
NTHU MATH 2820 Midterm Solution Apr 29, 2008

1. (20pts, 2pts for each)

(a) True.

(b) False. Two independent random variables have zero correlation coefficient. The
converse statement is not true in general.

(c) False. The mean and variance of Cauchy distribution do not exist. Therefore,
we cannot apply the version of WLLN taught in class for this case. Actually,
Xn has the same distribution as X1 (check LN, Ch1-6, p.89, item 6).

(d) False. A point estimate is a value while a point estimator is a random variable.

(e) True.

(f) False. When θ is fixed, the summation of probabilities (or integration of density)
over all possible data is one. The likelihood function represents the probability
of observing same data under different values of θ. Therefore, the summation
(or integration) of likelihood function over θ need not be one.

(g) False. It should be “no unbiased estimator”.

(h) True.

(i) False. T contains all information about θ. Some information that is not related
to θ could be lost during the transformation T .

(j) False. Because the function n(Xn− µ)2 contains an unknown parameter µ, it is
not a statistic.

2. (18pts, 3pts for each)

(a) X ∼ Hypergeometric(r, n, m), where r = 6, n = 6, m = 53− 6 = 47.

(b) X ∼ Poisson(λ), where λ is unknown.

(c) X ∼ Normal(µ, σ2), where µ = 0 and σ2 is unknown.

(d) X ∼ Uniform(1, 2, . . . , N), where N is unknown.

(e) Let θ be the probability of getting a head, which is unknown, then X1 ∼ Bino-
mial(3, θ), X2 ∼ Geometric(θ), and X1, X2 are independent.

(f) (X1, X2, X3, X4) ∼ Multinomial(n, p1, p2, p3, p4), where p1, p2, p3, p4 are un-
known.

3. (a) (6pts) The cdf of Yn is

FYn(y) = P (Yn ≤ y) = P (X1 ≤ y, . . . , Xn ≤ y)

=
n∏

i=1

P (Xi ≤ y) =
(

y

θ

)n
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for 0 ≤ y ≤ θ. So,

P (|Yn − θ| < ε) = P (θ − ε < Yn < θ + ε) = P (θ − ε < Yn < θ) = 1− P (Yn ≤ θ − ε)

= 1− FYn(θ − ε) = 1−
(

θ − ε

θ

)n

= 1−
(
1− ε

θ

)n

−→ 1, as n →∞.

(Note. Compare the result with the consistent property of MLE.)

(b) (6pts) The cdf of Zn is

FZn(z) = P (Zn ≤ z) = P (n(θ − Yn) ≤ z) = P
(
θ − z

n
≤ Yn

)
= 1− P

(
Yn < θ − ε

n

)

= 1− FYn

(
θ − z

n

)
= 1−

(
θ − z/n

θ

)n

= 1−
(

1 +
(−z/θ)

n

)n

for 0 < z < nθ. Because

FZn(z) = 1−
(

1 +
(−z/θ)

n

)n

−→ 1− e−z/θ, as n →∞,

for any z ∈ (0,∞), and 1 − e−z/θ is the cdf of the Exponential distribution
E(1/θ), it is proved that Zn converge in distribution to Z.
(Note. Compare the result with the asymptotic normality property
of MLE. Can you see how different they are?)

4. (a) (6pts) Because the joint pdf is:

f(x1, . . . , xn|θ) =
n∏

i=1

[
(θ + 1)xθ

i

]
= (θ + 1)n

(
n∏

i=1

xi

)θ

,

the log-likelihhod function is:

l(θ) = log f(x1, . . . , xn|θ) = n log(θ + 1) + θ
n∑

i=1

log(xi).

By setting

l′(θ) =
n

θ + 1
+

n∑

i=1

log(xi) = 0,

we can get the solution is

θ̂ = − n∑n
i=1 log(xi)

− 1.

Because
l′′(θ) = −n(θ + 1)−2 < 0, for any θ,

θ̂ is the MLE.

2



(e) (6pts) The Fisher information contained in X1, . . . , Xn is

E(−l′′(θ)) = E

[
n

(θ + 1)2

]
=

n

(θ + 1)2
.

Notice that the Fisher information contained in a single observation Xi is

I(θ) =
1

(θ + 1)2
.

Therefore, the asymptotic variance of the MLE is

1

E(−l′′(θ))
=

1

nI(θ)
=

(θ + 1)2

n
,

and the asymptotic distribution of the MLE is Normal distribution with mean

θ and variance (θ+1)2

n
.

