines, etc. Therefore,

extending the use of the proposed ideas is also a notable issue.

References

REFERENCES

[1] Snort, http://www.snort.org.

[2] Brian Caswell, Jay Beale, James C. Foster, and Jeremy Faircloth, "Snort 2.0 Intrusion

Detection," Syngress, Feb, 2003.

[3] CERT/CC. "The Nimda worm has the potential to affect both user workstations

(clients) running Windows 95, 98, ME, NT, or 2000 and servers running Windows NT

and 2000." CERT Advisory CA-2001-26, Sep. 2001.

[4] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos, "Generating

realistic workloads for network intrusion detection systems," ACM Workshop on Software

and Performance, pp. 207–215, 2004.

[5] Martin Roesch, "Snort – Lightweight Intrusion Detection for Networks," Proceedings

of the 13th Systems Administration Conference, pp. 229–238, 1999.

[6] Tomoaki Sato and Masa-aki Fukase, "Reconfigurable Hardware Implementation of

Host-based IDS," the 9th Asia-Pacific Conference on Communication, Vol. 2, pp.

849–853, Penang, Malaysia, Sept. 2003.

[7] Mike Fisk and George Varghese, “Fast Content-Based Packet Handling for Intrusion

Detection,” UCSD Technical Report CS2001-0670, May 2001.

[8] Alfred V. Aho and Margaret J. Corasick, "Efficient string matching: an aid to

bibliographic search," Communications of the ACM, Vol. 18, Np. 6, pp. 330–340, June

1975.

 125

[9] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, Larry Huston, and Uday Naik,

"Network Processor Perfromance Analysis Methodology," Intel Technology Journal, Vol.

6, Aug. 2002.

[10] Ricardo A. Baeza-Yates, "Improved String Search," Software – Proctice and

Experience, Vol. 19, No. 3, pp. 257–271, March 1989.

[11] Spyros Antonatos, Michalis Polychronakis, P. Akritidis, Kostas G. Anagnostakis,

Evangelos P. Markatos, "Piranha: Fast and memory-efficient Pattern Matching for

Intrusion Detection," Proceedings of the 20th IFIP International Information Security

Conference (SEC2005), pp. 393–408, May 2005.

[12] Gordon Brebner and Delon Levi, "Networking on Chip with Platform FPGAs,"

Proceedings of 2003 IEEE International Conference on Field-Programmable

Technology, pp. 13–20, Dec. 2003.

[13] Robert S. Boyer and Strother J. Moor, "A Fast String Searching Algorithm,"

Communications of the ACM, Vol. 20, No. 10, pp. 762–772, October 1977.

[14] Crispin Cowan, “Defcon Capture the Flag: Defending Vulnerable Code from Intense

Attack,” Proceedings of DARPA Information Survivability Conference and Exposition,

Washington DC, vol.2, pp. 71–72, April 2003.

[15] C. Jason Coit, Stuart Staniford, and Joseph McAlerney, "Towards Faster String

Matching for Intrusion Detection or Exceeding the Speed of Snort," Proceedings of the

2nd DARPA Information Survivability Conference and Exposition, vol.1, pp. 367–371,

2001.

 126

[16] Thomas H. Cormen, Dartmouth College, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein, "Introduction to Algorithms - 2nd Edition," MIT Press and

McGraw-Hill, Sep. 2001.

[17] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, John lockwood,

"Deep Packet Inspection using Parallel Bloom Filters," 11th Symposium on High

Performance Interconnects, pp. 44–51, August 2003.

[18] Sarang Dharmapurikar and John Lockwood, "Fast and Scalable Pattern Matching for

Network Intrusion Detection Systems," IEEE Journal on Selected Area in

Communications, Vol. 24, No. 10, pp. 1781–1792, Oct. 2006.

[19] Ozgun Erdogan and Pei Cao, "Hash-AV: Fast Virus Signature Scanning by

Cache-Resident Filters," Proceedings of IEEE Global Telecommunications Conference,

Vol. 3, St. Louis, MO, Nov. 28, 2005.

