An increase in the price of $X, P_x \uparrow$

$P_{x_1} \to P_{x_2}, \quad P_{x_2} > P_{x_1}$

Assume $P_y = 1$ and m are fixed.

$m' = e(P_{x_2}, P_y, u_1)$

$m = e(P_{x_1}, P_y, u_1) = e(P_{x_2}, P_y, u_2)$

$m'' = e(P_{x_1}, P_y, u_2)$

$CV = e(P_{x_2}, P_y, u_1) - m = e(P_{x_2}, P_y, u_1) - e(P_{x_2}, P_y, u_2)$

distance between u_1 and u_2 in terms of new prices

$EV = e(P_{x_1}, P_y, u_2) - m = e(P_{x_1}, P_y, u_2) - e(P_{x_1}, P_y, u_1)$

distance between u_2 and u_1 in terms of old prices
EX: \(X \& Y\) are perfect complement.

\[u(x,y) = \min\left\{ \frac{x}{2}, \frac{y}{3} \right\} \]

\((P_{x1}, P_y, m)=(0.5,1,100) \)
\((P_{x2}, P_y, m)=(1,1,100) \)

most efficient \(x,y\) ratio: \(\frac{x}{2} = \frac{y}{3} \Rightarrow y=1.5x \)

\(e_1 \) satisfies \(\begin{cases} y=1.5x \\ 0.5x+y=100 \end{cases} \Rightarrow \begin{cases} x=50 \\ y=75 \end{cases} \)

\[u(x,y) = \min\left\{ \frac{x}{2}, \frac{y}{3} \right\} \Rightarrow u_1 = 25 \]

\(e_2 \) satisfies \(\begin{cases} y=1.5x \\ x+y=100 \end{cases} \Rightarrow \begin{cases} x=40 \\ y=60 \end{cases} \)

\[u(x,y) = \min\left\{ \frac{x}{2}, \frac{y}{3} \right\} \Rightarrow u_2 = 20 \]

since \(e_3 = e_1 = (50,75) \Rightarrow m^*=1*50+1*75=125 \)
\(CV=125-100=25 \)

since \(e_4 = e_2 = (40,60) \Rightarrow m^"=0.5*40+1*60=80 \)
\(EV=80-100=-20 \)

\[\triangleright \text{ ordinary demand functions} \]

\[\max x,y \left(\min\left\{ \frac{x}{2}, \frac{y}{3} \right\} \right) \]
s.t. \(P_x x + P_y y = m \)
\[
\begin{align*}
\begin{cases}
\frac{x}{2} = \frac{y}{3} & \Rightarrow \quad y = 1.5 x \\
P_x x + P_y y = m & \\
P_x x + 1.5 P_y y = m
\end{cases}
\]
\((P_x + 1.5 P_y)x = m\)

\[
x^* = \frac{m}{P_x + 1.5 P_y} = \frac{2m}{2P_x + 3P_y}
\]

\[
y^* = \frac{1.5 m}{P_x + 1.5 P_y} = \frac{3m}{2P_x + 3P_y}
\]

- **Indirect utility function**

 \[
 V(P_x, P_y, m) = u(x^*, y^*) = \frac{m}{2P_x + 3P_y}
 \]

- **Compensated demand functions**

 \[
 \min x, y \quad P_x x + P_y y
 \]

 \[
 s.t. \min\{\frac{x}{2}, \frac{y}{3}\} = u
 \]

 \[
 \begin{cases}
 \frac{x}{2} = \frac{y}{3} = u & \Rightarrow \quad x^h = 2u \\
 y^h = 3u
 \end{cases}
 \]

 independent of \(P_x, P_y \)

