

CHAPTER 4B

CIRCUIT THEOREMS

CONTENTS

- 4.6 Superposition Theorem
- 4.7 Thevenin's Theorem
- 4.8 Norton's Theorem
- 4.9 Source Transformation
- 4.10 Maximum Power Transfer Theorem

4.6 Superposition Theorem

$$\begin{array}{ccc} x & \longrightarrow & f(\mathbf{g}) & \longrightarrow & y \\ \text{input} & & & & \text{output} \end{array}$$

The relationship $f(x)$ between cause x and effect y is linear if $f(\cdot)$ is both additive and homogeneous.

definition of additive property :

If $f(x_1)=y_1$, $f(x_2)=y_2$ then $f(x_1+x_2)=y_1+y_2$

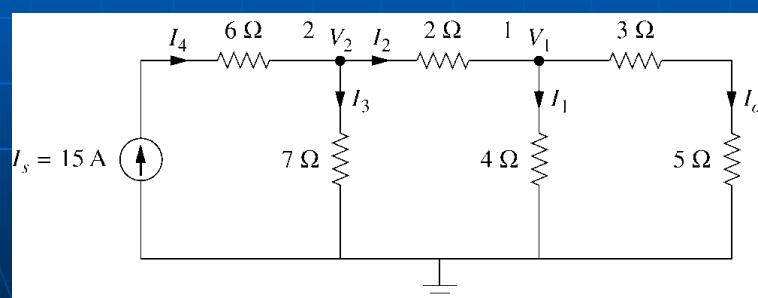
definition of homogeneous property :

If $f(x)=y$ and α is a real number then $f(\alpha x)=\alpha y$

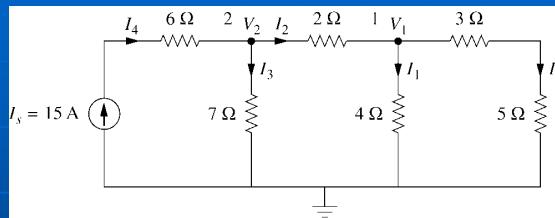
4.6 Superposition Theorem

Example 4.6.1

Assume $I_0 = 1$ A and use linearity to find the actual value of I_0 in the circuit in figure.



4.6 Superposition Theorem



If $I_0 = 1A$, then $V_1 = (3+5)I_0 = 8V$

$$I_1 = \frac{V_1}{4} = 2A , I_2 = I_1 + I_0 = 3A$$

$$V_2 = V_1 + 2I_2 = 8 + 6 = 14V , I_3 = \frac{V_2}{7} = 2A$$

$$I_4 = I_3 + I_2 = 5A \Rightarrow I_S = 5A$$

$$I_0 = 1A \rightarrow I_S = 5A , I_0 = 3A \rightarrow I_S = 15A$$

4.6 Superposition Theorem

For a linear circuit N consisting of n inputs , namely

u_1 , u_2 , \dots , u_n , then the output y can be calculated as the sum of its components :

$$y = y_1 + y_2 + \dots + y_n$$

where

$$y_i = f(u_i) , i=1,2,\dots,n$$

4.6 Superposition Theorem

Proof : Consider the nodal equation of the corresponding circuit for the basic case as an example

$$\begin{bmatrix} G_{11} & G_{12} & \mathbf{L} & G_{1n} \\ G_{21} & G_{22} & \mathbf{L} & G_{2n} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} & \\ G_{n1} & G_{n2} & \mathbf{L} & G_{nn} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} I_{1s} \\ I_{2s} \\ \vdots \\ I_{ns} \end{bmatrix} \mathbf{L} \mathbf{L} \mathbf{L} (A)$$
$$[G] e = I_s \mathbf{L} (B)$$

Let $G_k = [G_{k1} \ G_{k2} \ \dots \ G_{kn}]^T$

Then $[G] = [G_1 \ G_2 \ \dots \ G_n]$

7

4.6 Superposition Theorem

n Cramer's Rule for solving $\mathbf{Ax} = \mathbf{b}$

Take $n=3$ as an example.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Let

$$\det \mathbf{A} = \Delta \neq 0$$

4.6 Superposition Theorem

Then

$$x_1 = \frac{\det \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{\Delta}$$

$$x_2 = \frac{\det \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}}{\Delta}$$

$$x_3 = \frac{\det \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}}{\Delta}$$

4.6 Superposition Theorem

Suppose that the k th nodal voltage e_k is to be found.

Then from Cramer's rule one has

$$e_k = \frac{\det [G_I \ G_I \ L \ I_s \ L \ G_n]}{\det [G]}$$

$$= \dot{\mathbf{a}} \frac{\Delta_{jk}}{\Delta} I_{js}$$

where $D @ \det [G]$

$$\setminus e_k = e_{kI} + e_{k2} + L L + e_{kn}$$

4.6 Superposition Theorem

where

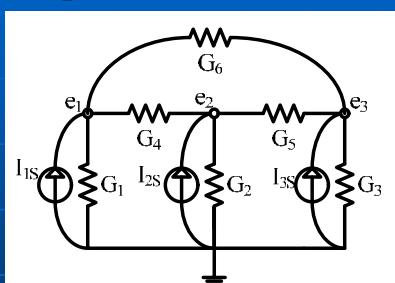
$$e_{kI} = \frac{\Delta_{Ik}}{\Delta} I_{1s} , \text{ due to } I_{1s} \text{ only}$$

$$\begin{array}{c} \vdots \\ \vdots \end{array}$$

$$e_{kn} = \frac{\Delta_{nk}}{\Delta} I_{ns} , \text{ due to } I_{ns} \text{ only}$$

4.6 Superposition Theorem

Example 4.6.2



Find $e_2 = ?$

Nodal Equation

$G_1 + G_4 + G_6$	$-G_4$	$-G_6$
$-G_4$	$G_2 + G_4 + G_5$	$-G_5$
$-G_6$	$-G_5$	$G_3 + G_5 + G_6$

$$\begin{array}{c|c|c} \hline e_1 & & I_{1S} \\ \hline e_2 & = & I_{2S} \\ \hline e_3 & & I_{3S} \\ \hline \end{array}$$

