CHAPTER 5

CONSIDERATION OF THE MAGNETIC
SATURATION EFFECT ON THE PROPOSED LTC

5.1 Introduction

The theoretical basis of the linear maximum torque per ampere control strategy for an
IPMSM drive has been presented in the previous chapter. Because the rotor permanent
magnets are embedded inside the rotor core and the direction of the d-axis is oriented toward
the field direction of the N-pole of the rotor permanent magnet, the resulting d-axis effective
air-gap length is larger than the resulting g-axis effective air-gap length. Hence, the g-axis
flux linkage tends to saturate under the operation conditions of large g-axis current. However,
due to the larger reluctance, the corresponding.d-axis flux linkage still shows a relatively
linear magnetic characteristic with respect to the ‘d-axis current [14, 31, 33, 50, 55]. Thus,
further investigation about the saturation effect on the dynamic as well as the steady state
performances for a high performance vector controlled IPMSM drive system becomes the
major motivation of this chapter.

In this chapter, a more accurate model for the g-axis flux linkage is proposed to cover
saturation effect and the corresponding LMTPA control strategy is derived. Then the effects
of the magnetic saturation on the dynamic and the steady state performances for the tested
IPMSM drive system are examined via some experimental tests. For comparison of the
performances of the proposed saturated model with that of the linear magnetic model, the
same prototype as constructed in the previous chapter is used to conduct the experimental

tests. Concerning implementation, the previously developed control programs in the DSP are
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modified to implement the proposed control, then some experimental results are provided to

show the merits of the proposed control strategy.

5.2 Saturated Model of An IPMSM

For convenience, the dynamic model [66] of an IPMSM in the rotor reference frame will

be repeated as follows:

. dA,
Vdv = RS ldv +j _(A; )bs

dA,,
Vqs:RSiqs + dtqé +a;)kv

/\dv = Ad A mf

where

Vs V

.« - stator d- and g-axis voltages respectively

I, » I, - stator d- and g-axis currents respectively
R : stator winding resistance

Ay » A, o stator d- and g-axis flux linkages respectively
A @ d-axis flux linkage resulting from the rotor permanent magnet
A, :d-axis flux linkage resulting from the i,

w, : electrical angular frequency

T, : electromagnetic torque

p : number of poles
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As can be seen from Chapter 2, under linear magnetic condition, the above A, , A, and 7,

gs >
should become (2.3), (2.4), and (2.5) respectively. However, the q-axis saturated effect of the
IPMSM should be considered to further elevate the performances of the drive system. Under

steady state, A, and A become constants and (5.1) and (5.2) reduce to the following forms:

vdv = RS idv _a; &xv (55)
Since for an IPMSM, the effective air-gap length of the d-axis is relatively larger than that of

the g-axis, the magnetic saturation can be assumed to be negligible. The corresponding d-

axis inductance L, is then assumed to be constant. On the contrary, the effective air-gap
length of the g-axis is relatively smaller than that of the d-axis, the corresponding magnetic
saturation is more significant for a variable speed IPMSM drive system [14, 31, 33, 50, 55].
Therefore, the d- and g-axis flux linkages respectively are chosen to be:

Ay = A A éLcl Iy P (5.7)

AyGQ) 24 i;s +b i; +ei (5.8)

where A, is assumed to be proportional to i, , the factor L, is the linear d-axis inductance as
defined in Chapter 2, and the A, is expressed as a third order polynomial function of the g-
axis current i, . The corresponding coefficients of a, b, and ¢ in (5.8) are real constants
respectively. For reference, Fig. 5.1 shows the measured A vs. i plot for the tested

IPMSM that is a prototype designed in [67]. As can be seen from Fig. 5.1, the asterisks

denote the measured points of A and the solid line is the corresponding fitted curve of A .
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Table 5.1 also lists the numerical values of a, b, and c in (5.8) respectively as well as the other

motor parameters and the inverter ratings.

