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When the degrees of freedom for the interested system are small, we are often
capable to write down the equations of motion and solve for the corresponding
trajectories. However, when degrees of freedom are huge, finding the exact
trajectories is not very illuminating and is literally impossible for realistic
statistical systems. Take ideal gas as an example. Knowing the probability
to find a particle with speed v,

P (v) =
( m

2πkT

)3/2
4πv2 exp

[
−mv

2

2kT

]
, (1)

is more insightful than finding the zigzag paths for each molecule in the ideal
gas. That is to say, we no longer wish to know the exact evolution of the
velocity v(t). Instead, we treat them as random variables described by some
definite distribution.

• random variables

Let us start with the simplest Bernoulli distribution. Consider a random
variable X = 0, 1 with binary values described by the following probability
distribution,

P (X) =

{
p, X = 1;

1− p, X = 0.
(2)

According to the classical probability theory, 0 ≤ P (X) ≤ 1 and satisfies the
sum rule

∑
X P (X) = 1. The average of the random variable X to the n-th

power is defined as

〈Xn〉 ≡
∑
X

P (X)Xn. (3)

It is straightforward to compute the average 〈X〉 for Bernoulli distribution,

〈X〉 = p · 1 + (1− p) · 0 = p. (4)



-HH0104- entropy 2

The variance ∆X for Bernoulli distribution can also be calculated easily,

∆X ≡
√
〈X2〉 − 〈X〉2 =

√
p(1− p). (5)

The variance is usually a good indicator for fluctuations deviating from the
average. You can see that ∆X vanishes for p = 0, 1 because the random
variable is no longer random.

In many cases, the random variable is continuous and the summation is
replaced by the integral,

〈Xn〉 ≡
∫
dX P (X)Xn. (6)

Here P (X) is probability density, satisfying the sum rule (now an integral),∫
dX P (X) = 1. (7)

The interpretation of the probability density is subtle: P (X)dX denotes the
probability to find the random variable falling into the regime between X
and X + dX. Thus, P (X) is not dimensionless but carries the reciprocal
dimension of the random variable X.

• Shannon entropy

For Bernoulli distribution, it is clear that randomness disappears at p = 0, 1.
However, for general 0 < p < 1, how can we quantify the uncertainty for the
random variable? It turns out that the uncertainty of a statistical system
can be characterised by the Shannon entropy,

σ ≡ 〈− lnP 〉 =
∑
s

−Ps lnPs. (8)

Let’s compute the Shannon entropy for the Bernoulli distribution,

σ = −p ln p− (1− p) ln(1− p). (9)

Making use of limx→0+(x lnx) = 0, one can show that the Shannon entropy
vanishes at p = 0, 1 as expected. The maximum value of the Shannon entropy
occurs at p = 1/2 for Bernoulli distribution,

σmax = ln 2. (10)
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This also agrees with our common sense. The definition presented here leads
to additive property of the Shannon entropy for independent systems. Con-
sider two independent random variables X, Y with probability distribution

P (X, Y ) = f(X)g(Y ), (11)

where f(X) and g(Y ) are the probability distributions for the corresponding
random variables. According to the definition, the Shannon entropy is

σ = 〈− lnP 〉 = 〈− ln f − ln g〉 = σx + σy. (12)

In consequence, the total entropy for two independent statistical systems is
the sum of the individual entropies.

• dog-flea model

It is interesting to explore the dynamics of Shannon entropy in the so-called
dog-flea model. Consider two dogs named X = 0 and X = 1. For simplicity,
we treat time as discrete integers, t = 0, 1, 2, ... and the probability to find
the flea in dog X = 1 at time t is the time-dependent probability function
P (t). At each time step, the flea hops from one dog to the other with a
transition probability 1/τ . Suppose the flea rests in dog X = 0 initially. We
may guess the time evolution of the probability function follows the trend:

P (0) = 0 gradually evolves into P (t→∞) ≡ P∞ =
1

2
. (13)

When the dynamical equilibrium is reached at the end, we expect the prob-
abilities to find the flea on either dog should be the same, i.e. P∞ = 1/2.