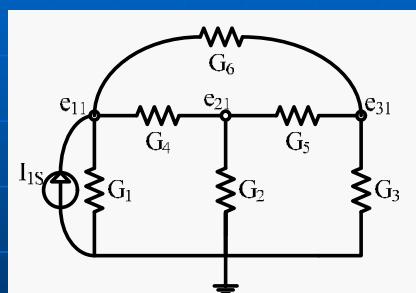
4.6 Superposition Theorem

By using Cramer's rule

$$\begin{aligned}
 e_2 &= \frac{\det \begin{pmatrix} G_1 + G_4 + G_6 & I_{1S} & -G_6 \\ -G_4 & I_{2S} & -G_5 \\ -G_6 & I_{3S} & G_3 + G_5 + G_6 \end{pmatrix}}{\Delta} \\
 &= \frac{\Delta_{12}}{\Delta} I_{1S} + \frac{\Delta_{22}}{\Delta} I_{2S} + \frac{\Delta_{32}}{\Delta} I_{3S} \\
 &= e_{21} + e_{22} + e_{23}
 \end{aligned}$$

4.6 Superposition Theorem

Where e_{21} is due to I_{1S} only , $I_{2S}=I_{3S}=0$



$$\begin{array}{|c|c|c|} \hline
 G_1+G_4+G_6 & -G_4 & -G_6 \\ \hline
 -G_4 & G_2+G_4+G_5 & -G_5 \\ \hline
 -G_6 & -G_5 & G_3+G_5+G_6 \\ \hline
 \end{array} = \begin{array}{|c|} \hline
 e_{11} \\ \hline
 e_{21} \\ \hline
 e_{31} \\ \hline
 \end{array} = \begin{array}{|c|} \hline
 I_{1S} \\ \hline
 0 \\ \hline
 0 \\ \hline
 \end{array}$$

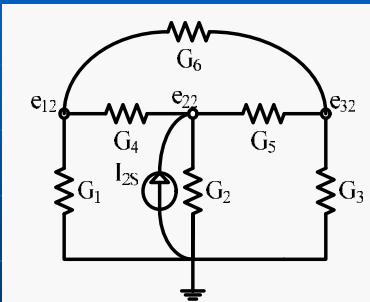
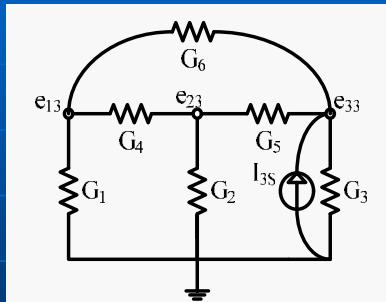
4.6 Superposition Theorem

$$\begin{array}{|c|c|c|} \hline G_1+G_4+G_6 & -G_4 & -G_6 \\ \hline -G_4 & G_2+G_4+G_5 & -G_5 \\ \hline -G_6 & -G_5 & G_3+G_5+G_6 \\ \hline \end{array} \begin{array}{|c|} \hline e_{11} \\ \hline e_{21} \\ \hline e_{31} \\ \hline \end{array} = \begin{array}{|c|} \hline I_{1S} \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$$

$$\begin{aligned} \det \begin{pmatrix} G_1 + G_4 + G_6 & I_{1S} & -G_6 \\ -G_4 & 0 & -G_5 \\ -G_6 & 0 & G_3 + G_5 + G_6 \end{pmatrix} \\ \therefore e_{21} = \frac{\Delta_{12}}{\Delta} I_{1S} \quad , \text{ due to } I_{1S} \text{ only} \end{aligned}$$

4.6 Superposition Theorem

Similarly



Duo to I_{2S} only
 $I_{1S} = I_{3S} = 0$

Duo to I_{3S} only
 $I_{1S} = I_{2S} = 0$

4.7 Thevenin's Theorem

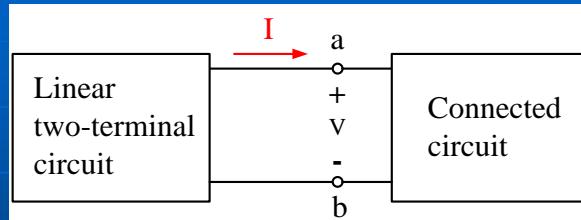
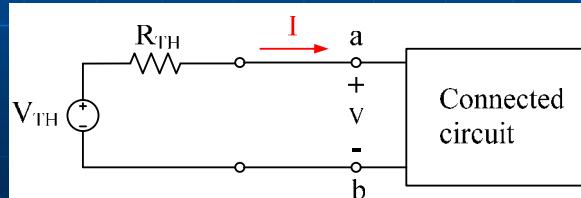
In high school, one finds the equivalent resistance of a two terminal resistive circuit without sources.

Now, we will find the equivalent circuit for two terminal resistive circuit with sources.

4.7 Thevenin's Theorem

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{TH} in series with a resistor R_{TH} where V_{TH} is the open circuit voltage at the terminals and R_{TH} is the input or equivalent resistance at the terminals when the independent sources are turned off .

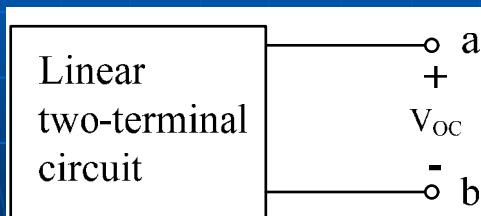
4.7 Thevenin's Theorem



4.7 Thevenin's Theorem

Equivalent circuit: same voltage-current relation at the terminals.

$V_{TH} = V_{OC}$: Open circuit voltage at a-b

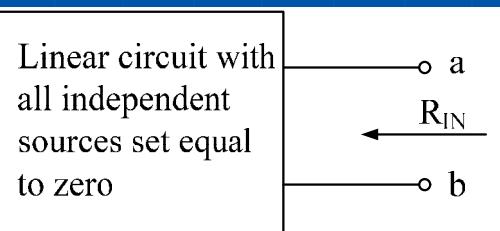


$$V_{TH} = V_{OC}$$

4.7 Thevenin's Theorem

$R_{TH} = R_{IN}$: input resistance of the dead circuit

Turn off all independent sources



$$R_{TH} = R_{IN}$$

4.7 Thevenin's Theorem

CASE 1

If the network has no dependent sources:

- Turn off all independent source.
- R_{TH} : input resistance of the network looking into a-b terminals

4.7 Thevenin's Theorem

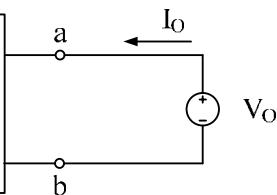
CASE 2

If the network has dependent sources

- Turn off all independent sources.
- Apply a voltage source V_O at a-b

$$R_{TH} = \frac{V_O}{I_O}$$

Circuit with all independent sources set equal to zero

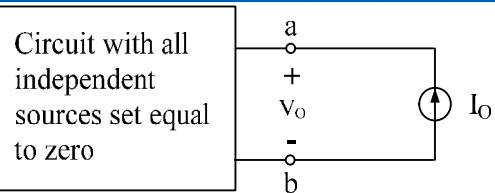


4.7 Thevenin's Theorem

-Alternatively, apply a current source I_O at a-b

$$R_{TH} = \frac{V_O}{I_O}$$

Circuit with all independent sources set equal to zero



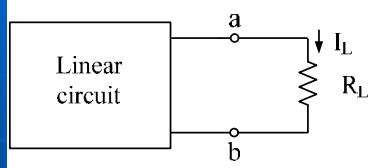
If $R_{TH} < 0$, the circuit is supplying power.

