1. (20pts, 2pts for each) For the following statements, please answer true or false. If false, please explain why.
(a) Let X be a continuous random variable. For any x in $(-\infty, \infty)$, the probability that X equals x is zero.
(b) Two random variables with zero correlation coefficient are independent.
(c) Suppose that X_{1}, \ldots, X_{n} are i.i.d. from Cauchy distribution. From the law of large number theory, we know that the variance of

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

converges to zero when the sample size n goes to infinity.
(d) A point estimate (i.e., an estimated value) of a parameter θ is a random variable with an associated probability distribution, called sampling distribution.
(e) In the asymptotic method, the exact sampling distribution is often replaced by a Normal distribution while in the (parametric) bootstrap method, we often pretend that the estimated value of parameter is the true parameter.
(f) Because a likelihood function represents the probability (or density) of observing data under different values of parameter θ, the summation (or integration) of a likelihood function over θ must be one.
(g) For the case of an i.i.d. sample from a pdf $f(x \mid \theta)$ satisfying appropriate smooth assumptions, no estimators can have a smaller variance than the Cramer-Rao bound.
(h) For the case of an i.i.d. sample from a pdf $f(x \mid \theta)$ satisfying appropriate smooth assumptions, the MLE is asymptotically efficient, i.e., the ratio between its variance and the Cramer-Rao bound equals one when the sample size tends to infinity.
(i) Suppose that T is a sufficient statistic of X_{1}, \ldots, X_{n}, which follows a joint pdf $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)$. Then, T contains all information in the data X_{1}, \ldots, X_{n}.
(j) Suppose that X_{1}, \ldots, X_{n} are i.i.d. from Normal distribution $N\left(\mu, \sigma^{2}\right)$, where μ and σ are unknown. Then, $n\left(\bar{X}_{n}-\mu\right)^{2}$ is an unbiased estimator of σ^{2} because

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \Rightarrow \frac{n\left(\bar{X}_{n}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{1}^{2} \Rightarrow E\left[n\left(\bar{X}_{n}-\mu\right)^{2}\right]=\sigma^{2} .
$$

2. (18pts, 3pts for each) For each of the random observations X below,

- determine the type of its distribution (i.e., Normal, Exponential, Gamma, Beta, Uniform, Poisson, Hyper-geometric, Binomial, Bernoulli, Negative binomial, Geometric, etc.) which best models X, and
- identify whether the parameters in the chosen distribution are known or unknown and give the values for known parameters.
(a) A player in the California lottery chooses 6 numbers from 1 to 53 and the lottery officials later choose 6 numbers at random. Let X equal the number of matches.
(b) Let X be the number of fatalities that resulted from being kicked by a horse recorded for 10 corps of Prussian cavalry in a year.
(c) A drunkard executes a "random walk" experiment in the following way: Each minute he takes a step north or south, with probability $1 / 2$ each, and his successive step directions are independent. Suppose that the step lengths are about the same. After a quite long period of time, let X be the distance between his/her final and original locations. [Hint. Apply central limit theorem.]
(d) A company has manufactured certain objects and has printed a serial number on each manufactured object. The serial numbers start at 1 and end at N, where N is the number of objects that have been manufactured. Suppose that N is unknown. One of these objects is selected at random, and the serial number of that object is denoted as X.
(e) George tosses a coin three times. Let X_{1} be the number of heads in the three tosses. He then gives the coin to Hilary. She tosses it until the first head occurs. Let X_{2} be the number of times Hilary tosses. Set $X=\left(X_{1}, X_{2}\right)$.
(f) For two factors - starchy or sugary, and green base leaf or white base leaf - the following counts for the progeny of self-fertilized heterozygotes are observed:

Type	Count
Starchy gree	X_{1}
Starchy white	X_{2}
Sugary green	X_{3}
Sugary white	X_{4}

where $X_{1}+X_{2}+X_{3}+X_{4}=n$ and n is fixed in advance. Set $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.
3. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from Uniform distribution $U(0, \theta)$ and set

$$
Y_{n}=\max \left(X_{1}, \ldots, X_{n}\right) \quad \text { and } \quad Z_{n}=n\left(\theta-Y_{n}\right)
$$

