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• from Thomson’s pudding to Rutherford’s planet

Through a series of work on cathode rays, Thomson discovered electrons in
1897. Because atoms are charge neutral, he proposed a pudding model for
atoms – the positive charge distributes uniformly inside the atoms and the
negatively charged electrons are placed in appropriate equilibrium positions.
Take hydrogen atom as a simple example (shown in Figure 1). Upon pertur-
bations, the electron oscillates and emits light of the same frequency. How-
ever, Thomson’s pudding model seems to predict a unique emission frequency
while the observed spectrum for the hydrogen atom is rather complicated.
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Figure 1: Evolution of atomic models for the hydrogen atom. The red color
denotes the positive charge while the blue denotes the negative charge.

But, this is not the knell for the pudding model. The famous gold foil
experiment shows that the incident alpha particles (much heavier than elec-
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trons) occasionally bounce back. These experimental evidences motivated
Rutherford to propose the planet model in 1909 – positive charge forms tiny
nucleus at the centre of the atom and electrons move around it like planets.
But, Rutherford’s model violates Maxwell equations. Because electrons are
moving in orbits, the acceleration is not zero and will radiate electromagnetic
waves. We thus run into this famous puzzle: Moving charge means radiation
of light and thus jeopardizes the stability of atoms.

• Bohr’s model for hydrogen atom

The first cure to Rutherford’s planet model is proposed by Bohr in 1913.
As a young scientist, he was bold and courageous the make the following
statements without solid derivations:

1. Electrons in an atom can stay in stationary states of constant energy
without radiating.

2. An atom emits (absorbs) radiation of definite frequency when an elec-
tron transfers from one stationary state to another.

Hum, what a great approach to cure the stability problem – Bohr just as-
sumed that it cannot happen! The true value of Bohr’s model is not that
it provides a reasonable explanation for the stability of atoms. Instead, it is
the first model with quantitative predictions for the observed spectrum.

First of all, we need to find these stationary states in atoms. Let us
start from the simplest hydrogen atom. Bohr proposed that the angular
momentum of the circulating electron is quantized in units of ~,

L = n~, n = 1, 2, 3, · · · . (1)

Suppose the electron moves in circular orbit and still respects Newton’s sec-
ond law and Maxwell equations,

e2

4πε0r2
=
mv2

r
. (2)

Combined with the quantization rule L = mvr = n~, it is straightforward to
solve for the radii of the stationary states,

rn =

(
h2ε0
πme2

)
n2 = a0n

2, (3)
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where a0 ≈ 0.053 nm is the radius of the hydrogen atom in the ground state
(n = 1). The energy for each stationary state can be computed as well,

En = −
(
me4

8h2ε20

)
1

n2
≈ −13.6 eV

n2
. (4)

Bohr’s second postulate is about the frequency of radiating emission when
the electron moves from stationary state m (with higher energy) to stationary
state n (with lower energy),

ωmn =
Em − En

~
. (5)

Similarly, the absorption frequency from state n to state m is the same. It
is quite remarkable that the predicted frequencies agree with the observed
spectrum for the hydrogen atom rather well.

• de Broglie wave

The quantization of angular momentum seems to pop out from nowhere in
Bohr’s model. In 1924, de Broglie proposed that all matters have wave-like
behavior, satisfying the same relations for photons proposed by Einstein,

λ =
h

p
, f =

E

h
. (6)

The math is simple but the physical implications are deep – profound enough
to win de Broglie a Noble Prize. If one imagines these stationary states are
standing waves around the circular orbits, it requires that the circumference
is integer multiples of the wave length,

2πr = nλ → L = n~. (7)

But, this is not the moment to celebrate yet. Do matter waves share the
same dynamics as ordinary waves? To simplify the algebra, let us focus on
the one dimensional case. We know the general solution for the travelling
waves in one dimension is

u(x, t) = f(x− vt) + g(x+ vt), (8)

where f(x − vt) and g(x + vt) corresponds to right-moving and let-moving
waves respectively. A standing wave composed of equal amplitude for the
right-moving and the left-moving components takes the simple form,

u(x, t) = A sin(kx) cos(ωt). (9)

