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CHAPTER II 

REVIEW OF SWITCHING FLOW-GRAPH MODELING 

TECHNIQUE FOR DC-DC SWITCHING CONVERTERS 

 
 

2.1 Introduction 

 

The Switching Flow-Graph (SFG) technique [32]-[35] is a graphic nonlinear 

modeling tool for DC-DC switching converter. The SFG technique utilizes the 

state-space averaging theory and based on the extension of the signal flow-graph 

concept to develop the unified large-signal, steady-state and small-signal models. 

Unlike the conventional modeling technique requires laborious mathematics, when 

providing SFG method to model a switching system, the complex mathematic 

derivations are not essential.  

The SFG technique introduces the concept of switching branches and switching 

functions into the signal-flow graph theory to model a switching system in a 

flow-graph form. When the switch is ON and OFF periodically, the switching system 

is interchanged between two different circuit topologies. According to the two circuit 

topologies, two flow-graphs can be obtained. The switching branches carried with 

their switching functions are used to merge the two flow-graphs to generate a SFG. 

The switching branches are the only nonlinear part of the SFG. Therefore, the 

modeling work is reduced to the switching branches. The large-signal, small-signal 

and steady-state SFG models can immediately be obtained by replacing the switching 

branches with their large-signal, small-signal and steady-state switching branch 

models respectively. 

 From the SFG model, one can easily observe the cause-effect relationship 

between the circuit variables. Moreover, based on the small-signal SFG model, the 

transfer functions of the switching system can easily be obtained by using Mason’s 
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Rule; it is helpful for the controller design.   

 

2.2 The Linear Signal Flow-Graph Technique 

 

Before presenting the SFG modeling technique for DC-DC switching converters, 

it is appropriate to give a rough review about the existing signal flow-graph technique 

[39]. The signal flow-graph is an easy and straightforward modeling tool used for 

describing linear dynamic systems in a schematic form. The first step of creating the 

signal flow-graph model is to choose the meaningful and interesting variables of 

circuits and set these variables to be nodes. The second step is to connect these nodes 

with directional branches. The branches carry the transmittance just as the usual gain, 

impedance or admittance that represents the relationship between the adjacent nodes. 

As input signal passes through the branch, the signal is multiplied by the 

transmittance on the branch and sent to the connected nodes. The node variable is the 

sum of all signals entering into the same node. The flow-graph model of a linear 

circuit can, thus, be established by following this procedure. 

 

2.3 Switching Flow-Graph Modeling Technique for DC Converters 

 

Based on the concept of the signal flow-graph technique and make use of the 

switching branches and switching functions, the SFG technique can be applied to 

model the DC-DC switching circuits. The modeling procedures for a PWM DC-DC 

converter can be summarized as follows [32]:  

(1) Find the sub-circuits corresponding to all the switching states.  

Consider a DC-DC switching converter operated in continuous current mode 

(CCM) as an example; there are two switching states related to switch ON and 

OFF. In each switching state, one can find their corresponding sub-circuits, 

namely ON-circuit and OFF-circuit.  
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(2) Draw the flow-graphs for all the sub-circuits with the same node distribution.  

By using the theory of signal flow-graph, one can create two flow-graphs, GON 

and GOFF, for ON-circuit and OFF-circuit. The two flow-graphs share the same 

nodes and part of the branches. 

(3) The flow-graphs are then combined to obtain the switching flow-graph.  

One can find that some branches exist both in GON and GOFF, but other branches 

exist in only one of them. The two flow-graphs can be merged to one SFG, G, by 

utilizing the switching branches and their switching functions. The switching 

functions for switch S are defined as following: 

                (2.1a) 

 

                (2.1b) 

Branches exist in GON but not in GOFF are replaced by the switching branches 

carried with switching function ( )tFS . Similarly, branches exist in GOFF but not in 

GON are replaced by the switching branches carried with switching function 

( )tF S .  

(4) The switching branches are replaced by their steady state switching branch model 

(or small-signal switching branch model, large-signal switching branch model) to 

obtain the corresponding steady state model (or small-signal model, large-signal 

model). 

It can be seen that G is linear except the part of switching branch. Therefore, the 

modeling work can be reduced to switching branches. Assume the filter corner 

frequency is much smaller than the switching frequency and the input signal and 

output signal of the switching branch are represented as )(tx  and )(ty  

respectively.  

 

( )
⎩
⎨
⎧

=
OFFS,
ONS,

tFS iswhen0
iswhen1

( )
⎩
⎨
⎧

=
ONS,
OFFS,

tFS iswhen0
iswhen1



 

 11

A. The large-signal model 

Derived from the state-space averaging theory, the relations between )(tx  and 

)(ty  for switching branches are described in the Equations (2.2) and (2.3); where 

ST  means the switching period, ONT / OFFT  means the ON/OFF time duration of 

switch, and ( )td  and ( )td ′  are the duty ratios of switch.  