A, (weber)

0.018

0.016
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0.008
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0.002

Fig. 5.1. The measured A, to i, points and the corresponding fitted curve of A, .
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Table 5.1. The Tested IPMSM Parameters
and Inverter Ratings.

tested [PMSM
parameters
number of poles 6
armature resistance (Q) | 0.15
d-axis inductance (mH) | 0.488
magnetic flux linkage
(V/(rad/sec)) 0.042
maximum phase 50
voltage amplitude Vgy (V)
maximum phase 75.0
current amplitude Loy (A) '
1.1939
coefficient of "a" in (5.8)
x10™°
) ) -6.5801
coefficient of "b" in (5.8) s
x10
1.6065
coefficient of "¢ n (5.8) 5
x10

5.3 The Proposed Linear Maximum Torque Per Ampere Control

Considering Magnetic Saturation

As the saturated model of an [IPMSM is concerned, the LMTPA control strategy

proposed in the previous chapter should be modified.

5.3.1 Constant Torque Limit Region

By substituting (5.7) and (5.8) into (5.4), one can obtain

]; = g[“d idv +/\ mf) iqs _(a lsv +b ljv *c iqs) l.dv H (59)
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Following from (5.9), the d-axis current becomes

T /(0.75p)— -A mf L
1 =
“ L,-ai iy,=bi,—0)i (5-10)
Define
T /(0.75p)—A
h(qu)él; +l.2 _ [ e ( p) mf qs] +.2 (511)

s 2 s
* [Ly-a i, —bi —c) lqs] #

For a given torque 7, in order to derive the maximum torque per ampere control, one can

take the derivative of (5.11) as follow:

dh(i,) {(al +bi +c=L )i A ALA0.75p) A i I —3az2 2bi,, ©)}

mf qs
di, OS[(Ld—az —bi, =) i, T
(5.12)
[TAOTSD)A o 142,
Then substituting (5.9) into (5.12), the resulting reduced formula becomes
dn(i,) (Ld—30u2 =2bi, =iy tA iy Ha il it L) i
(5.13)

di 05(al +hi +e-L )i,

qs

By letting the numerator of (5.13) be equal to zero, one can obtain the following equation:
(L =3ail=2bi, )iy +A iy Hail Wi+ L) 2 (5.14)

The solution of (5.14) is the i, ~i, relation to achieve maximum torque per ampere (MTPA)

control and is derived as
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i 2B ail +2bi +c-L )iy =A  +

(5.15)

AL =42 Bai +2bi, +e-L XL, i bi, ©) 20

Under linear magnetic condition, the coefficients a, b, and ¢ of (5.8) become 0, 0, and L,
respectively where L, is the linear g-axis inductance as defined in Chapter 2. Then the
resulting A is equal to (2.4) and one can also check that (5.15) reduces into (4.1).
Furthermore, in order to guarantee the value of i, in (5.15) is negative for i 20, the

following condition should be satisfied:

aii +bi +c>L, (5.16)

As the tested IPMSM drive is concerned, the range of (a ljs +bi +c)1(0.75,1.6) mH and

L,=0.488 mH over the full operational ranges of'd- and g-axis currents. Thus the condition

of (5.16) is indeed satisfied for the tested [IPMSM drive system. When the maximum line

current magnitude I, is imposed, namely
i, +in =17, (5.17)

Then the intersection point of (5.15) and (5.17) denoted as (/,,,, I, ) can be obtained.

Therefore, the maximum available torque, 7, within the current limit is expressed as:
EM :075p [(LdldsM +A mf /" gsM _(CZI;M +b IjsM +CIq5M)IdgM] (518)

Also, the corresponding angular speed w,,, can be calculated from the following equation by

substituting (5.5) ~ (5.8) as well as /,,, and [ ,, into the voltage boundary equation:
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[Rs]dsM _wrM (aI;sM +b quYM +CIqu )]2 + @SIWM +a‘2‘M (LdldsM + )}nf )Hz :stn (519)

. . . . * .
Next, in order to achieve a linear control law, a virtual control u corresponding to a

torque command 7, can be defined as follows:

* & * 3 2 RN
LA T _ 0.75 p [(Li, +)\mf)1qs —(ai, +bi, +ci)i,] (5.20)
KtM KtM
where the torque constant K, is chosen to be
K, = ZI;M (5.21)

