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CHAPTER III 

 

THE PROPOSED SWITCHING FLOW-GRAPH MODELING 

TECHNIQUE FOR THREE-PHASE INVERTERS [42] 
 

 
3.1 The Concept of Virtual Switch For Inverters  
 

Consider a typical three-phase PWM inverter as shown in Fig. 3.1 where 

jNjP SS ,  and jNjP DD , , { }CBAj ,,∈  represent controllable switches and diodes 

respectively and a three-phase RL impedance load is connected as an example. 

 

 

 

 

 

 

 

 
Fig. 3.1 The circuit configuration of the PWM inverter. 

 

According to the basic operating principle of the inverter, it is required that 1) 

for any time, switch jPS  and jNS , { }CBAj ,,∈  should not be ON simultaneously 

to avoid short circuit of the DC source; 2) for any time, it is not allowed to result in an 

open circuit for any phase. For convenient explanation of the virtual switch concept, 

first choose the A-phase leg of Fig. 3.1 as an example. There are two controllable 

switches, namely APS  and ANS , and two diodes, namely APD  and AND . 

Therefore, there are sixteen switching states according to the combination of ON/OFF 
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states of each switch and each diode. Nevertheless, only six switching states as 

described in Table 3.1 are qualified for the inverter control. 

 

Table 3.1 Six qualified switching states 

Value of vAN State 
Number

Switching States 
( APS , APD , ANS , AND ) 

State 1 (OFF, ON, OFF, OFF) 
State 2 (ON, OFF, OFF, OFF) vAN = VD 
State 3 (ON, ON, OFF, OFF) 
State 4 (OFF, OFF, OFF, ON) 
State 5 (OFF, OFF, ON, OFF) vAN = 0 
State 6 (OFF, OFF, ON, ON) 

 

From Table 3.1 one can see that states 2, 4 and 6 only occur for 0>Ai  and 

states 1, 3, and 5 occur for 0<Ai . Also, the value of ANv  equals to DV  for states 1, 

2 and 3 and zero for states 4, 5, and 6. 

 Similar to [32] for the controllable switches of Fig. 3.1 one can define the 

following switching functions: 

 

               (3.1) 

       

(3.2) 

 

Although APD  and AND  are uncontrollable, in order to obtain simple switching 

flow-graph which can deal with different voltage polarities, it is necessary to define 

its corresponding switching functions. From the previous inverter operation 

constraints, one can find the following conditions for diodes: 
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It follows that the corresponding switching functions can now be defined as: 

(3.3) 

 

              (3.4) 

               

Further observation of the previous conditions reveals that  

              (3.5) 

              

               (3.6) 

 

              (3.7) 

Thus, based on the previous definitions one can now define the virtual switch AS  for 

leg A in Fig. 1 with the following operation condition: 

 

 

Also, the corresponding virtual switching functions, ( )tFA  and  ( )tFA  are defined 

as: 
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              (3.9) 

 

It is also straightforward to see that  

               (3.10) 

              (3.11) 

              (3.12) 

From the above definitions of (3.8) and (3.9) as well (3.12) one can see that the 
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( )tFA  and ( )tFA  are the same as that of [32] for DC converters. 

 In summary, for the inverter of Fig. 3.1, the operation condition of jPD  and 

jND  can be represented as: 

 

 

 

 

 

Also, the corresponding switching functions are defined as: 

 
                 

 
(3.13) 

 

 

              (3.14) 

 

              (3.15) 

Therefore, the operation condition of the virtual switch jS  can be defined as: 

 

 

 

Also, the corresponding switching functions ( )tFj  and ( )tFj  of jS  are defined as: 

 

                

               (3.16) 
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               (3.17) 

 

              (3.18) 

 

By introducing the above virtual switches, it is found that one can obtain the 

following equivalent circuit as shown in Fig. 3.2. The virtual switch jS  can be 

represented as a SPDT (single-pole double-throw) switch.  

 

 

 

 

 

 

 

 
Fig. 3.2 Equivalent circuit of Fig. 3.1. 

