題號:276

共 / 頁之第 全 頁

1. Calculate ΔE (internal energy change) and ΔS (entropy change) when 0.5 mole of liquid water at 273 K is mixed with 0.5 mole of liquid water at 373 K and the system is allowed to reach equilibrium in an adiabatic enclosure. Assume C_P is 77 J/(mole K) from 273 to 373 K

(20%)

One mole of solid Cr_2O_3 at 2500 K is dissolved in a large volume of a liquid Raoultian solution of Al_2O_3 and Cr_2O_3 in which X $_{Cr_2O_3}=0.15$ and which is also at 2500 K. Calculate the changes in enthalpy and entropy caused by the addition. The normal melting temperature of Cr_2O_3 is 2538 K. and it can be assumed that the $\Delta S_{m, Al_2O_3}=\Delta S_{m, Cr_2O_3}$.

(20%)

3. For a given temperature, Please derive the critical value of α above which phase separation occurs and the corresponding critical temperature in a binary A-B regular solution •

(20%)

- 4. (a)At 900°K, is Fe₃C a stable compound relative to pure Fe and graphite?
 - (b)In the Fe-C phase diagram, the carbon content of α -iron in equilibrium with Fe₃C is 0.0113 wt% what is the solubility of graphite in α -iron at 900°K?

what is the solubility of graphite in α -iron at 900°K? as known data

at 900° K 3Fe+ $C_{(graphite)}$ = Fe₃C

 $\Delta G^{\circ} = +3463 \text{ J}$

(20%)

The activity coefficient of zinc in liquid brass is given (in joules) by the following equation for temperatures 1000-1500 K
RT lnγzn=-38300 x²Cu where xCu is the mole fraction of copper (a)calculate the partial pressure of zinc Pzn over a solution of 60 mole% copper and 40 mole% zinc at 1200 K
(b)derive an equation for the activity coefficient of copper ...

Data: the vapor pressure of pure zinc is 1.17 atm at 1200 K

(20%)