4.7 Thevenin's Theorem

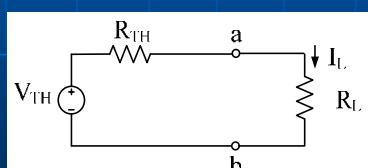
Simplified circuit

$$I_L = \frac{V_{TH}}{R_{TH} + R_L}$$

$$V_L = R_L I_L = \frac{R_L}{R_{TH} + R_L} V_{TH}$$

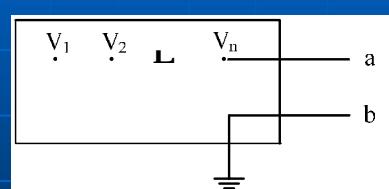


Voltage divider



4.7 Thevenin's Theorem

Proof : Consider the following linear two terminal circuit consisting of $n+1$ nodes and choose terminal b as datum node and terminal a as node n .



$$\begin{pmatrix} G_{11} & \mathbf{K} & G_{1n} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ G_{n1} & \mathbf{L} & G_{nn} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{pmatrix} = \begin{pmatrix} I_{1s} \\ I_{2s} \\ \vdots \\ I_{ns} \end{pmatrix}$$

4.7 Thevenin's Theorem

Then nodal voltage V_n when a-b terminals are open can be found by using Cramer's rule .

$$V_n = \frac{1}{\Delta} \sum_{k=1}^n \Delta_{kn} I_{ks} \quad \mathbf{L} \quad \mathbf{L} \quad \mathbf{L} \quad (\text{A})$$

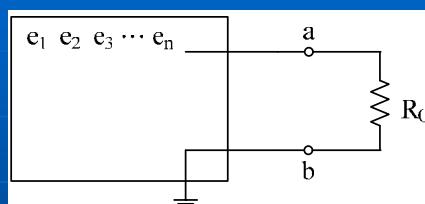
Δ is the determinant of [G] matrix

Δ_{ku} is the corresponding cofactor of G_{kn}

Now connect an external resistance R_o to a-b terminals .

The new nodal voltages will be changed to e_1, e_2, \dots, e_n respectively .

4.7 Thevenin's Theorem



Nodal equation

$$\begin{pmatrix} G_{11} & \mathbf{K} & G_{1n} + 0 \\ \mathbf{M} & G_{2n} + 0 & \mathbf{M} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ G_{n1} & \mathbf{L} & G_{nn} + \frac{1}{R_o} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} I_{1s} \\ I_{2s} \\ \vdots \\ I_{ns} \end{pmatrix} \dots \dots \dots (\text{B})$$

4.7 Thevenin's Theorem

Note that

$$\det \begin{pmatrix} G_{11} & \mathbf{K} & G_{1n} + 0 \\ \mathbf{M} & & G_{2n} + 0 \\ \mathbf{M} & & \mathbf{M} \\ G_{n1} & \mathbf{L} & G_{nn} + \frac{1}{R_o} \end{pmatrix} = \det[G] + \det \begin{pmatrix} G_{11} & \mathbf{K} & 0 \\ G_{21} & & 0 \\ \mathbf{M} & & \mathbf{M} \\ G_{n1} & \mathbf{L} & \frac{1}{R_o} \end{pmatrix}$$

$$= \Delta + \frac{1}{R_o} \Delta_{nn}$$

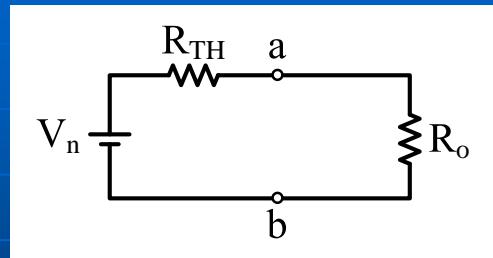
4.7 Thevenin's Theorem

Hence, e_n can be obtained as follows .

$$e_n = \frac{\det \begin{pmatrix} G_{11} & \mathbf{K} & I_{1s} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ G_{n1} & \mathbf{L} & I_{ns} \end{pmatrix}}{\Delta + \frac{1}{R_o} \Delta_{nn}} = \frac{\sum_{k=1}^n \Delta_{kn} I_{ks}}{\Delta + \frac{1}{R_o} \Delta_{nn}} = \frac{\frac{1}{\Delta} \sum_{k=1}^n \Delta_{kn} I_{ks}}{1 + \frac{1}{R_o} \frac{\Delta_{nn}}{\Delta}} = \frac{R_o}{R_o + R_{TH}} V_n$$

where $R_{TH} @ \frac{\Delta_{nn}}{\Delta}$

4.7 Thevenin's Theorem

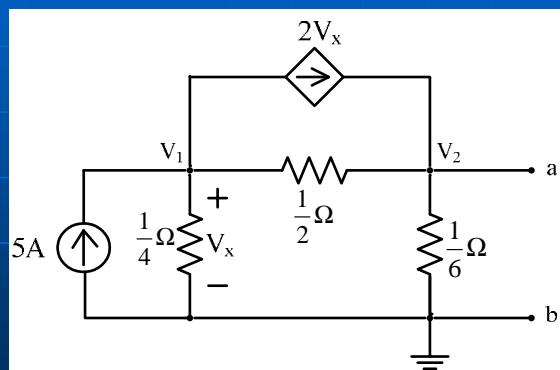


In other words, the linear circuit looking into terminals a-b can be replaced by an equivalent circuit consisting of a voltage source V_{TH} in series with an equivalent resistance R_{TH} , where

$$V_{TH} \text{ is the open circuit voltage } V_n \text{ and } R_{TH} = \frac{\Delta_{mn}}{\Delta}.$$

4.7 Thevenin's Theorem

Example 4.7.1



4.7 Thevenin's Theorem

Example 4.7.1 (cont.)