[20] Mark Handley, Vern Paxson and Christian Kreibich, "Network Intrusion Detection:

Evasion, Traffic Normalization, and End-to-End Protocol Semantics," Proceedings of the

9th USENIX Security Symposium, 2000.

[21] R. Nigel Horspool, "Practical Fast Searching in Strings," Sofetware Practice and

Experience, Col. 10, No. 6, pp. 501–506, 1980.

[22] Intel Network Processors,

http://www.intel.com/design/network/products/npfamily/index.htm

[23] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer,

"Stateful Intrusion Detection for High-Speed Networks," Proceedings of IEEE

Symposium on Security and Privacy, pp. 285, May 2002.

 127

[24] Sun Kim and Yanggon Kim, "A Fast Multiple String-Pattern Matching Algorithm,"

17th AoM/IAoM Interantional Conference on Computer Science, San Diego, CA, August,

1999.

[25] Vasilios Katos, "Network Intrusion Detection: Evaluating Clusterm Discriminant,

and Logit Analysis," Information Sciences 177, pp.3060-3073, 2007.

[26] Hongbin Lu, Kai Zheng, Bin Liu, Xin Zhang, and Yunhao Liu, "A Memory-Efficient

Parallel String Matching Architceture for High-Speed Intrusion Detection," IEEE Journal

on Selected Area in Communications, Vol. 24, No. 10, pp. 1793–1804, Oct. 2006.

[27] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen and Chia-Nan Kao, "A Fast String

Matching Algorithm for Network Processor-Based Intrusion Detection System," ACM

Transactions in Embedded Computing Systems,Vol.3, Issue 3., pp. 614–633, Aug. 2004.

[28] Shaomeng Li, Jim Torresen, and Oddvar Soraasen, "Exploiting Reconfigurable

Hardware for Network Security," Proceedings of the 11th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines, pp. 292, 2003.

[29] Evangelos P. Markatos, Spyros Antonatos, Michalis Polychronakis and Kostas

Anagnostakis, "Exclusion-based Signature Matching for Intrusion Detection,"

Proceedings of IASTED International Conference on Communications and Computer

Networks (CCN 2002), pp. 146–152, October 2002.

[30] Vern Paxson, "Bro: A System for Detecting Network Intruders in Real-Time,"

Computer Networks, Vol. 31, No. 23-24, pp. 2435–2463, 1999.

[31] Graham A. Stephen, "String Matching Algorithms," World Scientific (ISBN

981-02-1829-X), 1994.

 128

[32] Taeshik Shon and Jongsub Moon, "A Hybrid Machine Learning Approach to

Network Anomaly Detection," Information Sciences 177, pp. 3799–3821, 2007.

[33] Tzu-Fang Sheu, Nen-Fu Huang, Hung-Shen Wu, Ming-Chang Shih, and

Yuang-Fang Huang, "On the Design of Network-Processor-Based Gigabit

Multiple-Service Switch," Proceedings of IEEE ITRE 2005, Hsinchu, Taiwan, 2005.

[34] Nathan Tuck, Timothy Sherwood, Brad Calder, George Varghese, "Deterministic

Memory –Efficient String Matching Algorithms for Intrusion Detection," Proceedings of

the IEEE Infocom Conference, Vol. 4, pp. 2628–2639, Hong Kong, March 2004.

[35] Vitesse Network Processors, http://www.vitesse.com

[36] Sun Wu and Udi Manber, "A Fast Algorithm for Multi-Pattern Searching," Tech.

Rep. TR94-17, Department of Computer Science, University of Arizona, May 1994.

[37] Zhenwei Yu, Jeffrey J. P. Tsai and Thomass Weigert, "An Automatically Tuning

Intrusion Detection System," IEEE Transactions on Systems, Man and Cybernetics – Part

B: Cybernetics, Vol. 37, No. 2, pp. 373–384, April 2007.