 
3.2  The Proposed Switching Flow-Graph for Three-Phase Inverters 
 

From Fig. 3.2 one can see that for { }CBAj ,,∈ , when jS  is ON, jNv  equals 

to DV , otherwise, jNv  equals to zero. According to the equivalent circuit one can 

write the following KVL equations. 
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Hence, when jS  is ON, one can obtain 
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and when jS  is OFF 

               (3.21) 

 

From Fig. 3.2, one can obtain 

                   

(3.22) 

 

where p  operator represents the time differentiation. Now by choosing DV , jNv , 

jnv , nNv , and ji , { }CBAj ,,∈ , as nodal variables, one can draw the flow-graphs 

ONjG _  and OFFjG _  corresponding to jS  ON and OFF as shown in Fig. 3.3(a) and 

3.3b, respectively. 

From Fig. 3.3c one can see that by using a switching branch with virtual 

switching function ( )tFj , one can combine two flow-graphs corresponding to jS  is 

ON and jS  is OFF respectively in exactly the same form as that of [32]. 

Furthermore, for completeness, one can draw, according to equation (3.16), the virtual 

switching function ( )tFj  of virtual switch jS  as shown in Fig. 3.3(d). From Fig. 

3.3 it is seen that three switching flow-graphs corresponding to A, B, and C phases 

respectively seem entirely decoupled. Further examination reveals that they are, in 

fact, coupled together through nNv . From equation (3.19) and 0=++ CBA iii  one 

can obtain 

              (3.23) 

It follows from (3.23) and Fig. 3.3 that the final switching flow-graph model of the 

three-phase inverter can be drawn as show in Fig. 3.4. 

From Fig. 3.4 one can see that, by using the proposed virtual switch concept to 

obviate the trouble of considering different voltage polarities, one can get a very 

simple switching flow-graph model of the inverter as compared with [36]. In addition, 

the corresponding virtual switching functions can also be obtained very simply 

through simple logic operations as shown in Fig. 3.3(d). From Fig. 3.4 one can see 
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that the sub-circuit of each arm (phase) of the full-bridge inverter is almost decoupled 

from other two arms (phases) except for two nodal variables, namely jNv  and jnv . 

Fourth, from Fig. 3.3(d) one can also observe that the corresponding switching 

functions, namely ( )tF
jPD  , of diodes are also available simultaneously while getting 

( )tFj . With this information, it is possible to make this model more flexible in 

different applications such as considering the dead-time effect of active switches. 

Finally, it is worth pointing out here that, in the proposed switching flow-graph model, 

it is not necessary to use ( )tFj  and ( )tF
jND  functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3 Switching flow-graph for j phase, { }CBAj ,,∈  (a) when jS  is ON (b) 

when jS  is OFF (c) combined flow-graph using the switching branch 

(d) the corresponding virtual switching function. 

(a) 

(b) 

(c) 

(d) 
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Fig. 3.4 The proposed switching flow-graph model for three-phase PWM 

inverters. 
 
 
3.3  The Corresponding Models Derived from Switching Flow-Graph 

Model 
 

Once the switching flow-graph is obtained one can follow a similar procedure as 

[32]-[35] to obtain the corresponding large-signal, steady state, and small-signal 

models, respectively. 

A. Large-signal model 

From Fig. 3.4, one can see that when virtual switching function ( )tFj  equals to 

one, then jNv  equals to DV ; otherwise, jNv  equals to zero. Therefore, the 

relationship between jNv  and DV  can be described as 
 

               (3.24) 

 

According to equation (3.24), the large-signal model can be obtained by replacing the 

switching branches with multipliers as shown in Fig. 3.5 
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Fig. 3.5 The large-signal model derived from Fig. 3.4. 