As will be clear from later sections, the same torque constant K, is used not only in the

constant torque limit range but also-in-the-entire field weakening range. For convenient
explanation of the proposed linear ‘maximum- torque per ampere (LMTPA) control

considering magnetic saturation, define Region I as the constant torque limit region where
w,.<w,,. Hence, in this region, if a torque command 7, (=K, u") is given, then the
corresponding d- and g-axis current commands can be solved from the simultaneous
equations of (5.15) and (5.20). The corresponding solutions of i, and i; can not be
expressed by closed forms, however they can be obtained easily by using any available

commercial numerical program with proper initial values. For reference, the trajectories of

i, ~u and i;s~u* adopted in the constant torque limit region for the tested IPMSM are

shown in Fig. 5.2.

77



30(A)

Fig. 5.2. The trajectories of i) ~u" andi_~u adopted in the constant torque limit region for

the tested IPMSM.

For clarity, the trajectory of (5:15).on the i, ~i;s plane, namely AIO curve, is shown in
Fig. 5.3 where the current limit curve and one constant torque curve together with five
voltage limit curves for the tested [IPMSM are also shown on the same figure. In summary, in
Region I, given a torque command 7, , one can get the corresponding virtual control ~ from

(5.20). Then, from u" one can obtain the corresponding i, and i, from Fig. 5.2. Although

K

the generated torque command 7, as in (5.9) is still nonlinear to i, and i 4 » but it is now

proportional to the virtual control »~ as in (5.20). Thus, excluding the inner current loop

control, the outer loop controller can be easily designed by using any existing linear control

strategy directly.
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Voltage Limit Curves (@, , > @, > W, > @, > W, )
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Fig. 5.3. The trajectories of (5.15), the current limit curve, one constant torque curve, and

five voltage limit curves on i,.-i ~plane for the tested [IPMSM.

5.3.2 Partial Field Weakening Region:and Full Field Weakening Region

From the previous section, it is seen that during acceleration, for w, < w,, , one can select
the maximum torque 7,,, to achieve the fastest response. However, when w, > w,, , due to
the current and voltage constraints of (2.21) and (2.22), the maximum torque (7,,, ) can not

be achieved. The traditional control strategy is simply to reduce the magnetic field intensity
by applying negative d-axis stator current resulting in the so called field weakening control.
As can be observed from Fig. 5.3, as far as the current constraint is concerned, the field
weakening region is bounded by the ABCDE curve, the AIO curve, and the EO axis. In
particular, four points (namely B, C, D, and E) are also marked in Fig. 5.3, where the voltage

limit curves are also imposed on, namely

Vi v, =V, (5.22)
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By substituting (5.5) ~ (5.8) into (5.22), one can obtain:

g(idv’iz}v’az) é[ RS idv - C‘))(a lq3v +b l; tc iqs )]2 +
(5.23)
[RS iqs +a;(Ld lds +Amf)]2 _\/sfn =O

Thus, from (5.23), it is seen that when i, =i, =0, then one can obtain the corresponding
speed, called the critical angular frequency . that is the same as (3.3) for the same IPMSM
and the drive specifications. Similarly, also from (5.23), when i, = -1 and i, =0 then one
can obtain the corresponding speed, called the extreme angular frequency w,. that is also the

same as (3.4) for the same IPMSM and the drive specifications.

The corresponding boundary operating points of ,. and @, on the i, ~i  plane are

just the C and E points marked in Fig.:5.3. Also, from (3.4), one can see that to get positive

value of w,, it is necessary that A, -be greater than L I_ . Indeed, for the tested [PMSM,
L, |i ds| is always less than A_. within the operable range. Further examination of Fig. 5.3

reveals that when the motor speed w, U(w,,, @), then the voltage bound curve of (5.23)

will intersect with the AIO curve. For example, Fig. 5.3 shows a voltage bound curve for

w. = w,, and the corresponding intersecting point is I. In other words, for each given
w, O(w,,, &), the corresponding boundary currents i,, and i, of point I can be solved

from system of equations of (5.15) and (5.23) as

S yrig) =0 (5.24)
8igpslye>@.) =0 (5.25)