(a) (6pts) Prove that Y_{n} converges in probability to θ by showing that for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-\theta\right|<\epsilon\right)=1
$$

(b) (6pts) Prove that Z_{n} converge in distribution to Z, where Z has the Exponential distribution $E(\lambda)$ with parameter $\lambda=1 / \theta$.
[Hint. (i) The pdf of $E(\lambda)$ is $\lambda e^{-\lambda x}$, for $x \geq 0$; the cdf of $E(\lambda)$ is $1-e^{-\lambda x}$, for $x \geq 0$; the mgf of $E(\lambda)$ is $\frac{\lambda}{\lambda-t}$, for $t<\lambda$. (ii) $\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}$.]
4. Let X_{1}, \ldots, X_{n} be i.i.d. random variables with the pdf

$$
f(x \mid \theta)=(\theta+1) x^{\theta}, \quad 0 \leq x \leq 1 .
$$

(a) (6pts) Find the MLE of θ.
(b) (6pts) Find the asymptotic variance and asymptotic sampling distribution of the MLE.
5. Let Y_{1}, \ldots, Y_{n} be i.i.d. from the Uniform distribution $U(\theta, \theta+1)$.
(a) ($4 p t s$) Find the method of moments estimator for θ (denoted as $\hat{\theta}_{1}$) and show that $\hat{\theta}_{1}$ is an unbiased estimator of θ.
(b) (2pts) Find the standard error of $\hat{\theta}_{1}$.
(c) (6pts) Let

$$
\hat{\theta}_{2}=Y_{(n)}-\frac{n}{n+1},
$$

where $Y_{(n)}=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$. Show that $\hat{\theta}_{2}$ is an unbiased estimator of θ. [Hint. (i) Let $T_{i}=Y_{i}-\theta$, then T_{i} has a Uniform distribution $U(0,1)$. (ii) Let $T_{(n)}=\max \left\{T_{1}, \ldots, T_{n}\right\}$, then $T_{(n)}=Y_{(n)}-\theta$. Therefore $\mathrm{E}\left(T_{(n)}\right)=\mathrm{E}\left(Y_{(n)}-\theta\right)$ and $\operatorname{Var}\left(T_{(n)}\right)=\operatorname{Var}\left(Y_{(n)}\right)$.]
(d) $(4 p t s)$ Find the standard error of $\hat{\theta}_{2}$.
(e) (2pts) Find the efficiency of $\hat{\theta}_{1}$ relative to $\hat{\theta}_{2}$, denoted as eff $\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$, and find their asymptotic relative efficiency.
(f) (4pts) When the sample size n is greater than 7, explain which of $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ is better in terms of mean square error. [Hint. $\operatorname{eff}_{n}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)<1$, when $n>7$.]
6. Let X_{1}, \ldots, X_{r} be an i.i.d. sample from binomial distribution $B(n, p)$, i.e., its pdf is:

$$
f(x \mid p)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad \text { where } x=0,1, \ldots, n, \text { and } 0 \leq p \leq 1
$$

We are interested in estimating the parameter $\theta=(1-p)^{n}$.
(a) (5pts) Show that $T=\sum_{i=1}^{r} X_{i}$ is a sufficient and complete statistic for p.
(b) (3pts) Show that

$$
U= \begin{cases}1, & \text { if } X_{1}=0 \\ 0, & \text { otherwise }\end{cases}
$$

is an unbiased estimator.
(c) (5pts) Show that

$$
P(U=1 \mid T=t)= \begin{cases}\frac{\binom{n(r-1)}{t}}{\binom{n r}{t}}, & \text { if } t \leq n(r-1) \\ 0, & \text { if } t>n(r-1)\end{cases}
$$

(d) (3pts) Explain how to obtain a UMVUE of θ and find the UMVUE.
[Hint: Let Y_{1}, \ldots, Y_{k} be independent and $Y_{i} \sim B\left(n_{i}, p\right), i=1, \ldots, k$, then $Y_{1}+$ $\left.\cdots+Y_{k} \sim B\left(n_{1}+\cdots+n_{k}, p\right).\right]$

