Chapter 4 Shear Forces and Bending Moments

4.1 Introduction

Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the plane of bending. In this chapter we discuss shear forces and bending moments in beams related to the loads.

4.2 Types of Beams, Loads, and Reactions

Type of beams

a. simply supported beam (simple beam)

b. cantilever beam (fixed end beam)

c. beam with an overhang
Type of loads
a. concentrated load (single force)
b. distributed load (measured by their intensity):
 uniformly distributed load (uniform load)
 linearly varying load
c. couple

Reactions
consider the loaded beam in figure
equation of equilibrium in horizontal direction

\[
\Sigma F_x = 0 \quad H_A - P_1 \cos \alpha = 0 \\
H_A = P_1 \cos \alpha
\]

\[
\Sigma M_B = 0 \quad -R_A L + (P_1 \sin \alpha)(L - a) + P_2(L - b) + q c^2 / 2 = 0
\]

\[
R_A = \frac{(P_1 \sin \alpha)(L - a)}{L} + \frac{P_2(L - b)}{L} + \frac{q c^2}{2L}
\]

\[
R_B = \frac{(P_1 \sin \alpha)a}{L} + \frac{P_2 b}{L} + \frac{q c^2}{2L}
\]

for the cantilever beam

\[
\Sigma F_x = 0 \quad H_A = \frac{5}{13} P_3
\]

\[
\Sigma F_y = 0 \quad R_A = \frac{12 P_3}{13} + \frac{(q_1 + q_2) b}{2}
\]
\[
\Sigma M_A = 0 \\
M_A = \frac{12}{13} P_3 + \frac{q_1 b}{2} (L - 2b/3) + \frac{q_1 b}{2} (L - b/3)
\]

for the overhanging beam

\[
\Sigma M_B = 0 \\
\Sigma M_A = 0 \\
R_A = \frac{P_4 (L-a) + M_1}{L} \\
R_B = \frac{P_4 a - M_1}{L}
\]

4.3 Shear Forces and Bending Moments

Consider a cantilever beam with a concentrated load \(P \) applied at the end \(A \), at the cross section \(mn \), the shear force and bending moment are found

\[
\Sigma F_y = 0 \\
V = P \\
\Sigma M = 0 \\
M = P x
\]

sign conventions (deformation sign conventions)

the shear force tends to rotate the material clockwise is defined as positive

the bending moment tends to compress the upper part of the beam and elongate the lower part is defined as positive
Example 4-1

a simple beam AB supports a force P and a couple M_0, find the shear V and bending moment M at

(a) at $x = (L/2)_-$

$$R_A = \frac{3P}{4} - \frac{M_0}{L} \quad R_B = \frac{P}{4} + \frac{M_0}{L}$$

(b) at $x = (L/2)_+$

$$\Sigma F_y = 0 \quad R_A - P - V = 0 \quad V = R_A - P = -\frac{P}{4} - \frac{M_0}{L}$$

$$\Sigma M = 0 \quad -R_A (L/2) + P (L/4) + M = 0 \quad M = R_A (L/2) + P (L/4) = PL/8 - M_0/2$$

Example 4-2

a cantilever beam AB subjected to a linearly varying distributed load as shown, find the shear force V and the bending moment M

$$q = \frac{q_0 x}{L}$$

$$\Sigma F_y = 0 \quad -V - \frac{1}{2} (q_0 x / L)(x) = 0 \quad V = -\frac{q_0 x^2}{2L}$$

$$V_{max} = -\frac{q_0 L}{2}$$
\[\Sigma M = 0 \quad M + \frac{1}{2} (q_0 x / L) (x) (x / 3) = 0 \]
\[M = -q_0 x^3 / (6 L) \]
\[M_{\text{max}} = -q_0 L^2 / 6 \]

Example 4-3

an overhanging beam \(ABC \) is supported to an uniform load of intensity \(q \) and a concentrated load \(P \), calculate the shear force \(V \) and the bending moment \(M \) at \(D \)

from equations of equilibrium, it is found

\[R_A = 40 \text{ kN} \quad R_B = 48 \text{ kN} \]

at section \(D \)

\[\Sigma F_y = 0 \quad 40 - 28 - 6 \times 5 - V = 0 \]
\[V = -18 \text{ kN} \]

\[\Sigma M = 0 \]
\[-40 \times 5 + 28 \times 2 + 6 \times 5 \times 2.5 + M = 0 \]
\[M = 69 \text{ kN-m} \]

from the free body diagram of the right-hand part, same results can be obtained

4.4 Relationships Between Loads, Shear Forces, and Bending Moments

consider an element of a beam of length \(dx \) subjected to distributed loads \(q \)
equilibrium of forces in vertical direction
\[\Sigma F_y = 0 \quad V - q \, dx - (V + dV) = 0 \]

or
\[\frac{dV}{dx} = -q \]

integrate between two points \(A \) and \(B \)
\[\int_A^B dV = -\int_A^B q \, dx \]

i.e.
\[V_B - V_A = -\int_A^B q \, dx \]
\[= -(\text{area of the loading diagram between } A \text{ and } B) \]

the area of the loading diagram may be positive or negative

determine moment equilibrium of the element
\[\Sigma M = 0 \quad -M - q \, dx \,(dx/2) - (V + dV) \, dx + M + dM = 0 \]

or
\[\frac{dM}{dx} = V \]

maximum (or minimum) bending-moment occurs at \(\frac{dM}{dx} = 0 \),
i.e. at the point of shear force \(V = 0 \)

integrate between two points \(A \) and \(B \)
\[\int_A^B dM = \int_A^B V \, dx \]

i.e.
\[M_B - M_A = \int_A^B V \, dx \]
\[= (\text{area of the shear-force diagram between } A \text{ and } B) \]