- **Expenditure function**

 \[
 e(P_x, P_y, u) = P_x x^h + P_y y^h = P_x \cdot 2u + P_y \cdot 3u = (2P_x + 3P_y)u
 \]

 \[
 u_1 = V(P_{x_1}, P_y, m) = V(0.5, 1, 100) = \frac{100}{2 + 0.5 + 3 + 1} = 25
 \]

 \[
 u_2 = V(P_{x_2}, P_y, m) = V(1, 1, 100) = \frac{100}{2 + 1 + 3 + 1} = 20
 \]

 \[
 CV = e(P_{x_2}, P_y, u_1) - m = e(1, 1, 25) - 100 = (2*1 + 3*1)*25 - 100 = 25
 \]

 \[
 EV = e(P_{x_1}, P_y, u_2) - m = e(0.5, 1, 20) - 100 = (2*0.5 + 3*1)*20 - 100 = -20
 \]
EX:

\[u(x, y) = x^2 y \]

\((P_{x_1}, P_y, m) = (0.5, 1, 90)\)

\((P_{x_2}, P_y, m) = (1, 1, 90)\)

- **ordinary demand functions**

\[
\begin{align*}
\text{max } & x, y \quad x^2 y \\
\text{s.t. } & P_x x + P_y y = m \\
x^* & = \frac{2}{2+1} m = \frac{2}{3} m P_x \\
y^* & = \frac{1}{2+1} m = \frac{1}{3} m P_y
\end{align*}
\]

- **Indirect utility function**

\[
V(P_x, P_y, m) = x^*^2 y^* = (\frac{2}{3} P_x)^2 (\frac{1}{3} P_y)
\]

\[u_1 = V(0.5, 1, 90) = 432000\]

\[x_1 = 120, y_1 = 30\]

\[u_2 = V(1, 1, 90) = 108000\]

\[x_2 = 60, y_2 = 30\]

- **Compensated demand functions**

\[
\begin{align*}
\text{min } & x, y \quad P_x x + P_y y \\
\text{s.t. } & x^2 y = u \\
\text{Foc } & MRS_{xy} = \frac{P_x}{P_y} \\
x^2 y & = u \\
\text{LHS of } & MRS_{xy} \frac{Mux}{Muy} = \frac{2xy}{x^2} = \frac{2y}{x}
\end{align*}
\]

\[
\begin{align*}
\Phi & = > \frac{2y}{x} = \frac{P_x}{P_y} \quad \Rightarrow y = \frac{P_x x}{2P_y} \\
\phi & = > x^2 \frac{P_x}{2P_y} x = u \\
& \frac{P_x}{2P_y} x^3 = u \\
x^3 & = \frac{2P_y}{P_x} u \\
x^h & = \sqrt[3]{\frac{2P_y}{P_x} u} \\
y^h & = \frac{P_x}{2P_y} \sqrt[3]{\frac{2P_y}{P_x} u} = \sqrt[3]{\frac{P_x^2}{4P_y^2} u}
\end{align*}
\]
Expenditure function

\[e(P_X, P_Y, u_2) = P_X x + P_Y y = P_X \frac{2 \sqrt{P_Y}}{P_X} u + P_Y \frac{\sqrt{P_X^2}}{4P_Y} u = \frac{1}{2} 2P_X^2 P_Y u + \sqrt{0.25P_X^2 P_Y u} \]

\[e(P_X, P_Y, u_1) = e(1, 1, 432000) = \frac{3}{2} \sqrt{864000} + \sqrt{108000} \]

\[= 3 \sqrt{108000} = 90 \sqrt{4} \]

\[e(P_X, P_Y, u_2) = e(0.5, 1, 108000) = \frac{3}{2} \sqrt{0.5 \times 108000} + \sqrt{\frac{1}{16} 108000} \]

\[CV = 90 \sqrt{4} - 90 \]

\[EV = 45 \sqrt{2} - 90 \]

\((P_x, P_y, m) \rightarrow x^*, y^* \) old equilibrium

\[V(P_{x1}, P_y, m) = u(x^*, y^*) = u_1 \]

\((P_{x2}, P_y, m) \rightarrow x', y' \) new equilibrium

\[V(P_{x2}, P_y, m) = u(x', y') = u_2 \]