Find open circuit voltage V_2

$$\begin{pmatrix} 2+4 & -2 \\ -2 & 2+6 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} 5-2V_x \\ 2V_x \end{pmatrix}$$
$$2V_x = 2V_1$$

$$\begin{pmatrix} 2+4+2 & -2 \\ -2-2 & 2+6 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$$\Delta = \det \begin{pmatrix} 8 & -2 \\ -4 & 8 \end{pmatrix} = 64 - 8 = 56$$

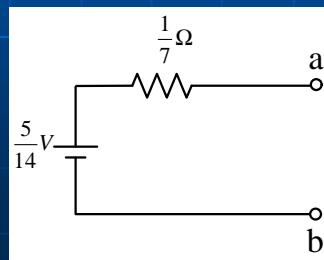
4.7 Thevenin's Theorem

Example 4.7.1 (cont.)

$$\therefore V_2 = \frac{\det \begin{pmatrix} 8 & 5 \\ -4 & 0 \end{pmatrix}}{56} = \frac{20}{56} = \frac{5}{14}V = V_{TH}$$

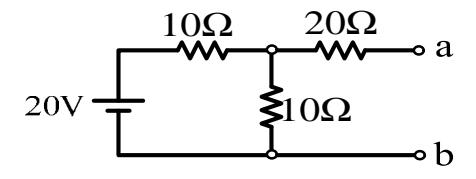
$$R_{TH} = \frac{\Delta_{22}}{\Delta} = \frac{8}{56} = \frac{1}{7}\Omega$$

\therefore Ans.



4.7 Thevenin's Theorem

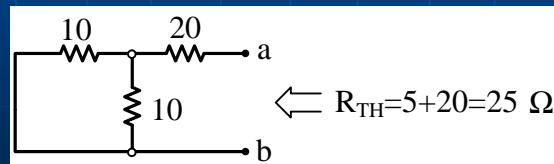
Example 4.7.2



By voltage divider principle :

$$\text{open circuit voltage } V_{TH} = 10V$$

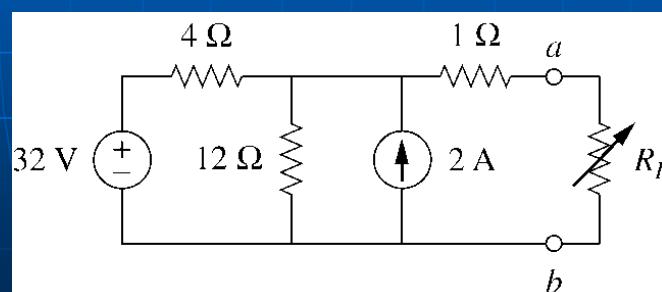
Let independent source be zero



4.7 Thevenin's Theorem

Example 4.7.3

- Find the Thevenin's equivalent circuit of the circuit shown below, to the left of the terminals a-b. Then find the current through $R_L = 6, 16, \text{ and } 36 \Omega$.

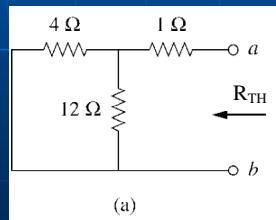
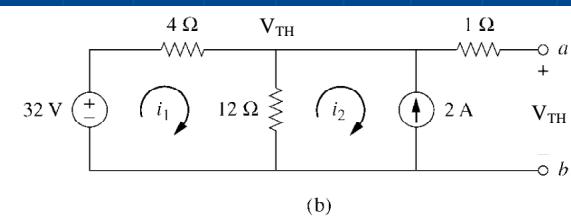


4.7 Thevenin's Theorem

Example 4.7.3 (cont.)

R_{TH} : 32V voltage source \rightarrow short
 2A current source \rightarrow open

$$R_{TH} = 4 \cdot 12 + 1 = \frac{4 \times 12}{16} + 1 = 4\Omega$$



4.7 Thevenin's Theorem

Example 4.7.3 (cont.)

V_{TH} :

Mesh analysis

$$-32 + 4i_1 + 12(i_1 - i_2) = 0, i_2 = -2A$$

$$\therefore i_1 = 0.5A$$

$$V_{TH} = 12(i_1 - i_2) = 12(0.5 + 2.0) = 30V$$

4.7 Thevenin's Theorem

Example 4.7.3 (cont.)

To get i_L :

$$i_L = \frac{V_{TH}}{R_{TH} + R_L} = \frac{30}{4 + R_L}$$

$$R_L = 6 \rightarrow I_L = 30/10 = 3A$$

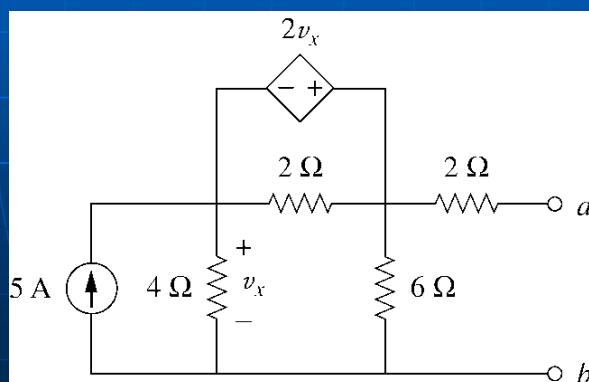
$$R_L = 16 \rightarrow I_L = 30/20 = 1.5A$$

$$R_L = 36 \rightarrow I_L = 30/40 = 0.75A$$

4.7 Thevenin's Theorem

Example 4.7.4

Find the Thevenin's equivalent of the following circuit with terminals a-b.



4.7 Thevenin's Theorem

Example 4.7.4 (cont.)

(independent + dependent source case)

To find R_{TH} from Fig.(a)

independent source $\rightarrow 0$

dependent source \rightarrow unchanged

Apply $v_o = 1V$, $R_{TH} = \frac{v_o}{i_o} = \frac{1}{i_o}$

4.7 Thevenin's Theorem

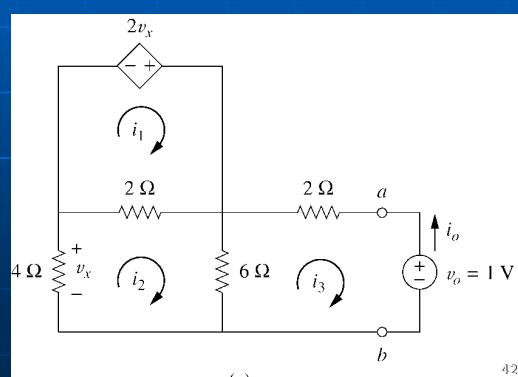
Example 4.7.4 (cont.)