this equation is valid even when concentrated loads act on the beam
between \(A \) and \(B \), but it is not valid if a couple acts between \(A \) and \(B \)
concentrated loads

equilibrium of force

\[V - P - (V + V_i) = 0 \]

or \[V_i = -P \]

i.e. an abrupt change in the shear force occurs at any point where a concentrated load acts

equilibrium of moment

\[-M - P \left(\frac{dx}{2}\right) - (V + V_i) dx + M + M_i = 0\]

or \[M_i = P \left(\frac{dx}{2}\right) + V dx + V_i dx \approx 0 \]

since the length \(dx \) of the element is infinitesimally small, i.e. \(M_i \) is also infinitesimally small, thus, the bending moment does not change as we pass through the point of application of a concentrated load

loads in the form of couples

equilibrium of force \(V_i = 0 \)

i.e. no change in shear force at the point of application of a couple

equilibrium of moment

\[-M + M_0 - (V + V_i) dx + M + M_i = 0\]

or \[M_i = -M_0 \]

the bending moment changes abruptly at a point of application of a couple
4.5 Shear-Force and Bending-Moment Diagrams

concentrated loads

consider a simply support beam AB with a concentrated load P

$$R_A = \frac{Pb}{L}, \quad R_B = \frac{Pa}{L}$$

for $0 < x < a$

$$V = R_A = \frac{Pb}{L}$$
$$M = R_A x = \frac{Pb}{L}x$$

note that $\frac{dM}{dx} = \frac{Pb}{L} = V$

for $a < x < L$

$$V = R_A - P = -\frac{Pa}{L}$$
$$M = R_A x - P(x - a) = \frac{Pa(L - x)}{L}$$

note that $\frac{dM}{dx} = -\frac{Pa}{L} = V$

with $M_{max} = \frac{PaL}{b}$

uniform load

consider a simple beam AB with a uniformly distributed load of constant intensity q
\[R_A = R_B = qL / 2 \]
\[V = R_A - qx = qL / 2 - qx \]
\[M = R_A x - qx(x/2) = qLx/2 - qx^2/2 \]

Note that \(dM/dx = qL/2 - qx/2 = V \)

\[M_{max} = qL^2/8 \text{ at } x = L/2 \]

Several concentrated loads

For \(0 < x < a_1 \)
\[V = R_A \quad M = R_A x \]
\[M_1 = R_A a_1 \]

For \(a_1 < x < a_2 \)
\[V = R_A - P_i \]
\[M = R_A x - P_i(x - a_i) \]
\[M_2 - M_1 = (R_A - P_i)(a_2 - a_1) \]

Similarly for others

\[M_2 = M_{max} \text{ because } V = 0 \text{ at that point} \]

Example 4-4

Construct the shear-force and bending-moment diagrams for the simple beam AB

\[R_A = q \frac{b(b + 2c)}{2L} \]
\[R_B = q \frac{b(b + 2a)}{2L} \]

For \(0 < x < a \)
\[V = R_A \quad M = R_A x \]
for $a < x < a + b$

$$V = R_A - q (x - a)$$

$$M = R_A x - q (x - a)^2 / 2$$

for $a + b < x < L$

$$V = - R_B$$

$$M = R_B (L - x)$$

maximum moment occurs where $V = 0$

i.e. $x_1 = a + b (b + 2c) / 2L$

$$M_{max} = q b (b + 2c) (4 a L + 2 b c + b^2) / 8L^2$$

for $a = c$, $x_1 = L / 2$

$$M_{max} = q b (2L - b) / 8$$

for $b = L$, $a = c = 0$ (uniform loading over the entire span)

$$M_{max} = q L^2 / 8$$

Example 4-5

construct the V- and M-dia for the cantilever beam supported to P_1 and P_2

$$R_B = P_1 + P_2$$

$$M_B = P_1 L + P_2 b$$

for $0 < x < a$

$$V = - P_1$$

$$M = - P_1 x$$

for $a < x < L$

$$V = - P_1 - P_2$$

$$M = - P_1 x - P_2 (x - a)$$
Example 4-6

construct the V- and M-dia for the cantilever beam supporting to a constant uniform load of intensity q

$$R_B = qL \quad M_B = qL^2/2$$

then $V = -qx \quad M = -q x^2 / 2$

$$V_{\text{max}} = -qL \quad M_{\text{max}} = -qL^2/2$$

alternative method

$$V - V_A = V - 0 = V = -\int_0^x q \, dx = -qx$$

$$M - M_A = M - 0 = M = -\int_0^x V \, dx = -q x^2 / 2$$

Example 4-7

an overhanging beam is subjected to a uniform load of $q = 1 \text{ kN/m}$ on AB and a couple $M_0 = 12 \text{ kN-m}$ on midpoint of BC, construct the V- and M-dia for the beam

$$R_B = 5.25 \text{ kN} \quad R_C = 1.25 \text{ kN}$$

shear force diagram

$$V = -qx \quad \text{on } AB$$

$$V = \text{constant} \quad \text{on } BC$$
bending moment diagram

\[M_B = \frac{-q b^2}{2} = \frac{-1 \times 4^2}{2} = -8 \text{ kN-m} \]

the slope of \(M \) on \(BC \) is constant (1.25 kN), the bending moment just to the left of \(M_0 \) is

\[M = -8 + 1.25 \times 8 = 2 \text{ kN-m} \]

the bending moment just to the right of \(M_0 \) is

\[M = 2 - 12 = -10 \text{ kN-m} \]

and the bending moment at point \(C \) is

\[M_C = -10 + 1.25 \times 8 = 0 \text{ as expected} \]