\(e(P_X, P_Y, u) \) is the expenditure function

\[\text{min } x, y \quad P_X x + P_Y y \quad \text{(} x^h, y^h \text{)} \quad \text{compensated demand function} \]

\[\text{s.t. } u(x, y) = u \quad x^h = x(P_X, P_Y, u) \]

\[y^h = y(P_X, P_Y, u) \]

\[e(P_X, P_Y, u) = P_X x^h + P_Y y^h \]

\[e(P_{x1}, P_y, u_2) = e(P_{x1}, P_y, u_1) = m \]

\[e(P_{x2}, P_y, u_1) = e(P_{x2}, P_y, u_2) = m \]
EX:
\[u(x,y) = \sqrt{x} + y \]
\[\max_{x,y} \sqrt{x} + y \]
\[\text{s.t. } P_x x + P_y y = m \]

\[\text{Foc } MRS_{xy} = \frac{P_x}{P_y} \]
\[P_x x + P_y y = m \]
\[\phi \]

\[\text{LHS } MRS_{xy} = \frac{M_{ux}}{M_{uy}} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2x^{0.5}} \]

\[\rightarrow \frac{1}{2x^{0.5}} = \frac{P_x}{P_y} \rightarrow x^* = \frac{P_y^2}{4P_x^2} \]

Note that in the process of finding compensating demand function, we have the FOC:

\[MRS_{xy} = \frac{P_x}{P_y} \]
\[\sqrt{x} + y = u \]

\[\phi \]

\[\Rightarrow x^* = \frac{P_y^2}{4P_x^2} \]

PE = SE

In this example, \(x_2 = x_3 \)

\[\Rightarrow \text{PE} = \text{SE}, \text{there is no income effect.} \]

Figure72:
\[\phi \Rightarrow P_x \cdot \frac{P_y^2}{4P_x^2} + P_y y = m \]

\[P_y y = m - \frac{P_y^2}{4P_x^2} \]

\[y^* = \frac{m}{P_y} - \frac{P_y}{4P_x} \]

\[\text{Figure 73:} \]

\[P_{x1} = 0.5, P_y = 1, m = 90 \]
\[P_{x2} = 1, P_y = 1, m = 90 \]

\[V(P_x, P_y, m) = \sqrt{\frac{P_y^2}{4P_x^2}} + \frac{m}{P_y} - \frac{P_y}{4P_x} \]
\[= \frac{P_y}{2P_x} + \frac{m}{P_y} - \frac{P_y}{4P_x} \]
\[= \frac{m}{P_y} + \frac{P_y}{4P_x} \]

\[u_1 = V(P_{x1}, P_y, m) = V(0.5, 1, 90) = 90.5 \]
\[x^* = 1, y^* = 90.5 \]

\[u_2 = V(P_{x2}, P_y, m) = V(1, 1, 90) = 90.25 \]
\[x' = 0.25, y' = 89.75 \]

\[e(P_x, P_y, u) = ? \]

\[\min_{x,y} P_x x + P_y y \]

\[\text{s.t. } \sqrt{x} + y = u \]
FOC. \(MRS_{xy} = \frac{p_x}{p_y} \phi \)
\[
\begin{align*}
\sqrt{x} + y &= u \quad \phi' \\
\phi &\Rightarrow x^h = x^* = \frac{p_y^2}{4p_x^2} u \text{不影響}
\end{align*}
\]
\[
\phi' \Rightarrow \frac{p_y}{2p_x} + y = u
\]
\[
y^h = u - \frac{p_y}{2p_x}
\]
\[
e(P_x, P_y, u) = P_x \cdot \frac{p_y^2}{4p_x^2} + P_y (u - \frac{p_y}{2p_x})
\]
\[
= \frac{p_y^2}{4p_x} + P_y u - \frac{p_y^2}{2p_x}
\]
\[
= P_y u - \frac{p_y^2}{4p_x}
\]
CV = \(e(P_{x2}, P_y, u_1) - m \)
\[
= e(1, 1, 90.5) - m \\
= (90.5 - 0.25) - 90 = 0.25
\]
EV = \(e(P_{x1}, P_y, u_2) - m \)
\[
= e(0.5, 1, 90.25) - m \\
= (90.25 - 0.5) - 90 = -0.25 \quad \text{CV = -EV}
\]