For loop 1 , $-2v_x + 2(i_1 - i_2) = 0$ or $v_x = i_1 - i_2$

But

$$-4i_2 = v_x = i_1 - i_2$$

$$\therefore i_1 = -3i_2$$



4.7 Thevenin's Theorem

Example 4.7.4 (cont.)

Loop 2 and 3:

$$4i_2 + 2(i_2 - i_1) + 6(i_2 - i_3) = 0$$

$$6(i_3 - i_2) + 2i_3 + 1 = 0$$

Solving these equations gives

$$i_3 = -\frac{1}{6} A$$

$$\text{But } i_o = -i_3 = \frac{1}{6} A$$

$$\therefore R_{TH} = \frac{1V}{i_o} = 6\Omega$$

4.7 Thevenin's Theorem

Example 4.7.4 (cont.)

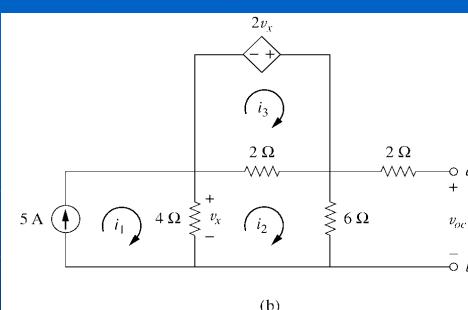
To find V_{TH} from Fig.(b)

Mesh analysis

$$i_1 = 5$$

$$-2v_x + 2(i_3 - i_2) = 0 \Rightarrow v_x = i_3 - i_2$$

$$4(i_2 - i_1) + 2(i_2 - i_3) + 6i_2 = 0 \Rightarrow 12i_2 - 4i_1 - 2i_3 = 0$$



(b)

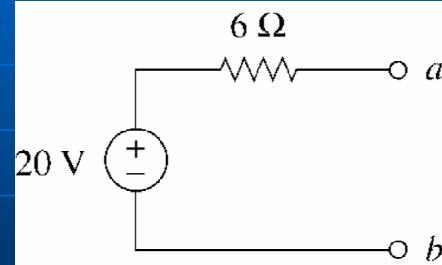
4.7 Thevenin's Theorem

Example 4.7.4 (cont.)

$$\text{But } 4(i_1 - i_2) = v_x$$

$$\therefore i_2 = 10/3.$$

$$V_{TH} = v_{oc} = 6i_2 = 20\text{V}$$



4.7 Thevenin's Theorem

Example 4.7.5

Determine the Thevenin's equivalent circuit :

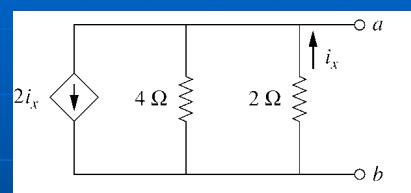
Solution:

(dependent source only)

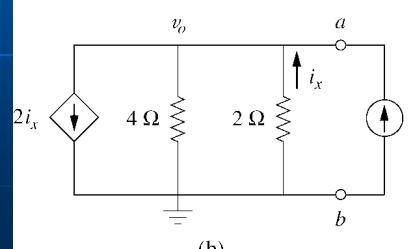
$$V_{TH} = 0 \quad , \quad R_{TH} = \frac{v_o}{i_o}$$

Nodal analysis

$$i_o + i_x = 2i_x + \frac{v_o}{4}$$



(a)



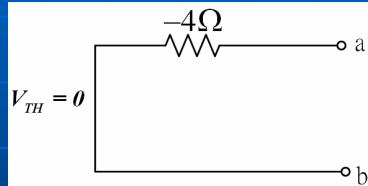
(b)

4.7 Thevenin's Theorem

Example 4.7.5 (cont.)

But

$$\begin{aligned}i_x &= \frac{0 - v_o}{2} = -\frac{v_o}{2} \\i_o &= i_x + \frac{v_o}{4} = -\frac{v_o}{2} + \frac{v_o}{4} = -\frac{v_o}{4} \\or \quad v_o &= -4i_o\end{aligned}$$



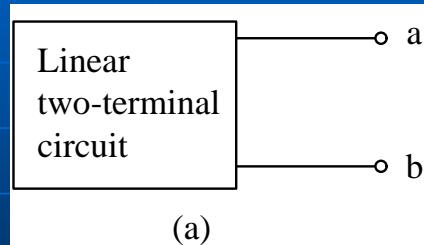
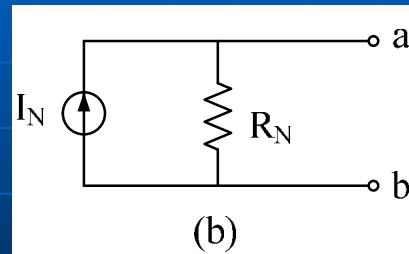
Thus

$$R_{TH} = \frac{v_o}{i_o} = -4\Omega \quad : \text{Supplying Power !}$$

4.8 Norton's Theorem

- **Norton's theorem** states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

4.8 Norton's Theorem



4.8 Norton's Theorem

Proof :

By using Mesh Analysis as an example

Assume the linear two terminal circuit is a planar circuit and there are n meshes when a b terminals are short circuited.

4.8 Norton's Theorem

Mesh equation for case 1 as an example

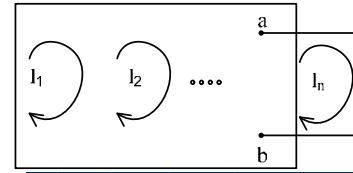
$$\begin{pmatrix} R_{11} & \dots & R_{1n} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ R_{n1} & \mathbf{L} \mathbf{L} & R_{nn} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{pmatrix} = \begin{pmatrix} V_{1S} \\ V_{2S} \\ \vdots \\ V_{ns} \end{pmatrix}$$

Hence the short circuit current

$$I_n = \frac{1}{\Delta} \sum_{k=1}^n \Delta_{kn} V_{ks}$$

where $\Delta = \det[R_{ik}]$

Δ_{kn} is the cofactor of R_{kn}



4.8 Norton's Theorem

Now connect an external resistance R_o to a, b terminals, then all the mesh currents will be changed to J_1, J_2, \dots, J_n , respectively.