 

B. Steady state Model 

 Similarly, one can use the well known state-space averaging technique [1] to 

obtain the corresponding steady state model. First, let ( )tF
j
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∗
S , ( )tFj

∗  and 

( )ti j
∗ , { }CBAj ,,∈ , represent the corresponding steady state signals of ( )tF

jPS , 

( )tF
jNS , ( )tFj  and ( )ti j  respectively. Then from equation (3.24), one has 

(3.25) 

Thus, by taking the average over one switching period ST  as follows: 

               (3.26) 

one can get the corresponding steady state relation: 

               (3.27) 
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From the above results, it is seen that the inverter output voltage or current is 

sinusoidal, however, due to its low frequency variation as compared with the high 

switching frequency Sf , for each time instant, say kt , one can use the equivalent 

duty ratio, ( )kj tD  to achieve the input-output relation of equation (3.27) just like for 

a DC-to-DC converter. Similarly, assume that jnV  and jI , { }CBAj ,,∈  are the 

corresponding average variables as defined in equation (3.28), respectively. It follows 

that the resulting steady state model can be represented as shown in Fig. 3.6. 

From Fig. 3.6, it is obvious that given the command signals, AD , BD , and CD , 

one can obtain the resulting steady state output jnV  and jI , { }CBAj ,,∈  easily. 

However, for completeness, the block diagram inside the dotted frame is also given to 

show how to obtain the duty ratios of the virtual switches from the actual switching 

functions and current directions. 

 

 

 

 

 

 

 

 

 
Fig. 3.6 The steady state model. 

 

C. Small-signal Model 

 With the same assumption of assuming the inverter voltage frequency is much 

less than the switching frequency, one can use the same state space average technique 

to find the corresponding small-signal model in a similar way used for DC-to-DC 

converters. Let jd̂ , Dv̂ , jNv̂ , jnv̂ , and jî , { }CBAj ,,∈  represent the small 

Fig. 3.3d 

Fig. 3.3d 

Fig. 3.3d 

Eq.(3.29) 

Eq.(3.29) 

Eq.(3.29) 
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signals of the corresponding node variables of jd , Dv , jNv , jnv  and ji , 

respectively. Then from equation (3.27), one has the following perturbed equation 

 

 

               (3.30) 

 

Therefore, from equation (3.30) one can obtain 

               (3.31) 

It follows that one can obtain the desired small-signal model as shown in Fig. 3.7. It 

should be pointed out here that to achieve better accuracy the nonlinear term in 

equation (3.31) is also included in Fig. 3.7. Naturally, the nonlinear term can also be 

neglected to get the familiar linear model. 

 

 

 

 

 

 

 

 

 
 

Fig. 3.7  The small-signal model. 

 
3.4 Simulation Results 
 

From previous results one can see that the structure of the resulting switching 

flow-graph model is very similar to the simulation structure of MATLAB/SIMULINK. 

Hence, it is quite easy to implement the model in MATLAB/SIMULINK environment 

to get the simulation results without requiring other extra efforts. As illustrations, 
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some examples are given below. 

Example A: 

First, consider the example with a Y-connected RL load as shown in Fig. 3.1, 

where VVD 500= , Ω= 2.6R  and mHL 15.0= . Assume the well known sinusoidal 

PWM is adopted with switching frequency kHzfS 6=  and the amplitude of the 

triangular wave is V5 . Also, the voltage command signals are given as follows:  

 

 

 

It follows that the corresponding switching functions of the six active switches, 

namely 
jPSF  and 

jNSF  can be obtained directly. Hence, by implementing Fig. 3.5 

with MATLAB/SIMULINK using zero initial conditions, one can get the desired 

output currents as shown in Figs. 3.8(a) and 3.9(a) corresponding to zero and 20μs 

blanking time respectively. For comparison, the same example is carried out by using 

PSPICE and under the same conditions. The corresponding results are shown in Figs. 

3.8(b) and 3.9(b) respectively. It is found that both simulation results agree with each 

other very closely. However, the computation time required by using the proposed 

switching flow-graph model is much less than that required by using PSPICE. For 

example, for the case with 20μs blanking time and with 100ms simulation time period, 

it takes only 7secs by using the proposed model as compared with 66secs by using 

PSPICE program when running a PC with Pentium IV 1.6G / 1500MB RAM and with 

5μs step size. 

