CHAPTER 2

A NOVEL TORQUE CONTROL STRATEGY
FOR IPMSM DRIVES

2.1 Introduction

Due to the merits of being able to achieve higher efficiency, higher power density, higher
torque to inertia ratio and free from maintenance, permanent magnet synchronous motors
(PMSM) are now receiving growing research interests in many industrial drive applications
such as in air conditioner drives [1, 2], hybrid and fuel cell vehicle drives [3] as well as
traction and machine tool spindle drives [5]. In particular, if the permanent magnets are
buried inside the rotor core, the resulting PMSM, called interior permanent magnet
synchronous motor (IPMSM), has a mechanically robust rotor structure that is very suitable
for high speed operation. Moreover, due to the' difference between the d- and g-axis
inductances, the IPMSM possesses an e€xtra torque component, namely the reluctance torque,
as compared with that of a surface mounted PMSM.

Basically, there are two types of torque controller for IPMSM in existing literature. The
first type [e.g. 8-10], can be classified as a linear torque controller that keeps zero d-axis

stator current (i, ) such that the resulting electromagnetic torque is proportional to the g-axis
stator current (i,, ). This will, of course, make the controller design much easier. However,

the reluctance torque of the IPMSM is not fully exploited. The second class, namely

nonlinear torque controller where the resulting torque contains a nonlinear term i, i,

however, takes advantage of the reluctance torque. For example, this class includes the unity

power factor control [11], constant stator flux linkage control [11], maximum torque per
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ampere (MTPA) control [12-16], and maximum efficiency control [17, 18]. In view of the
above classification, the question is that whether it is possible to have a linear torque
controller that can also fully exploit the reluctance torque to achieve higher output power
capability. The answer of this question is yes and is, in fact, the main contribution of this
chapter.

The rest of this chapter may be outlined as follows. In section 2.2, the mathematical
model of the IPMSM is first reviewed briefly. Then, the torque constant of the proposed
torque control strategy is optimized in Section 2.3. An implementation example of the
proposed torque controller is then presented in Section 2.4. Also, some experimental results

are given for illustrating the feasibility of the proposed torque control strategy.

2.2 Mathematical Model of an IPMSM

For convenience, the dynamic model of an IPMSM in the rotor reference frame will be

repeated [64] as follows

v, = Rg i, +% WL, i, (2.1)
dA
v, =Rgi, + dj‘ tw Ly, +A) (2.2)
A= Lyi A, (2.3)
A= L g (2.4)
1=22 @, 40 L)i, i, (2.5)
22
where
Vue» Vs - Stator d-axis and g-axis voltages

Iy » I, - stator d-axis and g-axis currents

R : stator winding resistance
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Ly, L, : stator d-axis and g-axis inductances

Ay A, o stator d-axis and g-axis flux linkages

A

. . rotor permanent magnet flux linkage
w, : electrical angular frequency

p : number of poles
T : generated torque of an IPMSM

[

The corresponding d- and g-axis dynamic equivalent circuits of an [IPMSM in the rotor

reference frame are given in Fig. 2.1. Since under steady state, A, and A ; become constants

and equations (2.1) and (2.2) reduce to the following form

vds‘ = RS lds _a?qu iqs (26)
vqs = RS iqs + (L; (Ld lds + Amf) (27)

From (2.5) one can see that when i, is.equalto zero, then

3p
=== )\m i 2.8
22 f %gs ( )
It is seen from (2.8) that the resulting, forque is proportional to i . Hence, it is quite

straightforward to implement a vector controller [8-10] to achieve high performance.
However, in case i,, is not equal to zero, then from (2.5) one can see that 7, will contain a

nonlinear term, namely iy i . Thus, the questionis “Does a linear torque control (LTC)

RS RS
+—="V\V +— " VV
lds l(]S
v Lg B Vi Lg
wL.i L :
roaes d @, (Lyiy +Ay)
E &) - ()
N\ NS

Fig. 2.1. The d- and g-axis dynamic equivalent circuits of an IPMSM in the rotor reference

frame.
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strategy with i, #0 exist?” Intuitively, one may pose the following form for the above

problem:
T, = C sgn(i,)|i, (2.9)
where
Z; é ids +j iqs
2.10
zg(ias +a ibS +a2 iCS) ( )
3
AENRIH @2.11)
q 2 pim

sgn(i,, ) means the sign of i, and C is a positive constant. From (2.9) one can see that if
iy, =0 then it just reduces to the familiar linear form of 7, =Ci,; . Also, inclusion of sgn(i )

in (2.9) is to take care of the deceleration case with negative torque.