* quasi-linear function

quasi–linear in y utility function
\[
u(x, y) = y + f(x)
\]
CV = -EV

* Quasi-linear utility function

\[
u(x, y) = y + f(x)
\]
given \(u(x, y) = u_i \)
an indifference curve
\[
\{(x, y) | u(x, y) = u_i\}
\]
\[
=\{(x, y) | y + f(x) = u_i\}
\]
\[
=\{(x, y) | y = u_1 - f(x)\}
\]
u(x, y) = \(u_2 \)
another indifference curve \(\{(x, y) | y = u_2 - f(x)\} \)
the vertical distance between those two difference curve
(suppose $u_2 > u_1$)

$y_2 - y_1 = u_2 - u_1$ (f(x) canceled)

given a X

$MRS_{xy} = \frac{MU_x}{MU_y} = \frac{f'(x)}{1} = f'(x)$ no y

⇒ given a X, $f(x) = MRS_{xy}$ is independent of Y.

Since $MRS_{xy} = f'(x)$

From the FOC, $MRS_{xy} = \frac{P_x}{P_y}$

$$f'(x) = \frac{P_x}{P_y} \Rightarrow x^* = x^h \text{ is a function of } P_x \text{ and } P_y$$
(no m, no income effect)

\[PE = SE \]
\[IE = 0 \]

* **Consumer Surplus, CS**

A consumer is willing to pay \(P \) for \(X \) units of \(X \) units of \(X \) units of \(X \)

The consumer pays \(P_x * X \) for \(X \) units of \(X \)

\[
CS = \int_0^{x_1} p_x \, dx - p_{x_1} X_1
\]

an increase of price of \(X \) from \(P_{x_1} \) to \(P_{x_2} \), \(P_{x_2} > P_{x_1} \)

\[
\Delta CS = \frac{1}{2} (P_{x_1} - P_{x_2}) (X_2 - X_1)
\]

Figure 76: Change in consumer surplus with an increase of price of \(x \)
* Relationship among CV, EC & ∆CS

\[a \sim b \sim c \sim d \]

\[(0, y_0) \sim (1, y_1) \sim (2, y_2) \sim (3, y_3) \]

the consumer is willing to pay \((y_0 - y_1)\)

for the 1st unit of \(X\)

2nd \((y_1 - y_2)\)

Figure 78:

\[P_y = 1, y \text{ : other expenditure.} \]

\[
\text{MRS}_{xy} \text{ at } x=1 = y_0 - y_1 \\
\text{at } x=2 = y_1 - y_2 \\
\text{at } x=3 = y_2 - y_3
\]

in equilibrium, \(\text{MRS}_{xy} = \frac{P_x}{P_y}\)

\[P_y = 1 \implies \text{MRS}_{xy} = P_x \]

(or \(MV_x\))
Figure 79:

\[\Delta CS = ? \]

based on \(X^* \)

\[\Delta CS \text{ base on } x^h(u_1) = ? \quad \text{CV} \]

\[\Delta CS \text{ base on } x^h(u_2) = ? \quad \text{EV} \]

Figure 80:

結論: \(P_{x1} \rightarrow P_{x2}, \quad P_{x2} > P_{x1} \)

\(\Delta CS = \) compensated demand function.

not an ordinary demand function.

given \(u(x, y) = u_1 \)

\(X \) is normal \(\Rightarrow \) \(CV > \Delta CS > EV \)

Quasi-linear \(u(x, y) \) \(\Rightarrow \) \(CV = \Delta CS = EV \)
Revealed Preference

The theory of revealed preference.