$$\begin{pmatrix} R_{11} & \dots & R_{1n} + 0 \\ \mathbf{M} & \mathbf{O} & R_{2n} + 0 \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ R_{n1} & \mathbf{L} \mathbf{L} & R_{nn} + R_o \end{pmatrix} \begin{pmatrix} J_1 \\ J_2 \\ \vdots \\ J_n \end{pmatrix} = \begin{pmatrix} V_{1S} \\ V_{2S} \\ \vdots \\ V_{ns} \end{pmatrix}$$

Note that

$$\det \begin{pmatrix} R_{11} & \dots & R_{1n} + 0 \\ \mathbf{M} & \mathbf{O} & R_{2n} + 0 \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ R_{n1} & \mathbf{L} \mathbf{L} & R_{nn} + R_o \end{pmatrix} = \Delta + \det \begin{pmatrix} R_{11} & \mathbf{K} & 0 \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ R_{n1} & \mathbf{L} & R_o \end{pmatrix}$$

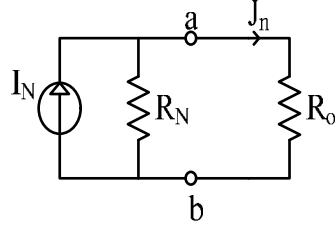
$$= \Delta + R_o \Delta_{nn}$$

4.8 Norton's Theorem

Hence, one has

$$J_n = -\frac{\det \begin{pmatrix} R_{11} & \dots & V_{1s} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ R_{n1} & \mathbf{L} & V_{ns} \end{pmatrix}}{\Delta + R_o \Delta_{nn}} = \frac{\sum_{k=1}^n \Delta_{kn} V_{ks}}{\Delta + R_o \Delta_{nn}}$$

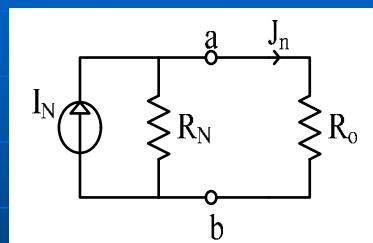
$$= \frac{\frac{1}{\Delta} \sum_{k=1}^n \Delta_{kn} V_{ks}}{1 + R_o \frac{\Delta_{nn}}{\Delta}}$$



4.8 Norton's Theorem

$$= \frac{I_n}{1 + R_o \frac{\Delta_{nn}}{\Delta}}$$

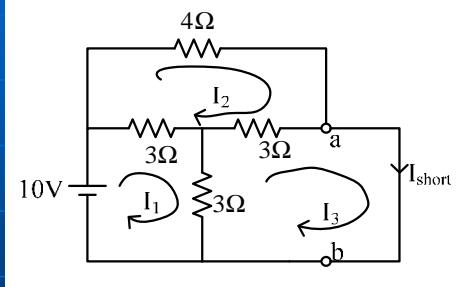
$$= \frac{R_N}{R_o + R_N} I_n$$



$$\text{where } R_N = \frac{\Delta}{\Delta_{nn}} \quad , \quad I_N = I_n$$

4.8 Norton's Theorem

Example 4.8.1 By using the above formula



Find the short circuit current I_3

$$\begin{array}{|c|c|c|} \hline 3+3 & -3 & -3 \\ \hline -3 & 3+3+4 & -3 \\ \hline -3 & -3 & 3+3 \\ \hline \end{array} = \begin{array}{|c|} \hline I_1 \\ \hline I_2 \\ \hline I_3 \\ \hline \end{array} = \begin{array}{|c|} \hline 10V \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$$

C.T. Pan

55

4.8 Norton's Theorem

Example 4.8.1 (cont.)

$$\begin{array}{|c|c|c|} \hline 3+3 & -3 & -3 \\ \hline -3 & 3+3+4 & -3 \\ \hline -3 & -3 & 3+3 \\ \hline \end{array} = \begin{array}{|c|} \hline I_1 \\ \hline I_2 \\ \hline I_3 \\ \hline \end{array} = \begin{array}{|c|} \hline 10V \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$$

$$\det[R_{ik}] = 360 - 27 - 27 - 27 - 90 - 54 - 54 = 108$$

$$I_3 = \frac{1}{108} \det \begin{pmatrix} 6 & -3 & 10 \\ -3 & 10 & 0 \\ -3 & -3 & 0 \end{pmatrix} = \frac{10}{108} (39) = \frac{390}{108} = \frac{65}{18} A = I_N$$

$$R_N = \frac{\Delta}{\Delta_{33}} = \frac{108}{60 - 9} = \frac{36}{17} \Omega$$

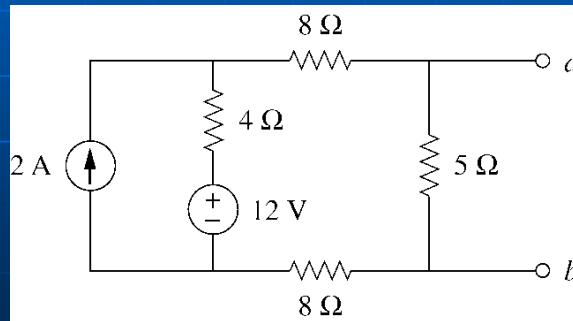
C.T. Pan

56

4.8 Norton's Theorem

Example 4.8.2

Find the Norton equivalent circuit of the following circuit

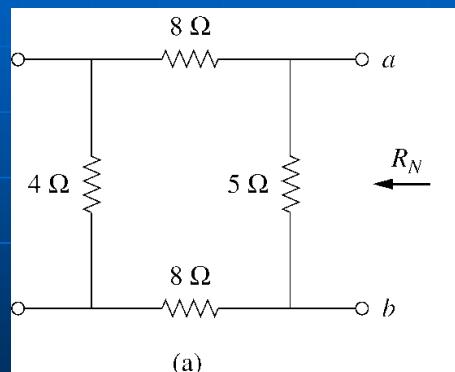


4.8 Norton's Theorem

Example 4.8.2 (cont.)

To find R_N from Fig.(a)

$$R_N = 5 \parallel (8+4+8) \\ = 5 \parallel 20 = \frac{20 \times 5}{25} = 4\Omega$$



4.8 Norton's Theorem

Example 4.8.2 (cont.)

