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Sunlight is vital for most creatures in this warm and humid planet. From
interference experiments, scientists were once convinced that light is some
fast-travelling waves. But, as mechanical waves need media to propagate,
how can light propagate in the vast vacuum between the Sun and the Earth?
Let us review the wave equation in one dimension studied last semester,
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where u = u(x, t) is the wave function and v is the wave speed. In three di-
mensions, the wave function picks up all spatial dependence, u = u(x, y, z, t),
and satisfies the following wave equation,
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where the Laplacian r2 is a shorthand notation for the sum of all second
derivatives in each dimension,
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Despite of its formidable appearance, the wave equation is nothing but New-
ton’s second law applying to molecular dynamics at microscopic scale. That
is exactly why mechanical waves need media to propagate. Without the
molecular motions in the media, its collective behaviors, i.e. waves, disap-
pear altogether.

• Maxwell equations in vacuum

But, what about light? Does Newton’s second law reign over the light prop-
agation? Nope, the dynamics of the electric and magnetic fields is described
by the Maxwell equations. In vacuum, there is no source term (charge den-
sity ⇢ and/or current density J). It is quite remarkable that the Maxwell
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equations in vacuum still hosts non-trivial solutions with vivid dynamics,

r ·E = 0, r⇥E = �@B

@t

,

r ·B = 0, r⇥B =
1

c

2

@E

@t

, (4)

where c is the speed of light in vacuum. From the above equations, we
can show that the electric and magnetic fields satisfy the wave equation.
In addition, the Maxwell equations tell us that the electromagnetic waves
are transverse (with respect to the propagation directions) with two distinct
polarizations.

• wave equation for light

To derive the wave equation for light, it is helpful to prove the following
identity1,

r⇥ (r⇥X) = r(r ·X)�r2
X. (5)

In Cartesian coordinates, just compute the curl operations twice and the
identity follows. Focus on one of the Maxwell equations,

r⇥E = �@B

@t

. (6)

Taking the curl on both sides and exchanging the order of temporal and
spatial derivatives, it leads to
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The magnetic field on the right-hand side can be eliminated by one of the
Maxwell equations,
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Note that the above equation contains solely the electric field now. Making
use of the identity shown before, r⇥ (r⇥E) = r(r ·E)�r2

E. Because
r ·E = 0 in vacuum, only the second terms survives,

r⇥ (r⇥E) = �r2
E (in vacuum). (9)

1
Compare the identity to the usual one for vectors, a ⇥ (b ⇥ c) = b(a · c) � (a · b)c.

It seems that one can treat the di↵erential operator r as a vector as long as the order is

carefully arranged. Why?
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In consequence, the electric field satisfies the following wave equation,
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Repeating similar steps for the magnetic field, it is straightforward to show
that the same wave equation emerges,
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From the above wave equations, we realize that both the electric and the
magnetic fields can propagate in vacuum without the presence of any source
term! Besides, the wave equations for light is linear and the principle of
linear superposition works. Any complicated shape can be decomposed into
simple sinusoidal waves so that we only need to study these simple solutions.

• electromagnetic waves

The simplest sinusoidal wave in three dimensions is the plane wave,

E(x, y, z, t) = e sin (k · r � !t+ �
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Here k is the wave number (a vector) and ! = kc is the angular frequency.
Because we are dealing with vector fields, their amplitudes e and b are vectors
as well. The phases for the electric and the magnetic fields are denoted as �

e

and �

b

respectively. We shall soon find all relations between these parameters
in the following. First of all, let us compute the divergence of the electric
field in the plane wave,
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The first term (corresponding to the x-direction) gives the contribution,
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Adding all contributions together, the divergence of the electric field is

r ·E = (k · e) cos(k · r � !t+ �
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). (16)
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The Maxwell equation r · E = 0 leads to the geometric constraint on the
amplitude of the electric field,

k · e = 0. (17)

Similarly, the Maxwell equation r ·B = 0 leads to the geometric constraint
on the amplitude of the magnetic field,

k · b = 0. (18)

So, both amplitudes are perpendicular to the propagating direction and ren-
der the electric and magnetic waves transverse.

But, this is not the end of the story – the Maxwell equations tell us more.
Turning our attention to the curl of the fields,

r⇥E =

✓
@E

z

@y

� @E

y

@z

◆
x̂+

✓
@E

x

@z

� @E

z

@x

◆
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Working out the derivatives for the x-component, it gives
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Repeating the same calculations for the other components, the result can be
cast into the following form,
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Substituting into the Maxwell equation relating the electric and the magnetic
fields, it requires that the phases are the same �

e

= �

b

and puts a geometric
constraint on the amplitudes,
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The dispersion relation ! = kc simplifies the relation a bit,

k̂ ⇥ e = c b. (23)

Similarly, starting from the other Maxwell equation relating the electric and
the magnetic fields, it again requires �
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and puts another geometric
constraint on the amplitudes,
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It is straightforward to show that the above geometric constraint is equivalent
to the previous one,

k̂ ⇥ (c b) = k̂ ⇥ (k̂ ⇥ e) = k̂(k̂ · e)� (k̂ · k̂)e = �e. (25)

Note that the above constraints imply that k, e, b are mutually orthogonal.
In fact, k, e, b (the order is important here) form a right-hand orthogonal
basis. With these constraints, the plane-wave solution can be rewritten as
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It shall be clear that both fields are closely related to each other and the light
should be treated as the electromagnetic wave. Because the magnetic field
can be dictated by the electric field, one only needs to count the independent
modes of the electric field. In three dimensions, the transverse directions
with respect to a given wave number k is two and the amplitude e allows
two independent solutions. This explains why light has two polarizations –
secretly embedded in the Maxwell equations already.


