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Spectral Theorem

In this note we will prove the Spectral Theorem, which is stated below.

Spectral Theorem Suppose A is an n by n real symmetric matriz. Then A has the
factorization

A=QAQ ™' =QAQ"
where A is a diagonal matriz with real eigenvalues on the diagonal and Q is an orthogonal
matriz with columns formed by orthonormal eigenvectors.

For an n by n complex matrix @, Q is called a unitary matrix if QT = Q' If a unitary
matrix is real, then it is an orthogonal matrix. For the proof of the Spectral Theorem, we
need the following Schur’s Theorem:

Schur’s Theorem FEvery square matriz factors into

A=QTQ ' =QrQ"

where T' is upper triangular and Q is unitary. If A has real eigenvalues, then Q and T can
be chosen real: QT = Q7 i.e., Q is orthogonal.

Proof. We prove this by induction. The result is obviousif n = 1: a = 1-a-17!. Assume
the hypothesis holds for k by k matrices and let A be a k + 1 by k + 1 matrix. Let A\; be
an eigenvalue of A and g, be a corresponding unit eigenvector. Using the Gram-Schmidt
process, we can find q,,qs, ..., q,,, such that q,,q,,...,q,; forms an orthonormal basis
for C**1, where C is the set of complex numbers.

Let Q, = [ 9 492 - Qg } . Then @, is unitary and
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where the last equality follows since qy,qs,,...,q;,,; are orthonormal. By the induction
hypothesis, since A, is k by k,
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where @, is unitary and T's is upper triangular. Let
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where T is upper triangular since T's is upper triangular. Therefore, A = QT@T.

If Ay is a real eigenvalue, then q; and @, can stay real. The induction step keeps
everything real when A has real eigenvalues. Induction starts with the 1 by 1 case, and
there is no problem. |

We can now use Schur’s Theorem to prove the Spectral Theorem.
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Proof of the Spectral Theorem. In class we have shown that every symmetric A has real
eigenvalues. By Schur’s Theorem,

A=QTQ"

where Q is orthogonal: Q7 = Q' and T is upper triangular. Then T = Q” AQ, which is
a symmetric matrix since T? = QT AQ = T'. If T is triangular and also symmetric, it must
be diagonal: T = A. Therefore, A = QAQ". |