Then, consider the dynamic performance simulation, the VD is applied at t = 5ms 

and is decreased to 400 V at t = 35ms. Also the RL load is changed to Ω= 1.3R  and 

mHL 075.0=  at t = 65ms. Figs. 3.10a and 3.10b show the output currents generated 

from the switching flow-graph model and the PSPICE model with zero blanking time 

respectively. Both simulation results agree with each other rather closely which 

reveals that the switching flow-graph model can correctly predict the dynamic 

response, such as the start up transient and load variation transient.   
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Fig. 3.8  Simulation results of the output currents with zero blanking time 

using (a) switching flow-graph model, (b) PSPICE model. 

(a) 

(b) 
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Fig. 3.9  Simulation results of the output currents with 20μs blanking time 

using (a) switching flow-graph model, (b) PSPICE model. 

(a) 

(b)
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Fig. 3.10  Dynamic simulation results of the output currents using (a) 

switching flow-graph model, (b) PSPICE model. 
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 Example B: 

Next, consider the second example to illustrate an application of the proposed 

switching flow-graph model to consider the ON-resistance of the active switches. 

Since an extra resistive voltage drop is generated for each active switch whenever a 

current is passed through that active switch, it is quite straightforward to add another 

virtual switching function jRF , { }CBAj ,,∈  to each arm to take care of this 

resistive voltage drop: 

 

 

 

The resulting large-signal switching flow-graph is shown in Fig. 3.11 for reference. 

 

 

 

 

 

 

 

 

 
 
Fig. 3.11  The large-signal switching flow-graph model considering 

ON-resistance of active switches. 

By using the same simulation conditions except including the ON-resistance of 

Ω0.23  for each active switch (according to the SPICE model of IRFP460 from 

PSPICE library), one can obtain the output currents. Due to the small value of 

ON-resistance, the output currents are basically similar to that of the previous 

example and will not be repeated here.  

For reference, Fig. 3.12 also shows the waveforms of 
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ANSF , 
APDF , 
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ANDF , AF  and ANv  for 0>Ai  and 0<Ai  for the case of 20μs blanking time. 

From 
APSF  and 

ANSF  of Fig. 3.12, one can see that 0=
APDF  for 0>Ai  and 

ANAP SD FF =  for 0<Ai  which indeed agree with equation (3.5) exactly. Finally, from  

AF  of Fig. 3.12, one can see that virtual switching function 
APSA FF =  for 0>Ai  

and 
APDA FF =  for 0<Ai . Again, this result indeed agrees with equation (3.10) 

exactly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12  Waveforms of 
APSF , 

ANSF , 
APDF , 

ANDF , AF  and ANv  for (a) 

0>Ai  (b) 0<Ai . 
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Example C: 

Consider an induction motor load as given in [43] with the following parameters: 

stator resistance ΩRS 3.41= , stator inductance HLS 0.1868= , 

rotor resistance ΩRr 3.41= ,  mutual inductance HLm 0.1728= , 

number of poles 4=P ,   rotor inductance HLr 0.1868= , 

V135VD = , kHz3fS = , 

amplitude of triangular wave V15= , 

blanking time sec40μ= . 

By using the proposed switching flow-graph model of Fig. 3.5 and implementing in 

MATLAB/SIMULINK environment with the above loading condition [43] and the 

following control signal 

 

 

 

One can get the steady state output current waveform Ai  as shown in Fig. 

3.13(a). For comparison, Fig. 3.13(b) also shows the corresponding experimental 

result of [43]. From Figs. 3.13(a) and 3.13(b), one can observe that both results agree 

with each other closely. It is rather easy to simulate this inverter-fed motor system on 

the system-level evaluation. 
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Fig. 3.13  The steady state current waveforms of A-phase (a) simulation 
result (b) experimental result [43]. (horizontal 20ms/div, vertical 
2A/div) 
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