Bundle \((x_1, y_1)\) is revealed preferred to bundle \((x_2, y_2)\)
if
\[\begin{align*}
\&(1) \text{ both bundles are affordable/} \\
\&(2) (x_1, y_1) \text{ is chosen (but not } (x_2, y_2))
\end{align*} \]

\[\left((\& P_x x_1 + P_y y_1 \geq P_x x_2 + P_y y_2) \right) \]

The principle of the revealed preference.

Suppose a consumer is rational and \((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\), then \((x_1, y_1)\) must be preferred to \((x_2, y_2)\)

(Axiom)

The weak axiom of revealed preference. (WARP)

Suppose 「(\((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\)」 statement A

then 「(\((x_1, y_1)\) cannot be revealed preferred to \((x_2, y_2)\)」 statement B

statement A is true => according to the principle of the revealed preference,
we have \((x_1, y_1) > (x_2, y_2)\)

statement B is true =>
an inconsistency in the consumer’s preference.

EXAMPLE

某人將全部所得用於買 A 物及 B 物。

當 A 物價格 \(P_A\) 為 2 元，而 B 物價格也為 2 元時，他以 80 元的所得購買 20 單位的 A 物，當 \(P_A = 4, P_B = 2\) 時，他以 120 元的所得購買 25 單位的 A 物。

請問其消費行為是否符合經濟理性？試加比較說明之。

(Definition) \((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\)

if (1) both \((x_1, y_1)\) and \((x_2, y_2)\) are affordable
(2) \((x_1, y_1)\) is chosen

if \((x_1, y_1)\) is chosen at \((P_{x_1}, P_{x_2})\), \(P_x x_1 + P_y y_1 \geq P_x x_2 + P_y y_2\)

The principle of the revealed preference

If consumer is rational

\(\Rightarrow\) Then \((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\)

implies \((x_1, y_1)\) is preferred to \((x_2, y_2)\)

\((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\)
then \((x_2, y_2)\) cannot be revealed preferred to \((x_1, y_1)\)

\[
P_{x_1}x_1 + P_{y_1}y_1 \geq P_{x_1}x_2 + P_{y_1}y_2
\]

and \((x_1, y_1)\) is chosen

at \((P_{x_2}, P_{y_2})\), \((x_2, y_2)\) is chosen, but not \((x_1, y_1)\)

\[
P_{x_2}x_1 + P_{y_2}y_1 \geq P_{x_2}x_2 + P_{y_2}y_2
\]

Example

(a) \((P_{x_1}, P_{y_1}) = (20, 1)\) \((x_1, y_1) = (2, 40)\) \(m_1 = 80\)

\((P_{x_2}, P_{y_2}) = (20, 4)\) \((x_2, y_2) = (3, 25)\) \(m_2 = 160\)

(b) \((P_{x_1}, P_{y_1}) = (20, 1)\) \((x_1, y_1) = (3, 20)\) \(m_1 = 80\)

\((P_{x_2}, P_{y_2}) = (20, 4)\) \((x_2, y_2) = (2, 30)\) \(m_2 = 160\)

sol.

\(a\)

\[
P_{x_1}x_1 + P_{y_1}y_1 = 20 \times 2 + 1 \times 40 = 80
\]

\[
P_{x_1}x_2 + P_{y_1}y_2 = 20 \times 3 + 1 \times 25 = 85
\]

\(\Rightarrow\) \((x_1, y_1)\) is not revealed preferred to \((x_2, y_2)\) …(1)

\[
P_{x_2}x_2 + P_{y_2}y_2 = 20 \times 3 + 4 \times 25 = 160
\]

\[
P_{x_2}x_1 + P_{y_2}y_1 = 20 \times 2 + 4 \times 40 = 200
\]

\(\Rightarrow\) \((x_2, y_2)\) is not revealed preferred to \((x_1, y_1)\) …(2)

(1), (2) \(\Rightarrow\) doesn’t violate the WARP.

sol.