2.3 Optimization of the Torque Constant

Suppose that the linear torque control relation of (2.9) does exist. Then, it is naturally

desired to maximize the torque constant. First, define the following constant

ma_< (2.12)
3p
77Amf
22
It follows from (2.5) and (2.9) that
L),
(2.13)

Aut
m= i‘;
0.5
(1+ l.%)
qs
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To fully exploit the reluctance torque, the stator d-axis current (i, ) should be less than or

equal to zero. It follows from (2.13) and the fact of L, =L, <0 for IPMSM that m is greater

than zero. Hence, one may maximize m” as well to achieve the optimal C value. Hence,

from (2.13) one has

2 2
am _ 2lds lqs

o igzconst. (32 4 2232
alqs igs =cons (st +qu)

2(Ld 'Lq )ids + (Ld 'Lq )2 .2 O

+ 2.14
" B 19

11

From (2.14) one can see that in case i;, =0, then (2.14) also becomes zero and m =1. On the
other hand, when i, <0 then (2.14) is always positive as far as the IPMSM characteristic is
concerned. This fact indicates that, for each i,,, m’ is a monotonically increasing function
with respect to i, . Thus, existence of the proposition of the linear form of (2.9) can now be
guaranteed by the following condition:

m* =1 (2.15)
or equivalently

iy HLy-L,)? iy, = ALHS =24 (L~ (2.16)

qs

Since as far as a practical IPMSM is concerned,
(Ly-L,) 2 =A%, <0, 2.17)

it follows from (2.16) that

.2
> _2/\ mf (Ld -Lq )lqs

i, = : (2.18)
‘ (Ld -Lq)z I;S _)\sz

In view of the above results, one can observe that it is indeed possible to get a linear torque

control relation as (2.9) where
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2o mt (2.19)
is obtained for m=1 and
-2A _(L,-L )i
— mf( d q)lqs (220)

i =
CLL) i A
In other words, so long as (2.19) and (2.20) are satisfied, then the resulting torque 7, will be

proportional to the magnitude of the stator line current whenever inequality (2.18) and
i, <0 are satisfied. Thus, not only the existence condition of the previously posed question
is obtained but also the closed form relation between i, and i is achieved. For practical
inverter-fed drives, there also exist output voltage and output current constraints. Assume
that the maximum phase voltage magnitude and line current magnitude are V_ and I
respectively. Then the feasible range of i, for (2.20) can be decided by considering the
following constraints

i, i, <T3, 2.21)

vy, v SV (2.22)

Thus, the boundary of the linear torque region, namely i,, can be determined by substituting

i = JI2, =i~ into (2.20) yielding

(Ld _Lq )2 ljvm + 2)\mf (Ld -Lq) lazhm +
(2.23)
[Anzqf - (Ld 'Lq)z Iszm] Lo _2/\mf (Ld 'Lq )Iszm =

Meanwhile the maximum angular speed, namely @, , to maintain the maximum torque

rm

(N [so]

A, I can be calculated from the following equation

mf “sm

Q
3
N | W
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stn = (Rsidsm _o"rquiqsm )2 + @siqsm + a‘a‘m (Ldidsm + )}nf )Ez (224)

where equations (2.6) and (2.7) have been applied in the derivation of (2.24) and

. - ’ 2 _ 2
lqsm - Ism ldsm .

In order to facilitate understanding the significance of the proposed torque control
strategy, three sets of IPMSM drive parameters from [13, 51, and 65] are selected as
examples. Table 2.1 shows the corresponding parameter values of these IPMSMs. For later
experiment, parameters of motor D that was designed in [67] are also listed on the same table.
Fig. 2.2 shows the corresponding maximum torque-speed characteristics for the three motors.
For comparison, Table 2.2 also summarizes some important data for three motor drives of
Table 2.1. From Fig. 2.2 one can see that for A motor, the constant torque region can be

extended to 197 % of that of i, =0 controlstrategy. Similarly, for motors B and C, one can

increase the constant torque region up to 167 % and 142 % as compared with that of the

i,, =0 control strategy.

Table 2.1. IPMSM parameters and some inverter ratings.