Hence, the corresponding electromagnetic torque bound and virtual control bound, namely
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T, and u,, can be defined as follows

];b é075 p [(Ldidvb +A mf )iqsb _(a ljsb +b l.;vb +c iqsb)idvb] (5 2 6)
u, = Lo (5.27)
KtM

Now it can be seen from Fig. 5.3 that when w, = @, and 7 <T,, then despite that w,, is

located in the conventional field weakening region, one can still use the maximum torque per

ampere control, namely corresponding to the curve 10 portion of Fig. 5.3, to achieve the

P . * K E .
minimum copper loss. Also the corresponding u  as well as i, and i, remains the same as

that obtained from Fig. 5.2. However, when 7. >T, , the intersecting point corresponding to

the curve Al portion of Fig. 5.3 which is outside the voltage constraint, it is not possible to

achieve the conventional maximum' torque -per ampere control. Therefore, the proposed

*
oK

Sk
control strategy chooses i, and i,

e

for a given T (and u" = ) as the intersection point of

t™M
the torque command equation (5.9) and the voltage boundary equation (5.23). Similar to the

previous constant torque limit control, the corresponding d- and g-axis commands can be

solved from the simultaneous equations of (5.20) and (5.23). Also, the solutions of i, and

i; can not be expressed by closed forms. But they can be obtained easily by any available

commercial program. In summary, for @, 0(w,,, &), if 4" <u, (or equivalently 7 <T,),
then the previous maximum torque per ampere control which is obtained from Fig. 5.2 can
be applied. If #~ > u, , then the field weakening control which is obtained from the solutions
of (5.20) and (5.23) is applied. Since there are two control modes applicable in this speed
range, it is called the partial field weakening region (Region II). It is worth mentioning that
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within the partial field weakening region, the virtual control bound #, is not a constant. It is

varied with motor speed w, . For reference, Fig. 5.4 shows the trajectory of a virtual control

bound within the partial field weakening region for the tested IPMSM as an illustration.

Furthermore, for w, U(w,, @), it is seen from Fig. 5.3 that it is not possible to have an
intersection point for (5.15) and (5.23). Thus, for each torque command 7. (or equivalently
u"), the same field weakening control equations (5.20) and (5.23) are directly solved to find
the corresponding i, and i;s. Therefore, in this speed region, it is called the full field

weakening region (Region III). For reference, Fig. 5.5 shows a schematic diagram for the

maximum available torque with respect to the whole speed range for the tested [IPMSM.

virtual control bound

O L 1 L 1 L 1 L 1
3350 3400 3450 3500 3550 3600 3650 3700 3750 3800
motor speed(rpm)

w” M wrC

Fig. 5.4. Graphical illustration of the virtual control bound to motor speed curve for the

tested [IPMSM.
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Fig. 5.5. Tllustration of the maximum torque limit to motor speed curve and three operation

regions for the tested [IPMSM.

In fact, one of the characteristics of the proposed control strategy is that under transient
condition, no matter in which region the operation speed is located, the maximum torque
capability can always be applied to achieve the fastest response. From previous discussions,
the proposed control strategy has been shown to be a linear one over the entire speed region.
Also, for Region I and portion of Region II, the proposed control is identical with the
maximum torque per ampere control to achieve minimum copper loss. It remains to prove

that the proposed field weakening control can also achieve the minimum copper loss. From

(5.15) one can see that the i;s~i; relation for the proposed maximum torque per ampere

control can be rewritten as
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e — AL —4QGail, +2bi,, +c ~L[(L, —o)i’, =bi}, —ail,]
ds —

S = (5.28)
2(3aiy, +2bi, +c-L,)

Thus, when the proposed field weakening control is applied in either Region III or Region 11

for ' >T, , it can be observed from Fig. 5.3 that the corresponding i, will be less than that

of (5.28), namely

qs

e - AL —4Gail, +2bi, +c ~L[(L, —c)i2. -bi, —ail ]
ds

% - (5.29)
2(3ai,, +2bi, +c -L,)
And following from (5.13), one can obtain
d h(i
M <0 (5.30)
di

qs

whenever inequality (5.29) is satisfied. The inequality of (5.30) means that (i) is a
monotonically decreasing function"with respect to i, . In other words, the line current
magnitude is increasing as i, is decreasing under the condition of (5.29). For a given torque