As can be seen in Figure 2, the standing wave still gives rise to oscillatory
motions and thus cannot account for the stability of atoms.
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• Heisenberg’s matrices

Heisenberg thought about these magic orbits for the stationary states and
eventually came to the conclusion that it is meaningless to talk about “tra-
jectories” of an electron in atoms because no one is able to measure their
existence ever. Instead, one should focus on observables like ωmn constructed
from these stationary states. At the end of the day, he came to the bizarre
conclusion that all physical quantities should be represented by matrices. For
instance, the position of the electron x is a matrix and the momentum of the
electron p is also a matrix. Because they are matrices, their products depend
on the orders,

xp− px = i~ 6= 0. (10)

Heisenberg’s matrix approach is probably too abstract for most freshman
students. So, I shall stop here with a brief comment that his approach is
completely equivalent to Schrödinger’s approach in the following sections.

• emergence of probability description

Heisenberg was wise to abandon searching for the magic orbits. It turns out
that the stability of atoms find its natural explanation by the probability
interpretation of the de Broglie waves. Suppose the matter wave is described
by the wave function ψ(x, t). In quantum world, we no longer know where
the electron is and requires a probability distribution,

P (x, t) = |ψ(x, t)|2 . (11)

Because the probability adds up to unity, the wave function satisfies the
integral constraint, ∫

|ψ(x, t)|2 dx = 1, (12)

often referred as the normalization condition. Note that the charge density
of the electron is related to the probability density,

ρ(x, t) = −eP (x, t) = −e|ψ(x, t)|2. (13)

To explain the existence of these stationary states, one looks for a time-
dependent wave function ψ(x, t) with a static probability density P = P (x).
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Figure 2: Standing wave (left panel) and stationary state (right panel) with
wave number k = 2π/L inside a box of unit length L = 1.

• Schrödinger’s stationary waves

Schrödingier found the wave equation to describe the dynamics of matter
waves. We will learn more about the technical details of the Schrd̈ingier
equation in later lectures. For comparison, consider the matter wave confined
in a 1D box of length L. Unlike the ordinary standing waves, the wave
function for a stationary state turns out to be

ψ(x, t) =

√
2

L
sin(kx) e−iωt, (14)

where the wave number k and the angular frequency ω are related,

E =
p2

2m
→ ~ω =

~2k2

2m
. (15)

Try to convince yourself that the prefactor
√

2/L ensures that the resultant
probability adds up to unity. Note that the dynamics of the stationary state
solely shows up in the complex phase and thus disappears when evaluating
the probability density (shown in Figure 2),

|ψ(x, t)|2 =
2

L
sin2(kx) → P (x) =

2

L
sin2(kx). (16)

This is the key to solve the long-standing puzzle. For an electron in the sta-
tionary state, its dynamics is captured by the time-dependent wave function.
The kinetic energy of the electron is not zero, E = ~ω = ~2k2/2m. However,
the probability density does not depends on time and the resultant charge
density is stationary – no radiation! We learn from this inspiring example
that an electron can carry non-zero kinetic energy without moving around.
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The stability of atoms is explained by the dynamical complex phase e−iωt in
the stationary states – puzzle solved by the Schrödinger equation.

When will the time dependence becomes observable in experimental mea-
surements? The dynamical complex phase also explains Bohr’s second pos-
tulate. Consider the superposition of two stationary states,

ψ =
1√
2
φ1(x)e−iω1t +

1√
2
φ2(x)e−iω2t. (17)

In general, the functions φi(x) = |φi(x)|eiθi are complex. The probability
density contains a static part and an oscillatory part,

P (x, t) =
1

2
|φ1(x)|2 +

1

2
|φ2(x)|2 + |φ1(x)| |φ2(x)| cos(ω21t− θ21), (18)

where θ21 = θ2(x)−θ1(x). It is quite remarkable that the oscillatory frequency
is nothing but the difference of the frequencies,

ω21 = ω2 − ω1. (19)

Therefore, the superposition of two stationary states generates oscillatory
charge density with non-zero frequency ω21 and thus radiations of the same
frequency as postulated by Bohr. It is worth emphasizing that, due to the
peculiar quantum dynamics, the frequency of the emitted (or absorbed) ra-
diation is neither ω1 nor ω2 but the difference of them.