IPMSM

parameters Afref.13] |B[ref.51] | C[ref.65] D
number of poles 4 4 4 6
armature resistance(Q) |0.57 4.30 1.93 0.15
d-axis inductance (mH) |8.72 27.00 42.44 0.488
g-axis inductance (mH) |22.8 67.0 79.57 1.01
magnetic flux linkage 0.0882 0.272 0.314 0.042
(V/(rad/sec))
maximum phase 41 173 170 50
voltage magnitude (V)
maximum phase 7.07 6.0 4.24 25.0
current magnitude (A)
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Fig. 2.2. The maximum torque limit to speed profiles for i, =0 control and the proposed

LTC for three different IPMSMs.

Table 2.2. Summary of some important data for three motor drives of Table 2.1.

IPMSM Alref. 13] Bref. 51] C[ref. 65]
variables idsm Tem W —wr ud (1) iclsm Tem @,, —a)”” (1) idsm Tem @, w, m (1 )
control (A) | (Nm) [rpm)| @, (2) [(A)  [(Nm) |(rpm)| @, (2) | (A) | (Nm) |(rpm) |, (2)

strategies

tLh;é’“’p"sed (1) |-6.08 |1.87 | 1978 197% |-4.86 |4.88 |2581|167% [-2.79 |3.98 |2417|142%

i,=0
S
control

2 10 1.87 |1006 0 4.88 |1548 0 3.98 [1702
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Furthermore, consider Fig. 2.2(a) as an illustration of the merit of using the proposed
torque control strategy. In case the IPMSM is running at 1978 rpm, one can see that the
maximum torque (1.87 Nm) can still be obtained. However, if the control strategy of i, =0
is adopted, then the corresponding available torque is only 0.4 Nm approximately. In other
words, the proposed torque control strategy can provide more output power and better

performance at higher speed range as compared with that of i, =0 control. Finally, it should

be mentioned that if w, > w

rm

then the motor torque will be reduced also for the proposed

strategy. Therefore, the corresponding field weakening control will be presented in the next

chapter.

2.4 Implementation of the Proposed Linear Torque Control Strategy

In order to check the validity of:the proposed torque control strategy, a prototype is
constructed for experiment. The tested IPMSM, a prototype designed in [67], has the
parameters of motor D as shown in Table2:1.-Fig:2.3 also shows the characteristic curve of

the proposed torque control strategy on the i, -i, plane. The current limit trajectory as well

as two voltage limit trajectories, corresponding to w, =3500 rpm and 3050 rpm, respectively

are also imposed on the same figure for reference. From Fig. 2.3 one can see that the constant

torque operation region is bounded by —12.4(A)=1i,, <i, <0. Also, the corresponding

maximum speed (w,, ) for constant torque control is equal to 3500 rpm approximately. In

-
ls

order to simplify the calculations of finding i, and i; for a given line current magnitude

2

7' -it7 into (2.20) to get

s

one can substitute i, =

19



30

current limit : : . voltage limit
25 L - - - ‘ ‘

iy, (A)

S oo
1,=0 control
trajectory \
0 voltage limity, 7
\ at 3500 rpm ¢

trajectory |

-1 ‘O 0
i, =-12.4(A) 13 (A)

30

Fig. 2.3. Trajectories of the proposed LTC and i, =0 control as well as the voltage and

current limits on #, -7, plane for the tested [IPMSM.

(Ld -Lq )2 i253 + 2Amf (Ld -Lq) i;sz +

(2.25)
2 L2
[)\rif _(Ld -Lq)z is ] lds _2Amf (Ld -Lq) lS =0
and substitute i, = —[f’[ —i;z into'(2.20) to obtain
6 Zxf2 4
(Lo-Ly)' i+ BAL (L) =L )i H i +
(2.26)

—x|2

lS

[ZAI?lf (Ld -Lq )2

2 2
4 1 4
+A ] g -A

<k
ls mf

=0

Hence, from (2.25) and (2.26) one can use a second order polynomial to approximate the

corresponding i, and i, respectively as follows

=
1

N

2
+b

K =
l,,—a I

+c

(2.27)

" —|2 —
i, =di| +eli|+f (2.28)

From actual experiments, the coefficients a, b, and c in (2.27) are —-0.016911, -0.089245, and
0.19176 respectively and the coefficients d, e, and f in (2.28) are —0.0071927, 1.05459,

and —0.093642 respectively corresponding to the tested IPMSM. It is found that the
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maximum d-axis current error is about 0.2A which is 0.8% of the maximum line current
limit (25A) and the maximum g-axis current error is about 0.1A which is 0.4% of the same
maximum line current limit. Thus, a second order polynomial approximation is reasonable
for the test. Then the numerical calculations can be simplified greatly. Fig. 2.4 shows the
block diagram of an implementation of the proposed torque control strategy by using a fixed

point DSP TMS320F240. From Fig. 2.4 one can see that a digital PI speed controller is used

=% . .
i | which is of course

s

to generate the desired line current magnitude command, +

proportional to the desired torque command for the proposed torque control strategy.