T, in (5.9), one can obtain

T
€ )=A .0
(07 p) mf“gs
ds 2 5 X (5.31)
(L, —ai, —blqs —C)lqs
By taking the derivative of (5.31), one can get
. . .2 . .2 . .
dlds — lqs (alqs +blqs tc _Ld)[)\mf +(Ld _3all]S _2blqs _c)lds] (532)

di [(L, =3ai, =2bi, —c)i, T

qs
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As the parameters of the tested [IPMSM are concerned, one has

Ao +(Ly =3ai =2bi, =c)i, >0 (5.33)

over the full operational ranges of d- and g-axis currents. Thus, for i, [J(0, L), (5.32) is

sm

greater than zero. In other words, the constant torque curve on the i:ls~i;s plane is a
monotonically increasing function of either i, or i, . In summary, when the proposed field

weakening control is applied in either Region III or Region I for 7, >T, , the corresponding

d- and g-axis current commands are chosen to be the ones corresponding to the intersection
point of (5.20) and (5.23). And this intersection point is located to the left side of the curve of
(5.15) as shown in Fig. 5.3. Thus, as has-been shown that the d- and g-axis currents
corresponding to the intersection point of (5.20) 'and (5.23) are smaller than that of the

intersection point of (5.15) and (5.20) respectively. Since the line current magnitude is a

monotonically decreasing function with respect to i; which has been shown in (5.30) so

long as (5.29) is satisfied, also the operating point of the proposed field weakening control is

chosen as the available largest i, and i;s namely at the voltage limit curve, therefore the line

current magnitude at the corresponding operating point for the proposed field weakening

control is minimum within the feasible constant torque trajectory.

Finally, consider the transient control. For example, during the motor starting stage, while

W, <w,,, the maximum torque (7),,) can be applied to achieve the fastest response.
However, when the motor speed is greater than @),,,, the maximum torque 7, cannot be

achieved. Thus, for the proposed control strategy and for each ., the corresponding
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maximum torque, called 7, , can be obtained by first finding the corresponding d- and g-

axis currents, namely /. and [, from (5.17) and (5.23) as:

]aZVSMF + qusMF = Ifm (534)
g(]dsMF’]quF’wr) =0 (5.35)

Then, the maximum torque and maximum virtual control becomes

Toge|g =070 B Lol +A o) L~y 40+l ) e B (5.36)
T

K

It should be mentioned that both 7, and I, are functions of w, for w, U(w,,, &) .

5.4 Implementation and Experimental Results

An implementation block diagram. of the speed control is shown in Fig. 5.6 as an
illustrative example. Except for the -adaptive. limiter block and the current commands
calculator block, the other blocks are quite typical and will not be explained further. Actually,
except for the adaptive limiter block and the current commands calculator block, the contents
of the other blocks are the same as that in Fig. 4.5. First, consider the adaptive limiter block.

From the proposed control strategy it is seen that for w, < w),, , the maximum virtual control

available is chosen to be

u == w < w, (5.38)
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Resistor Bank

5

w,

Fig. 5.6. Block diagram of the developed IPMSM drive system.

Also, for w, U(w,,, @,), the maximum, virtual control available is u,, from (5.37). For

easy implementation, one can define an adaptive limiter with the following adaptive upper

bound

=1, ,0sw<
D(@)é%’M =

|y - <@ <) 539

One can compare both adaptive upper bounds, namely H(@) of (4.34)and LJ(w) of (5.39).

It is seen that they are two different functions because their corresponding torque equations

use different g-axis flux linkage models. For reference, Fig. 5.7 shows a plot of the adaptive
upper bound with @),, <@ < &), for the tested IPMSM. Of course, when the output of the
speed controller is not saturated, then the corresponding virtual control %" is the same as the

original u in this linear control region as shown in Fig. 5.6.
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U(w,)
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motor speed( rpm)
a)M wI”E

Fig. 5.7. Illustration of the adaptive upper-bound-to motor speed curve for the tested [IPMSM.