To find I_N from Fig.(b)

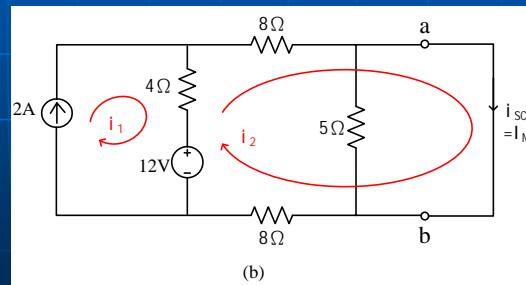
short-circuit terminal a and b

Mesh Analysis:

$$i_1 = 2A$$

$$20i_2 - 4i_1 - 12 = 0$$

$$\therefore i_2 = 1A = I_N$$



4.8 Norton's Theorem

Example 4.8.2 (cont.)

$$\text{Alternative method for } I_N: I_N = \frac{V_{TH}}{R_{TH}}$$

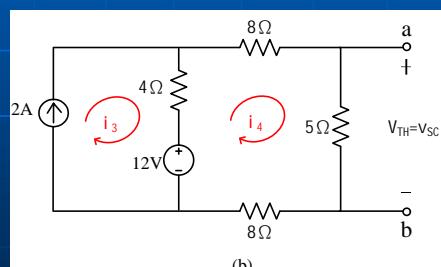
V_{TH} : open-circuit voltage across terminals a and b

Mesh analysis:

$$i_3 = 2A, 25i_4 - 4i_3 - 12 = 0$$

$$\therefore i_4 = 0.8A$$

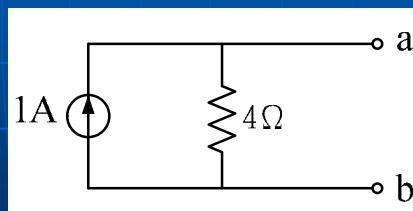
$$\therefore v_{oc} = V_{TH} = 5i_4 = 4V$$



4.8 Norton's Theorem

Example 4.8.2 (cont.)

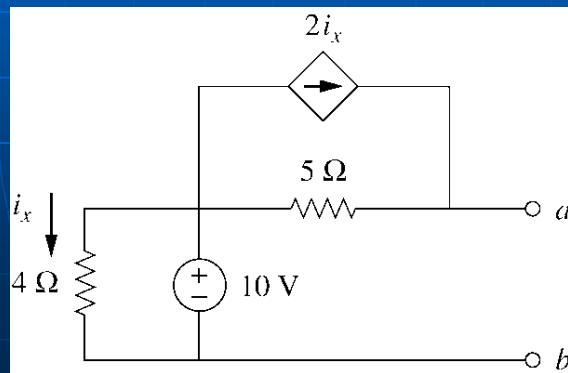
$$\text{Hence, } I_N = \frac{V_{TH}}{R_{TH}} = 4 / 4 = 1\text{A}$$



4.8 Norton's Theorem

Example 4.8.3

- Using Norton's theorem, find R_N and I_N of the following circuit.



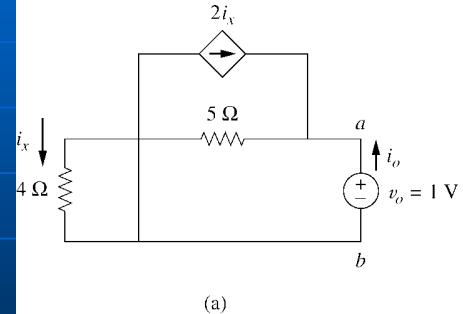
4.8 Norton's Theorem

Example 4.8.3 (cont.)

To find R_N from Fig.(a)

$$\text{Hence, } i_o = \frac{v_o}{5} = \frac{1}{5} = 0.2 \text{ A}$$

$$\therefore R_N = \frac{v_o}{i_o} = \frac{1}{0.2} = 5 \Omega$$



(a)

4.8 Norton's Theorem

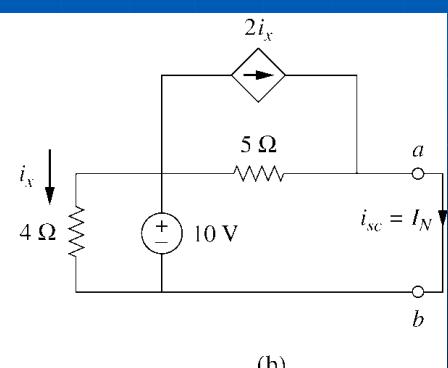
Example 4.8.3 (cont.)

To find I_N from Fig.(b)

$$i_x = \frac{10}{4} = 2.5 \text{ A}$$

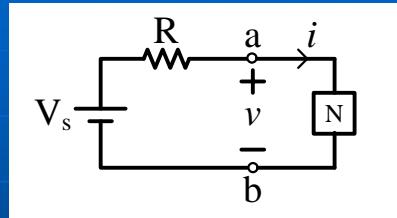
$$\begin{aligned} I_N &= \frac{10V}{5\Omega} + 2i_x \\ &= \frac{10}{5} + 2(2.5) = 7 \text{ A} \end{aligned}$$

$$\therefore I_N = 7 \text{ A}$$



(b)

4.9 Source Transformation

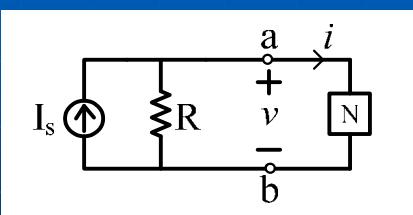


The current through resistor R can be obtained as follows :

$$i = \frac{V_s - v}{R} = \frac{V_s}{R} - \frac{v}{R} @ I_s - \frac{v}{R}$$

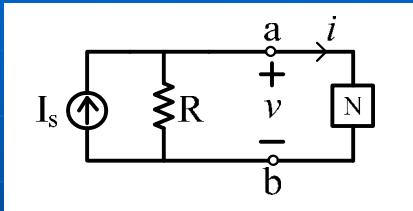
4.9 Source Transformation

From KCL, one can obtain the following equivalent circuit



$$\text{where } I_s @ \frac{V_s}{R}$$

4.9 Source Transformation

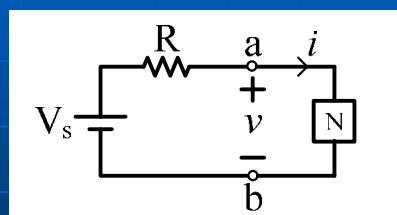


The voltage across resistor R can be obtained as follows :

$$v = (I_s - i)R = I_s R - iR @ V_s - iR$$

4.9 Source Transformation

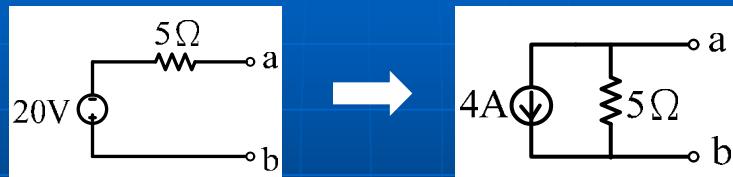
From KVL, one can obtain the following equivalent circuit



$$\text{where } V_s @ R I_s$$

4.9 Source Transformation

Example 4.9.1



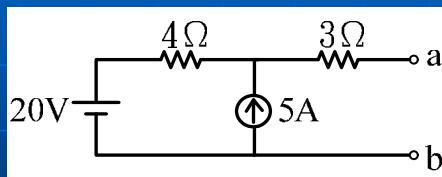
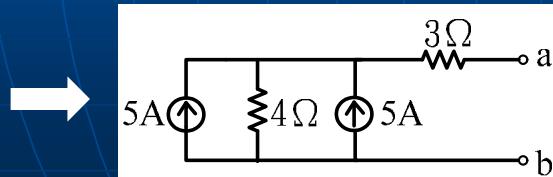
C.T. Pan