— — _ __DSPTMS320F240 . __ __ __
PI and Decoupled I
I Proposed Current Co roller
I LTC | Lgg ‘1 I
{_ gs oL B WLl
I i* d V* I
equation|[{ ¥ PI 5 : .V;i gate
I (2.28) + controllet] ?|coordinate | -] drives 7
— % .
equation|} . o > Vi tfiansformatlon -v§ and {IPMSM
| 5oy || ids yi(ds,as—> ] 7} 1GRT
(2.27) 7 controller| b Ve
/ + as, bs, cs ) 1> inverter
I i st wr_t _o‘)quiq: I -
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Fig. 2.4. An implementation block diagram of the proposed LTC strategy
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The resulting *|i."| command is then used to generate the i, and i; by using (2.27) and

(2.28) respectively. The sampling time period for this speed loop is chosen to be 1 msec.

Similarly, two digital PI controllers are used to generate the desired v, and v; commands.

To achieve fast response, decoupling controls [64] are also added to each PI controller to
cancel the cross coupling effects between d-axis and g-axis. The sampling time period of this
current loop is chosen to be 0.1 msec. The remaining parts of Fig. 2.4 are quite typical and
will not be explained further.

To demonstrate the merits of the proposed torque control strategy, first consider the case

of applying a step command of w, =w, =3500 rpm to the tested IPMSM drive starting from

rest at t=0 sec and with no load. Then, at t=2.2 sec, a step load of 3.4 Nm is added. Figs. 2.4

and 2.5 show the experimental results for the i, =0 control and the proposed linear torque
control, respectively. Except the 7, /and i ; component distribution, all other parameters are

kept the same for both control strategies: Since the command of 3500 rpm is greater than the

maximum angular velocity w, =3050 rpm for the i, =0 control, one can see from Fig. 2.4

that a steady state speed error exists for this high speed command. However, as can be
observed from Fig. 2.6, using the proposed torque control strategy can eliminate the steady

state speed error. Also from Fig. 2.6, it is seen that i, is negative and hence the reluctance

torque is indeed taken advantage of. As another example, consider the second case of
applying a step command of 3500 rpm to the same tested motor drive starting also from rest
but with a y-connected resistance load (21 Q for each phase) connected at the output
terminal of the coupled PM generator. Under steady state, the corresponding torque is

approximately 3.4 Nm. Figs. 2.6 and 2.7 show the corresponding experimental results for
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Fig. 2.4. Experimental results of i, , i, and the speed responses for i, =0 control.
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Fig. 2.6. Experimental results of i, , i , and the speed responses for the proposed LTC.
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i,, =0 control as well as for the proposed linear torque control. As long as the rotor speed is

within the constant torque region, the speed responses for both control strategies agree each

other rather closely. This is because of the fact that the same T

em

is applied. However, as w,
is increased beyond 3050 rpm, the control strategy with i, =0 can not supply enough torque

to the load. Hence, the final speed settles down at 3214 rpm as shown in Fig. 2.7. With the
proposed linear torque control, the drive can still be operated within the constant torque
region. Thus, the command can be followed without steady state error as can be seen from
Fig. 2.8. For references, Figs. 2.8 and 2.9 also show the corresponding phase-a current for
both control strategies respectively. Again, one can see from Fig. 2.9 that the steady state line

current for the i,, =0 control is about 20 A and a steady state speed error exists. However,

for the proposed torque control, the corresponding line current is about 23 A and no steady

state speed error exists as can be seen from Fig.:2:10.

0A

v
}

h NG

ds

20A_ g
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\ 4
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Orpm 500 ms
rp_) L—J

t=0 sec

Fig. 2.7. Experimental results of i, , i, , and the speed responses for i, =0 control.
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Fig. 2.8. Experimental results of i, , i, and the speed responses for the proposed LTC.
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Fig. 2.9. Experimental results of phase-a current and the speed responses

corresponding to Fig. 2.7.
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t=0 sec

Fig. 2.10. Experimental results of phase-a current and the speed responses

corresponding to Fig. 2.8.
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