Next, consider the current commands calculator. Fig. 5.8 shows the detailed flowchart

of how to calculate the desired i, and i; for each virtual control u" in different speed

regions according to the proposed control strategy. One can see that the contents of the
current commands calculator block in Fig. 5.6 is basically a modified version of that in Fig.
4.5. In other words, the flowchart of the current commands calculator block as shown in Fig.

5.8 is a modified version of that in Fig. 4.6. For simplifying the complicated calculation, the

equations of i, and i;, can be approximated from Fig. 5.2 using second order polynomials.

These resulting two equations are listed as follows for the constant torque limit control:

l'; = cl(u*)2 +czu* +c, (5.40)
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ok

s =c,(u) +cu +cg (5.41)

where c; to ¢, are real constants. Similarly, for each w, U(w,,, @,) in the field weakening
control, the corresponding i, and i;, are the solutions of (5.20) and (5.23). They can also be

approximated by the following expressions:
bo=w ) +wu +w, (5.42)

1; = w4(u*)2 +w5u* + W, (5.43)

Since the values of w, to w, in (5.42) and (5.43) now varies with w, for each
w, U(w,,, @), the second order polynomial approximation can also be used to fit the w,

coefficients for k=1, 2, ..., 6 as follows:
We = cklwrz TCnW e, (5.44)

with ¢, i k=12,..,6, j=1,2,3 being real constants. From actual experiments, it is found

that, with the above approximations, the errors between the actual current commands and the
approximated current commands for both d- and g-axis are less than 1.4% (or 0.35 A), but

the calculation time is greatly reduced.

In order to verify the feasibility of the proposed control strategy, a prototype is
constructed according to the block diagram of Fig. 5.6 by using a fixed-point DSP
TMS320F240. The sampling time periods for the current controller and the speed controller

are chosen to be 0.1 msec and 1 msec respectively. The tested [IPMSM, a prototype designed
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Fig. 5.8. The flowchart of the current commands calculator in Fig. 5.6.
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in [67], has the same parameters as given in Table 5.1. The corresponding w,,, and w,. are
found to be 3340 rpm and 3790 rpm from (5.19) and (3.3) respectively. Similarly, the /,,,
and [, are—3.2(A) and 24.8(A) from solving the system of equations of (5.15) and (5.17).

For reference, the DSP program code for the speed controlled IPMSM drive is listed in
APPENDIX A.

In the dissertation, all the control functions of the drive system are implemented fullly
digital by using a DSP TMS320F240, the hardware circuits are greatly simplified. The
current controlled PWM inverter in the system block diagram of Fig. 5.6 is a three phase
voltage source inverter. For reference, the corresponding electric circuit is shown in Fig. 5.9

where the DC link voltage V. is supplied by a DC power supply and the power

semiconductor switches are six -insulated. gate bipolar transistors (IGBTs). The
corresponding six gate driver circuits in Fig. 5.10 are used to drive the IGBTs of the inverter.
Six input signals of the gate drivers are the output gating signals of the DSP as shown in Fig.

5.6. To obtain the line current signals, two commercial Hall effect current sensors named

a-phase b-phase
Gl_{ K G3_{ K (i{ K current current
El E3 ES / /

_> ~
A—*>(/
V, IPMSM
’ il

G4 G6 G2 Level-Adjustment
_{ K _{ K _{ K Circuits
E4 E6 E2

l lbs

Fig. 5.9. Circuit configuration of the three phase voltage source inverter.
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Fig. 5.10. Six gate driver circuits of the inverter.
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LEM HASS50-S, are used to induce the phase a and b currents into the signals i, and i,
respectively. As can be seen in Fig. 5.9, the signals i, and i, are connected to the level-
adjustment circuits to generate the signals of i and i, . Actually, the signals of i and

i, (1.e. the outputs of the level-adjustment circuits in Fig. 5.9) are to accommodate the input

voltage range of the A/D converter in the DSP chip. The corresponding level-adjustment
circuits are shown in Fig. 5.11. Finally, a picture of a prototype of the IPMSM drive system
constructed in the advisor’s laboratory is shown in Fig. 5.12 and a rotor cross section view of

the tested IPMSM is also shown in Fig. 5.13.
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+15V +15V +15V
20, 7 20, 7 5 + 7
TL /?IOk 10k TL i
by 071 3 TL |1 o LA
—
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4 3 4 4
206 WY
10k -15V -15V
-15V N4