\(b\)

\[
P_{x_1}x_1 + P_{y_1}y_1 = 20 \times 3 + 1 \times 20 = 80
\]

\[
P_{x_1}x_2 + P_{y_1}y_2 = 20 \times 2 + 1 \times 30 = 70
\]

\(\Rightarrow\) \((x_1, y_1)\) is revealed preferred to \((x_2, y_2)\) …(1)

\[
P_{x_2}x_2 + P_{y_2}y_2 = 20 \times 2 + 4 \times 30 = 160
\]

\[
P_{x_2}x_1 + P_{y_2}y_1 = 20 \times 3 + 4 \times 20 = 140
\]

\(\Rightarrow\) \((x_2, y_2)\) is revealed preferred to \((x_1, y_1)\) …(2)

(1), (2) \(\Rightarrow\) violate the WARP.

\[
\begin{array}{c}
\text{a not RP to b} \\
\text{b not RP to a}
\end{array}
\]

WARP ok!

\[
\begin{array}{c}
\text{c RP to d} \\
\text{d RP to c}
\end{array}
\]

violate to WARP
Figure 81:

- At (P_{x1}, P_{y1}), e is chosen.
- f is affordable, e is RP to f.

- At (P_{x2}, P_{y2}), f is chosen.
- e is not affordable, f is not RP to e.

Figure 82:

- $\Rightarrow e, f$ don’t violate WARP.

- At (P_{x1}, P_{y1}), g is chosen.
- h is not affordable, g is not RP to h.

- At (P_{x2}, P_{y2}), h is chosen.
- g is affordable, h is RP to g.
- $h \geq g$.

- $\Rightarrow g, h$ don’t violate WARP.
(a, b) \{ \text{ok!} \\
(a, c) \{ \text{ok!} \\
(a, d) \{ \text{not} \\
(a, e) \{ \text{ok}

\text{Figure 83:}

Income is fixed at } m
\text{ at } (P_{x1}, P_{y1}) \text{ the consumer chooses } a
\text{ at } (P_{x2}, P_{y2}) \text{ the consumer chooses } b
a \rightarrow b \text{ price effect of a decrease in price of } X
(P_{x1} \rightarrow P_{x2}, P_{x2} < P_{x1})

\text{Figure 89:}

How to decompose PE into SE and IE?
slutsky substitution effect.
If a consumer would have chosen } c' \text{ after a slutsky income subsidy,
note that at } P_{x1}, P_{y}, \text{ and } m, a \text{ and } c' \text{ are affordable, } a \text{ is chosen}
=> a \text{ is RP to } c'
\text{ at } P_{x2}, P_{y}, \text{ and } m, a \text{ and } c' \text{ are both affordable, } c' \text{ is chosen}
=> c' \text{ is RP to } a
\text{check } a, c \text{ is OK with WARP}
At \ (P_{x1}, P_{y}, m), a \text{ is chosen but } c \text{ is not affordable}
=> a \text{ is not RP to } c.
At \ (P_{x2}, P_{y}, m), c \text{ is chosen} , a \text{ and } c \text{ are both affordable}
$\Rightarrow c$ is RP to a
\Rightarrow doesn’t violate WARP

$P_x \downarrow$, slutsky substitution effect

$\quad a \rightarrow c$

$x_3 > x_1$ (X is cheaper, X substitutes for Y)

After slutsky subsidy,

$P_{x2}x_1 + P_{y2}y_1 = P_{x2}x_3 + P_{y2}y_3 = m' \ldots \phi$

original bundle a is c is chosen after affordable at new price slutsky subsidy

$\Rightarrow c$ is RP to a

a cannot RP to c $\Rightarrow c$ is not affordable at (P_x, P_y)

$m = P_{x1}x_1 + P_{y1}y_1 > P_{x1}x_3 + P_{y1}y_3 \ldots \omega$

$\phi-\omega$

$(P_{x2} - P_{x1})x_1 + (P_{y2} - P_{y1})y_1 > (P_{x2} - P_{x1})x_3 + (P_{y2} - P_{y1})y_3$