5. (a) (4pts) Because µ1 = E(Y1) = θ + 1
2
, the moment estimator is θ̂1 = Y n − 1

2
. θ̂1 is

unbiased because

E(θ̂1) = E(Y n − 1

2
) = E(Y n)− 1

2
=

(
θ +

1

2

)
− 1

2
= θ.

(b) (2pts)

Var(θ̂1) = Var(Y n − 1

2
) = Var(Y n) =

1

n
Var(Y1) =

1

n
Var(Y1 − θ) =

1

12n
,

because Y1 − θ ∼ U(0, 1). Hence, the standard error of θ̂1 is 1√
12n

.

(c) (6pts) From the hint (i)(ii) and Thm 2.8 in LN, Ch1-6, p.36, the pdf of T(n) is

f(t) = ntn−1, 0 < t < 1. (I)

Therefore,

E(T(n)) =
∫ 1

0
t · ntn−1dt =

n

n + 1
. (II)

Hence, E(θ̂2) = E(Y(n) − θ) + θ − n
n+1

= E(T(n)) + θ − n
n+1

= θ.

(d) (4pts) From equation (I),

E(T 2
(n)) =

∫ 1

0
t2 · ntn−1dt =

n

n + 2
(III)

From hint (ii) and equations (II) and (III),

Var(θ̂2) = Var(Y(n)) = Var(T(n)) = E(T 2
(n))− (E(T(n)))

2 =
n

(n + 1)2(n + 2)
.

Therefore, the standard error of θ̂2 is
√

n
(n+1)2(n+2)

.
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(e) (2pts) The relative efficiency is:

effn(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

12n2

(n + 1)2(n + 2)
.

The asymptotic relative efficiency is limn→∞ effn(θ̂1, θ̂2) = 0.

(f) (4pts) Because θ̂1 and θ̂2 are unbiased,

MSE(θ̂i) = Var(θ̂i),

for i = 1, 2. We know that effn(θ̂1, θ̂2) < 1 for n > 7, which implies Var(θ̂1) >
Var(θ̂2) when the sample size is greater than 7. Therefore, θ̂2 has a smaller
MSE and is better.

6. (a) (5pts) The joint pdf of X1, . . . , Xr is:

f(x1, . . . , xr|p) =
r∏

i=1

(
n
xi

)
pxi(1− p)n−xi

=

[
r∏

i=1

(
n
xi

)] [
p
∑r

i=1
xi

] [
(1− p)nr−

∑r

i=1
xi

]

=




(
p

1− p

)∑r

i=1
xi


 [(1− p)nr]

[
r∏

i=1

(
n
xi

)]

=

{
exp

[(
r∑

i=1

xi

)
· log

(
p

1− p

)]}
[(1− p)nr]

[
r∏

i=1

(
n
xi

)]
.

This is an exponential family, which implies T =
∑r

i=1 Xi is sufficient and
complete.

(b) (3pts)

E(U) = 1 · P (U = 1) = P (X1 = 0) =

(
n
0

)
p0(1− p)n = (1− p)n = θ.

(c) (5pts) For t ≤ n(r − 1),

P (U = 1|T = t) =
P (X1 = 0, T =

∑r
i=1 Xi = t)

P (T = t)
=

P (X1 = 0,
∑r

i=2 Xi = t)

P (T = t)

=
P (X1 = 0)P (

∑r
i=2 Xi = t)

P (T = t)

=

[(
n
0

)
p0(1− p)n

] [(
n(r − 1)

t

)
pt(1− p)n(r−1)−t

]

(
nr
t

)
pt(1− p)nr−t

=

(
n
0

) (
n(r − 1)

t

)

(
nr
t

) =

(
n(r − 1)

t

)

(
nr
t

)
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(note that from the Hint,
∑r

i=2 Xi ∼ B(n(r − 1), p) and T =
∑r

i=1 Xi ∼
B(nr, p)). When t > n(r − 1), it is impossible that X1 can be zero. Therefore
P (U = 1|T = t) = 0.

(d) (3pts) Because T is sufficient and complete for θ (note that θ = (1 − p)n is a
one-to-one transformation) and U is an unbiased estimator of θ, E(U |T ) is a
UMVUE. The UMVUE is:

E(U |T ) = 1 · P (U = 1|T ) =





(
n(r − 1)

T

)

(
nr
T

) , if T ≤ n(r − 1)

0, if T > n(r − 1)

.

5


