Linear Algebra

(20.) 1. Let $A=\left[\begin{array}{rrrrr}1 & 3 & 0 & -1 & 2 \\ 0 & -2 & 4 & -2 & 0 \\ 3 & 11 & -4 & -1 & 6 \\ 2 & 5 & 3 & -4 & 0\end{array}\right]$.
(a) Find a basis for the row space of A. (58)
(b) Find a basic for the column space of A. (5\%)
(c) Find a basis for the mull apace of A. (108)
(208) 2. Let $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4\end{array}\right]$. Use the Gauss-Jordan method to determine whethe A is invertible. If it is, find its inverse and express A as a product a product of elementary matrices.
(108) 3. Let $A=\left[\begin{array}{ll}i & 2 \\ a & 1\end{array}\right)$.
(a) Find all values of the cofnplex number a for which A is diagonalizabl In thia case, find a diagonal matrix D such that A is similar to D. (
(b) Find all yalues of the complex number a for which a is unitarily diagonalizable. In thts case, find a diagonal matrix C such that A is unitarily equivalent to C. (5q)
(108) 4. If A is an $n \times n$ (real) matrix with the property that $\|A x\|=1$ for any unit vector x in R^{n}, prove that A is an orthogonal matrix.
(208) 5. (a) Prove that no inverttble square matrix is njipotent. (Recall that a matrix A is nilpotent if $A^{k}=0$ for some positive integer k.) (5\%)
(b) Determine all linear transformations from R to R. Prove your asserti (R is the set of all real numbers.) (58)
(c) Let $a \neq 0$ and b be vectors in R^{n}. Find the projection of b on $s p(a)$ the subspace spanned by a. Prove your assertion. (5q)
(d) If A and B are $n \times n$ matrices satisfying $A B=0$, prove that rank $A+$ rank $B \leq n$. (5q)
(20\%) 6. (a) If A is a square matrix with

$$
\begin{aligned}
& \text { nullity }(T-2 I)=4, \quad \text { nullity }(T-3 I)=5, \\
& \text { nullity }(T-2 I)^{2}=6, \\
& \text { nullity }(T-3 I)^{2}=7, \\
& \text { nullity }(T-2 I)^{3}=8, \\
& \text { nullity }(T-2 I)^{4}=9, \\
& \text { nullity }(T-2 I)^{5}=10,
\end{aligned}
$$

use these data to find a Jordan canonical form of A. (10\%)
(b) Find the algebraic and geometric multiplicities for every eigenvalue of A. (5\%)
(c) Find the characteristic polynomial and the determinant of A. (5\%)