Fig. 5.11. The level-adjustment circuits of i, and i, .
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Fig. 5.12. Picture ofai‘p ototype of the IPMSM drive system.
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Fig. 5.13. A rotor cross section view of the tested [PMSM.
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Some experimental results are presented to compare the performances of the proposed
LMTPA control with and without considering saturation effect in the constant torque limit
region, the partial field weakening region, and the full field weakening region respectively.

Firstly, consider the case of applying a step command of @, =3000 rpm to the tested IPMSM

drive starting from rest at t=0 sec. The corresponding steady state load torque at 3000 rpm is
approximately 3.2 Nm. This test is to demonstrate the characteristics of the transient
response as well as the steady state response in the constant torque limit region as the
saturation effect is not considered in the control algorithms of the drive. Fig. 5.14 shows the

corresponding waveforms of the d- and g-axis current responses and speed response. The

corresponding /,,, and [, are approximately —6.6(A) and 24.1(A) respectively as

calculated in Chapter 4. From Fig. 5.14 -one can see that the acceleration time period is
approximately 820 msec. Fig. 5.15 also records the waveforms of the phase-a current and the
speed response corresponding to| Fig. 5.14" except that the corresponding waveform
recording time is longer than that of Fig.-5.14. The steady state waveform of phase-a current
corresponding to Fig. 5.15 is also shown in Fig. 5.16. One can see that the root mean square

value of phase-a current is 12.74(A).

0, i
fim. S

x — = ]
t=0 820 Ensec

Fig. 5.14. Experimental results of i, ,

i, and motor speed responses within the constant

torque limit region without considering magnetic saturation.
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Fig. 5.15. The waveforms of the phase-a current response and the speed response

corresponding to Fig. 5.14.
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Fig. 5.16. The steady state waveform of phase-a current corresponding to Fig. 5.15.
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Next, consider the same test except that the saturation effect of the tested IPMSM is
considered in the control algorithms of the drive system, all other test conditions and the
controller parameters are kept the same as the previous one. Fig. 5.17 shows the

corresponding waveforms of the d- and g-axis current responses and speed response. The

corresponding /,,, and [, are approximately —3.22(A) and 24.8(A) respectively as

calculated from solving the system of equations of (5.15) and (5.17). Fig. 5.17 shows that the
acceleration time period is approximately 760 msec which is shorter than that of Fig. 5.14 by
7.3%. Fig. 5.18 also records the waveforms of the phase-a current and the speed response
corresponding to Fig. 5.17. The steady state waveform of phase-a current is also shown in
Fig. 5.19. One can see that the root mean square value of phase-a current is 12.4 A

approximately which is smaller than that of Fig. 5.16 by 2.7%.
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N

LY
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Fig. 5.17. Experimental results of i, , i, and motor speed responses within the constant

torque limit region with consideration of magnetic saturation.
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Fig. 5.18. The waveforms of the phase-a current response and the speed response
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corresponding to Fig. 5.17.
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Fig. 5.19. The steady state waveform of phase-a current corresponding to Fig. 5.18.
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Secondly, to demonstrate the characteristics of the transient responses in the partial field
weakening region, one considers the case of applying a step command of w,=3700 rpm to