69

4.9 Source Transformation

Example 4.9.2

▪ Find the Thevenin's equivalent

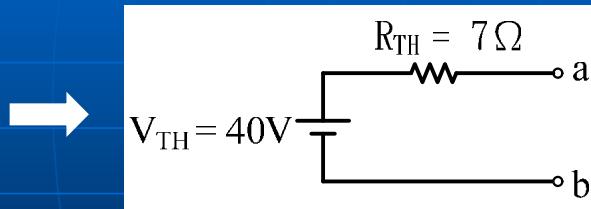


C.T. Pan

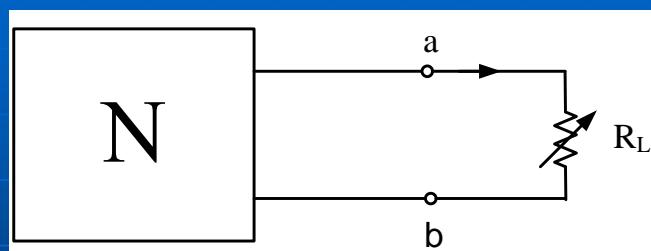
70

4.9 Source Transformation

Example 4.9.2 (cont.)



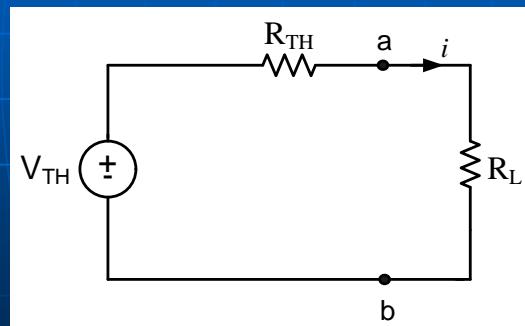
4.10 Maximum Power Transfer Theorem



- Problem : Given a linear resistive circuit N shown as above, find the value of R_L that permits maximum power delivery to R_L .

4.10 Maximum Power Transfer Theorem

Solution : First, replace N with its Thevenin equivalent circuit.



4.10 Maximum Power Transfer Theorem

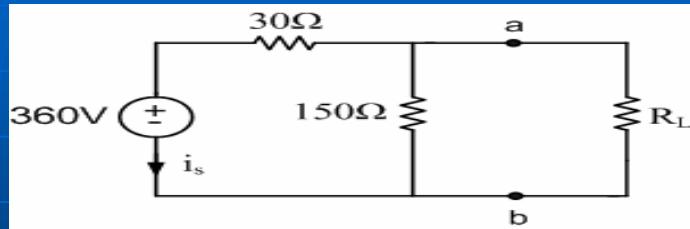
$$p = i^2 R = \left(\frac{V_{TH}}{R_{TH} + R_L} \right)^2 R_L$$

$$\text{Let } \frac{dp}{dR_L} = 0 ,$$

$$\text{Then } R_L = R_{TH} \text{ and } P_{\max} = \left(\frac{V_{TH}}{2R_L} \right)^2 R_L = \frac{V_{TH}^2}{4R_L}$$

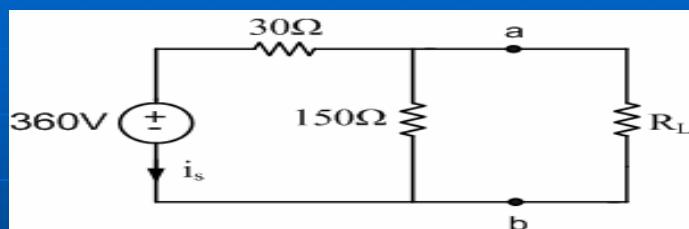
4.10 Maximum Power Transfer Theorem

Example 4.10.1



- Find R_L that results in maximum power transferred to R_L .
- Find the corresponding maximum power delivered to R_L , namely P_{\max} .
- Find the corresponding power delivered by the 360V source, namely P_s and P_{\max}/P_s in percentage.

4.10 Maximum Power Transfer Theorem

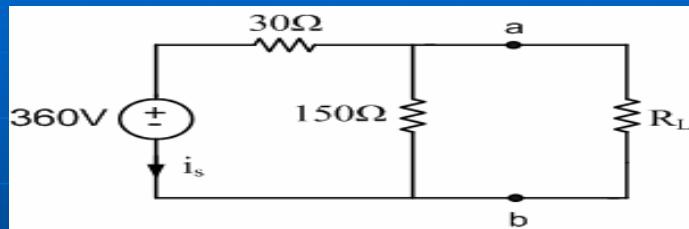


$$Solution : (a) V_{TH} = \frac{150}{180} (360) = 300V$$

$$R_{TH} = \frac{150 \times 30}{180} = 25 \Omega$$

$$(b) P_{\max} = \left(\frac{300}{50} \right)^2 25 = 900W$$

4.10 Maximum Power Transfer Theorem



$$Solution : (c) V_{ab} = \frac{300}{50} \times 25 = 150V$$

$$i_s = \frac{-(360 - 150)}{30} = -7A$$

$$P_s = i_s (360) = -2520W \text{ (dissipated)}$$

$$\frac{P_{max}}{|P_s|} = \frac{900}{2520} = 35.71\%$$

Summary

■ Objective 7 : Understand and be able to use superposition theorem.

■ Objective 8 : Understand and be able to use Thevenin's theorem.

■ Objective 9 : Understand and be able to use Norton's theorem.

Summary

■ Objective 10 : Understand and be able to use source transform technique.

■ Objective 11 : Know the condition for and be able to find the maximum power transfer.

Summary

■ Problem : 4.60
4.64
4.68
4.77
4.86
4.91

■ Due within one week.