                (2.2a) 

                (2.2b) 

               (2.3) 

From equations (2.2), the large-signal models of the switching branches can be 

obtained by multiplying the input signal of the switching branches together with 

their duty ratios. Therefore, replacing the switching branches with the large-signal 

models of switching branches can develop the large signal model of the switching 

converter. 

B. The steady-state model approach 

  In steady state, the input signal )(tx , output signal )(ty  and the duty 

ratios ( )td  and ( )td ′  are approached to be constant, X , Y , D  and D′  

respectively. According to equation (2.2), the steady-state relations for the 

switching branches are described in the equations (2.4). Similarly, the steady-state 

model of the switching branches can be obtained by multiplying the input signal 

of the switching branches with their duty ratios, as described in equations (2.4). 

Assuming 0→s  and substituting the steady-state model into the SFG for the 

switching branches, the steady-state model of the switching converter is obtained. 

               (2.4a) 

               (2.4b) 

C. Small-signal model 

  Introducing the small perturbations x̂ , ŷ , and d̂  near the working point, 
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X , Y , and D . One can obtain the following equations: 

 
 

               (2.5) 
               (2.6) 
               (2.7) 
               (2.8) 
               (2.9) 

Substitute equations (2.5) - (2.9) into equation (2.2), the relations of the 

small-signal perturbation can be described as equation (2.10). 

 

              (2.10a) 

 

               (2.10b) 

By neglecting the second order perturbations, the equations (2.10) can be 

modified as: 

               (2.11a) 

               (2.11b) 

The same, substituting the small-signal model into the SFG for the switching 

branches can easily generate the small-signal model of the switching converter.  

 

(5) The algebraic rules of the flow-graph can be used to simplify the resulting models.  

By means of the flow-graph algebraic rule, the small-signal dynamic model can be 

further simplified. Based on the simplified small-signal model, the analytic form 

of the transfer functions for the switching converters can easily be derived by 

using Mason’s Rule.  
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Consider a boost converter operated in CCM as an example [40-41], as shown in 

Fig. 2.1(a), where vs is the input voltage, L is the inductor, C is the capacitor, R is the 

resistor, RL is the parasitic resistance of the inductor, and S and D are the controllable 

switch and diode respectively. Define vL, vO, iL and iO as the inductor voltage, output 

voltage, inductor current and output current respectively. As the boost converter 

operated in CCM, there are only two switching states corresponding to switch ON and 

OFF. When the switch is ON, the diode is reversed biased and the voltage source 

supplies power to the inductor. When the switch is OFF, the output stage receives the 

power from the inductor and input source. The two sub-circuits, ON-circuit and 

OFF-circuit, are shown in Figs. 2.1(b) and (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Boost converter: (a) the circuit diagram (b) switch ON, (c) switch OFF. 
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According to the procedure of constructing the signal flow-graph, the two 

sub-circuits can be described by their flow-graphs, GON and GOFF, as shown in Figs. 

2.2 (b) and 2.2(c). The switching function of S is defined the same as equations (2.1a) 

and (2.1b). Then, by adding the corresponding switching branches carried with the 

switching functions, the two flow-graphs can be merged to one switching flow-graph, 

G, as shown in Fig. 2.2(c).  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2 (a) The flow-graph of ON-circuit, (b) the flow-graph of OFF-circuit, (c) the 

switching flow-graph of the boost converters.  
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 As illustrated in previous section, the large-signal model, steady-state model and 

small-signal model can be represented as Figs. 2.3(a), 2.3(b) and 2.3(c) respectively. 

In Fig. 2.3(b), SV , LV , OV , LI , OI  and D  represent the steady-state signals of vS, 

vL, vO, iL, iO and d. The small perturbations of vS, vL, vO, iL, iO and d are symbolized as 

Sv̂ , Lv̂ , Ov̂ , Lî , Oî  and d̂  in Fig. 2.3(c). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3 (a) The large-signal model, (b) the steady-state model, (c) the 

small-signal model of the boost converter operated in CCM. 
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From Fig. 2.3(c), one can easily derive the input and output impedance by using 

Mason’s Rule. The input impedance zin and output impedance zout are shown as 

follows: 

              (2.12) 

 

              (2.13) 

 

The transfer functions from arbitrary state variable to another arbitrary state 

variable can be obtained by using the same method, such as input to output gain and 

control to output gain, etc. 

 

This example illustrates that it is easier, faster by using the SFG technique to 

model a DC-DC converter. However, it is seen that for a three-phase switching 

converter with six controllable switches and six parallel diodes, the step of finding 

sub-circuits for the multiple switching states would involve a lot of efforts [36]. The 

merit of easy implementation of the existing switching flow-graph for DC-DC 

converters will be lost. Therefore, in the following sections the concept of virtual 

switch and virtual switching function will be proposed to overcome this dilemma.  
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