[38] Tzu-Fang Sheu, Nen-Fu Huang and Hsiao-Ping Lee, “ A Novel Hierarchical

Matching Algorithm for Intrusion Detection Systems,” Proceedings of IEEE Global

Telecommunications Conference (Globecom), St. Louis, Nov. 2005.

[39] Yuke Wang, “New Chinese Remainder Theorems,” Conference Record of the

Thirty-Second Asilomar Conference on Signals, Systems & Computers. Vol. 1, pp.

165-171, Nov. 1998.

[40] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink, “Small

forwarding tables for fast routing lookups,” In Proceedings of SIGCOMM, pages 3–14,

1997.

 129

[41] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap: Hardware/software IP

lookups with incremental updates,” ACM SIGCOMM Computer Communications Review,

34(2), 2004.

[42] Reetinder Sidhu and Viktor K. Prasanna, "Fast Regular Expression Matching using

FPGAs,” IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM01), April 2001.

[43] Yuke Wang, “New Chinese Remainder Theorems,” Thirty-Second Asilomar

Conference on Signals, Systems & Computers. Vol. 1, pp. 165-171, Nov. 1998.

[44] Saman Amarasinghe, Walter Lee, Ben Greenwald, ”Strength Reduction of Integer

Division and Modulo Operations,” M.I.T., 1999. http://www.cag.lcs.mit.edu/raw

[45] Torbjorn Granlund. Instruction Latencies and Throughput for AMD and Intel x86

processors. http://swox.com/doc/x86-timing.pdf. Sep. 2005.

TZU-FANG SHEU’S PUBLICATION L ISTS

(A) Journal Papers

[1] Tzu-Fang Sheu, Nen-Fu Huang, and Hsiao-Ping Lee, “In-depth Packet Inspection

Using a Hierarchical Pattern Matching Algorithm,” IEEE Transactions on

Dependable and Secure Computing, 2008. (to appear) (EI , SCI (2006 IF=1.762),

8/82 in subject categories COMPUTER SCIENCE, SOFTWARE ENGINEERING)

[2] Hsiao-Ping Lee, Tzu-Fang Sheu, Yin-Te Tsai and Chuan-Yi Tang, "Finding

Homologous Sequences in Genomic Databases," Journal of Computers- Special

issue on Bioinformatics and Computational Biology, Vol. 18, No. 3, October 2007.

[3] Tzu-Fang Sheu, Nen-Fu Huang, and Hsiao-Ping Lee, “A Hierarchical

Multi-pattern Matching Algorithm for Network Content Inspection,” Information

Sciences, Mar. 2008. (EI , SCI (2007 IF=2.147), 10/92 in the subject categories

COMPUTER SCIENCE, INFORMATION SYSTEMS)

[4] Shiann-Tsong Sheu and Tzu-Fang Sheu, “A bandwidth

allocation/sharing/extension protocol for multimedia over IEEE 802.11 ad hoc

wireless LANs,” IEEE Journal on Selected Areas in Communications (JSAC), Oct.

2001, pp. 2065–2080 vol.10. (NSC89-2218-E-032-012) (EI, SCI)

 (B) Refereed Conference Papers

[5] Tzu-Fang Sheu, Nen-Fu Huang, and Hsiao-Ping Lee, “A Time and Memory

Efficient String Matching Algorithm for Intrusion Detection Systems,” Proceedings

of IEEE Global Telecommunications Conference (GLOBECOM’06), San Francisco,

USA, November 2006, pp. 1-5. (NSC-94-2752-E-007-002-PAE and

NSC-94-2213-E007-021) (EI)

[6] Tzu-Fang Sheu, Nen-Fu Huang, and Hsiao-Ping Lee, “A Novel Hierarchical

Matching Algorithm for Intrusion Detection Systems,” Proceedings of IEEE Global

Telecommunications Conference (GLOBECOM’05), St. Louis, Missouri, USA,

November 2005, Vol. 3, pp. 5-10. (NSC-94-2752-E-007-002-PAE) (EI)

[7] Tzu-Fang Sheu, Nen-Fu Huang, Hung-Shen Wu, Ming-Chang Shih, and

Yuang-Fang Huang, “On the Design of Network-Processor-Based Gigabit

Multiple-Service Switch,” Proceedings of 3rd International Conference on

Information Technology (ITRE 2005), Hsin-Chu, Taiwan, June 2005.