Let us try to formulate the dynamical process with mathematical rigour.
The probability at later time P (t + 1) can be expressed in terms of P (t) as
long as the flea hops without referring to its previous memory,

P (t+ 1) = P (t)

(
τ − 1

τ

)
+ [1− P (t)]

1

τ
. (14)

The above equation for P (t) is called the master equation for the stochastic
processes. The first term accounts for the event when the flea was in dog
X = 1 at time t already and remains in the same spot without hopping. On
the other hand, the second term is attributed to the event when the flea was
in dog X = 0 at time t and hops to dog X = 1.
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Figure 1: Entropy evolution σ(t) for the dog-flea model with τ = 10. The
solid line is the prediction from the master equation. The red dots are sim-
ulated by N = 1000 fleas by computer program (left panel) and by N = 68
students in the classroom (right panel). Take N = 1000 fleas in the computer
program and make them hop between X = 0 and X = 1 with the transition
probability 1/τ = 1/10. The probability function P (t) can be constructed
by counting the fraction of the fleas in dog X = 1. The numerical results
agree exceedingly well with the prediction from the master equation. We
can also perform the simulation by the game demonstrated in the classroom.
For N = 68 students, the outcome is still captured by the master equation
but with visible fluctuations. Note that, for t > τ/2, the Shannon entropy is
very close to its maximum value σmax = ln 2.

Let us try to find the solution in equilibrium in the infinite-time limit
first. Because the probability function ceases to change,

lim
t→∞

P (t+ 1) = lim
t→∞

P (t) = P∞. (15)

The time dependence in the master equation drops out and it turns into an
algebraic equation for the stationary probability,

P∞ = P∞

(
τ − 1

τ

)
+ [1− P∞]

1

τ
, → P∞ =

1

2
. (16)

The master equation indeed hosts the equilibrium solutions as we guessed
beforehand. Now we are ready to solve the time evolution of P (t). Let us
massage the master equation into simpler form by changing variable,

Q(t) ≡ P (t)− P∞ = P (t)− 1

2
. (17)

After some algebra, the master equation takes a much simpler form,

Q(t+ 1) =

(
τ − 2

τ

)
Q(t). (18)
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The time evolution of Q(t) can be computed by iterations and the solution
is nothing but the simple geometric sequence,

Q(t) =

(
τ − 2

τ

)
Q(t− 1) = · · · =

(
τ − 2

τ

)t
Q(0). (19)

Switch back to the original variable P (t) = 1/2 +Q(t) and the solution is

P (t) =
1

2
− 1

2

(
τ − 2

τ

)t
, (20)

where Q(0) = −1/2 from the initial condition P (0) = 0 is used. It is in-
teresting to observe that P (t) → P∞ in exponential fashion. As shown in
Figure 1, the Shannon entropy for the dog-flea model can be computed from
the probability function P (t),

σ(t) = −P (t) lnP (t)− [1− P (t)] ln[1− P (t)]. (21)

It is peculiar that the second law of thermodynamics is at work here and
the Shannon entropy is a monotonically increasing function to its maximum
value σmax = ln 2 ≈ 0.693.

• continuous-time limit

Now we would like to derive the master equation in continuous-time limit.
Rewrite the master equation into the following form,

Q(t+ 1)−Q(t)

∆t
= −2

τ
Q(t), (22)

where ∆t = 1 for the discrete time steps. If the parameter τ � ∆t = 1, the
change in each time step is small and the difference can be approximated by
the differential. The resultant differential equation looks very familiar,

dQ

dt
= − 1

τeq
Q, → Q(t) = Q(0)e−t/τeq (23)

where τeq = τ/2 is the relaxation time to reach thermal equilibrium. Follow-
ing similar steps, the probability function is

P (t) =
1

2
− 1

2
e−t/τeq . (24)

The exponential form emerges naturally for stochastic processes without
long-term memory. This turns out to be a universal feature and is inde-
pendent of the model details.