$(P_{x2} - P_{x1})(x_3 - x_1) + (P_{y2} - P_{y1})(y_3 - y_1) < 0$

$P_{y2} = P_{y1} = P_y$ fixed

$\Rightarrow (P_{x2} - P_{x1}) (x_3 - x_1) < 0$

$\Rightarrow P_{x2} < P_{x1}$ $\Rightarrow x_3 - x_1 > 0$

$\Rightarrow x_3 > x_1$

* Tax

Tax on gasoline (X)

$\$t$ tax on each unit of X

$P_x \rightarrow P_x + t$ \Rightarrow equilibrium $e_1 \rightarrow e_2$

consumer is worse off e_1 is revealed preferred to e_2

(e$_1$ & e_2 are affordable before imposing a $\$t$ unit tax)

$\$t^* X$ \Rightarrow a tax return to the consumer

\Rightarrow new equilibrium e_3
A: \(P_x x + P_y y = m \)

B: \((P_x + t)x + P_y y = m\)

The budget line after tax return: \((P_x + t)x + P_y y = m + tx\)

\[\Rightarrow P_x x + P_y y = m \quad \text{same as A} \]

new income: \(m' = m + tx\)

new price: \(P_x + t \text{ & } P_y\)

slope of the budget line (after tax and tax return)

\[\Rightarrow \frac{P_x + t}{P_y} \quad \text{(a steeper budget line)} \]

\((P_x + t)x + P_y y = m + tx \Rightarrow \text{both } e_1 \text{ and } e_3 \text{ are affordable at } (P_x)\)

\[\Rightarrow e_1 \text{ is revealed preferred to } e_3 \]

\[\Rightarrow \text{consumer is worse off at } e_3 \]

Suppose new equilibrium were at \(e_3'\)

the new budget line is D.

the expenditure of \(e_1\) at \((P_x + t)\) is less than \(m'\)

\[\Rightarrow e_3' \text{ is revealed preferred to } e_3 \text{ (both are on A, and } e_1 \text{ is chosen before tax)} \]

Based on new budget line C

\[\Rightarrow e_1 \text{ is not affordable after tax and tax return} \]

\[\Rightarrow e_3 \text{ is not revealed preferred to } e_1 \]
conclusion: $X \downarrow$ after a tax and tax return

* Price Index and welfare

Based period: 0
Current period: \(t \)
At period 0: \(P_{x0}, P_{y0} \)
\(X_0, Y_0 \)
At period \(t \): \(P_{xt}, P_{yt} \)
\(X_t, Y_t \)

Compare welfare between periods 0 and \(t \)
The consumer is better off in period 0 \((X_0,Y_0)\) is RP to \(X_t,Y_t\)
if \(P_{x0}x_0 + P_{y0}y_0 > P_{x0}x_t + P_{y0}y_t \) …(1)

The consumer is better off in period \(t \) \((X_t,Y_t)\) is RP to \(X_0,Y_0\)
if \(P_{xt}x_t + P_{yt}y_t > P_{xt}x_0 + P_{yt}y_0 \) …(2)

\[
\frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_0 + P_{y0}y_0} < \frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_t + P_{y0}y_t}
\]

Paasche price index 巴氏指數

\[
\frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_0 + P_{y0}y_0} \leq \frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_t + P_{y0}y_t}
\]

Index \(p \geq \frac{m_t}{m_0} \Rightarrow \) the consumer is better off in period 0.

\[
\frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_0 + P_{y0}y_0} \geq \frac{P_{xt}x_0 + P_{yt}y_0}{P_{x0}x_0 + P_{y0}y_0}
\]

Lasperes price index 拉氏指數

\[
\frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_0 + P_{y0}y_0} \geq \frac{P_{xt}x_0 + P_{yt}y_0}{P_{x0}x_0 + P_{y0}y_0}
\]

CPI is one of Lasperes price index

\[
\frac{m_t}{m_0} \leq \frac{P_{xt}x_t + P_{yt}y_t}{P_{x0}x_0 + P_{y0}y_0} \Rightarrow \) the consumer is better off in period \(t \).