(NSC-94-2752-E-007-002-PAE) (EI)

[8] Hsiao-Ping Lee, Tzu-Fang Sheu, Yin-Te Tsai, Chin-Hua Shih and Chuan-Yi Tang.

“Efficient Discovery of Unique Signatures on Whole-genome EST Databases,”

Proceedings of the 20th ACM Symposium on Applied Computing (SAC 2005), pp.

100-104. (EI)

[9] Hsiao-Ping Lee, Yin-Te Tsai, Chuan-Yi Tang, Ching-Hua Shih and Tzu-Fang Sheu,

"A Seriate Coverage Filtration Approach for Homology Search," Proceedings of the

19th ACM Symposium on Applied Computing (SAC 2004), pp. 180-184. (EI)

[10] Hsiao-Ping Lee, Tzu-Fang Sheu, Yin-Te Tsai, Chin-Hua Shih and Chuan-Yi Tang,

"An Efficient Algorithm for Unique Signature Discovery on Whole-Genome EST

Databases," Proceedings of the 3rd IEEE Computational Systems Bioinformatics

Conference (CSB2004), pp. 650-651. (EI) (ISBN13: 9780769521947)

[11] Hsiao-Ping Lee, Yin-Te Tsai, Ching-Hua Shih, Tzu-Fang Sheu and Chuan-Yi Tang,

'An IDC-based Algorithm for Efficient Homology Filtration with Guaranteed

Seriate Coverage.' Proceedings of the IEEE Fourth Symposium on Bioinformatics

and Bioengineering (BIBE2004), page 395-402, 2004. (EI)

(ISBN13:9780769521732)

[12] Hsiao-Ping Lee, Yin-Te Tsai, Ching-Hua Shih, Tzu-Fang Sheu and Chuan-Yi Tang,

'A Novel Approach for Efficient Query of Single Nucleotide Variation in DNA

Databases.' The Eighth Annual International Conference on Research in

Computational Molecular Biology (RECOMB 2004), Poster, San Diego, March,

2004. (EI)

[13] Nen-Fu Huang, Han-Chieh Chao, Reen-Cheng Wang, Whai-En Chen, and

Tzu-Fang Sheu, “The IPv6 deployment and projects in Taiwan,” 2003 IEEE

Symposium on Applications and the Internet Workshops (SAINT'03 Workshops), Jan

2003, pp. 157–160. (NSC-90-2219-E-007-001 and MOE 89-E-FA04-1-4)

[14] Shiann-Tsong Sheu, Tzu-Fang Sheu, Chih-Chiang Wu, and Jiau-Yu Luo, “Design

and implementation of a reservation-based MAC protocol for voice/data over IEEE

802.11 ad-hoc wireless networks,” Proceedings of the IEEE International

Conference on Communications (ICC), June 2001, pp. 1935–1939, vol.6. (ISSN

05361486) (EI)

[15] Shiann-Tsong Sheu and Tzu-Fang Sheu, “DBASE: a distributed bandwidth

allocation/sharing/extension protocol for multimedia over IEEE 802.11 ad hoc

wireless LAN,” IEEE Proceedings of Twentieth Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), April 2001, pp.

1558–1567 vol.3. (ISSN 0743166X) (EI)

[16] Shiann-Tsong Sheu and Tzu-Fang Sheu, “A hybrid data/header interleaving

strategy for wireless ATM networks,” IEEE 1999 2nd International Conference on

ATM (ICATM '99), June 1999, pp. 1-6.