the tested IPMSM drive starting from rest at t=0 sec. Figs. 5.19 and 5.20 show the waveforms
of the d- and g-axis current responses and speed responses without and with considering
magnetic saturation effect respectively. One can observe that the acceleration times of the
IPMSM with and without considering magnetic saturation are approximately 590 msec and
570 msec respectively which means that the maximum torque with considering magnetic
saturation is larger than that without considering magnetic saturation. The accelerating time
period with considering magnetic saturation effect is shorter than that without considering
saturation effect by 3.4%. Next, considering the steady state operation condition in the partial
field weakening region. Figs. 5.21 to 5.24 show the response waveforms of the phase-a
current and the speed without and with considering magnetic saturation respectively while
all the test conditions are kept the same as previous one except that a heavier load is applied.
Figs. 5.22 and 5.24 are the corresponding steady state waveforms of phase-a current of Figs.
5.21 and 5.23 respectively. From Fig. 5.23 and Fig. 5.25, one also can observe that the root
mean square value of the phase-a current with considering magnetic saturation is 8.92 A
which is smaller than that without considering magnetic saturation by 4.2%. It also implies
that the copper loss can be reduced in the partial field weakening region by considering

magnetic saturation.
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Fig. 5.20. Experimental results of i, , and motor speed responses while accelerating

lqs,

toward the partial field weakening region without considering magnetic saturation.
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Fig. 5.21. Experimental results of i, , i  , and motor speed responses while accelerating

toward the partial field weakening region with considering magnetic saturation.
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Fig. 5.22. The waveforms of the phase-a current response and the speed response while
accelerating toward the partial field weakening region with heavier load and

without considering magnetic saturation.
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Fig. 5.23. The steady state waveform of phase-a current corresponding to Fig. 5.22.
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Fig. 5.24. The waveforms of the phase-a current response and the speed response while
accelerating toward the partial field weakening region with heavier load and

considering magnetic Saturation.
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Fig. 5.25. The steady state waveform of phase-a current corresponding to Fig. 5.24.
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Finally, to demonstrate the characteristics of the transient responses as well as the steady

state responses in the full field weakening region, one considers the case of applying a step
command of f w =4300 rpm to the tested IPMSM drive starting from rest at t=0 sec. Figs.

5.25 and 5.26 show the waveforms of the d- and g-axis current responses and the speed
response without and with considering magnetic saturation respectively. From these two
waveforms, one can observe that the acceleration times of the tested IPMSM are
approximately 780 msec and 740 msec respectively. The accelerating time period with
considering magnetic saturation effect is shorter than that without considering magnetic
saturation effect by 5.1%. It can be said that the maximum torque with considering magnetic
saturation is also larger than that without considering magnetic saturation in the full field
weakening region. Figs. 5.27 and 5.29 show the response waveforms of the phase-a current
and the speed without and with considering magnetic saturation respectively corresponding
to the previous full field weakening test condition. And Figs. 5.28 and 5.30 are the
corresponding steady state response - waveforms of the phase-a current of Figs. 5.27 and 5.29
respectively. From Figs. 5.28 and 5.30, one can see that the root mean square value of the
steady state phase-a current with considering magnetic saturation is 10.59 A which is smaller
than that without considering magnetic saturation by 1.12%. It also can be concluded that the
copper loss can be reduced in the full field weakening region with considering magnetic

saturation.

From the above experimental results, one can see that within all the three speed ranges,
the truly maximum torque of the tested IPMSM drive can be achieved by considering the
magnetic saturation and the corresponding transient performance can be enhanced by at least

3.4%. Again within all the three speed ranges, the steady state line current magnitude can be
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reduced for the tested IPMSM drive by considering the magnetic saturation and the
corresponding copper loss can be reduced by about 2.7% on average. These experimental
results clearly demonstrate the improvement of the dynamic as well as the steady state
performances of the tested IPMSM drive if the magnetic saturation effect is properly

corrected..
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Fig. 5.26. Experimental results of i, i, and motor speed responses while accelerating

toward the full field weakening region without considering magnetic saturation.
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Fig. 5.27. Experimental results of i, , i  , and motor speed responses while accelerating

toward the full field weakening region with considering magnetic saturation.
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Fig. 5.28. The waveforms of the phase-a current response and the speed response

corresponding to Fig. 5.26.
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Fig. 5.29. The steady state waveform of the phase-a current corresponding to Fig. 5.28.

105



0.2sec /— ias

SN

4

B

Fig. 5.30. The waveforms of the phase-a current response and the speed response
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Fig. 5.31. The steady state waveform of the phase-a current corresponding to Fig. 5.30.
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