21.

$P(X>n+k-1 \mid X>n-1)=\frac{P(X>n+k-1, X>n-1)}{P(X>n-1)}=\frac{P(X \geq n+k, X \geq n)}{P(X \geq n)}$
$=\frac{P(X \geq n+k)}{P(X \geq n)}=\frac{\sum_{i=n+k}^{\infty}(1-p)^{i-1} p}{\sum_{i=n}^{\infty}(1-p)^{i-1} p}=(1-p)^{k}=\frac{(1-p)^{k} p}{1-(1-p)}$
$=\sum_{i=k+1}^{\infty}(1-p)^{i-1} p=p(X \geq k+1)=P(X>k)$
$X \sim G e o(p)$ 即表示 X 爲執行多次 independent bernoulli trials 直到一次成功所需
要的次數，而 $\bar{F}(x)=P(X>x)$ 爲第 x 次後仍失敗的機率。
可以觀察出 $P(X>n+k-1 \mid X>n-1)$ 在給定 $X>n-1$ 條件下，表示在前 $\mathrm{n}-1$ 次的 bernoulli trials 都爲失敗 $\left(Y_{i}=0, Y_{i} \sim \operatorname{Ber}(p), i=1,2, \ldots, n-1\right)$ 的前提下
而從 $X>n-1+k, k=0,1,2, \ldots$ 的部分，即 $Y_{i=n}, Y_{i=n+1}, \ldots, Y_{i=n-1+k}, \ldots$ ，所形成的分配與 $P(X>k)$ 會相同，皆服從 $G e o(p)$ ，因此可以看出 memoryless property。
31.

Def X be the number of phone calls in 10 mins．
（a）$\lambda=2 / h r, t=10($ mins $)=1 / 6(h r), \lambda t=1 / 3$
$X \sim \operatorname{Poi}(1 / 3), x=0,1,2, \ldots$
$P(X \geq 1)=1-P(X=0)=1-e^{-1 / 3} \doteqdot 0.28$
（b）DefT be the time until the first phone call（mins）．
$\lambda=1 / 30$（per mins）
$T \sim \operatorname{Exp}(1 / 30), t \geq 0$
$P(T \geq t)=1-\left(1-e^{-t / 30}\right)=e^{-t / 30} \leq 0.5$
$t=30 \ln 2 \geq 20.79(\mathrm{mins})$
48.

Def．$T \sim \operatorname{Exp}(\lambda), t>0$
$P(T<1)=0.05=>1-e^{-\lambda}=0.05$
$=>e^{-\lambda}=0.95$
$=>\lambda=-\ln (0.95)=0.0513$
55.
$X \sim N\left(\mu, \sigma^{2}\right), Z=\frac{X-\mu}{\sigma} \sim N(0,1)$
$P(\mu-c \leq X \leq \mu+c)=P\left(\frac{-c}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{c}{\sigma}\right)=P\left(\frac{-c}{\sigma} \leq Z \leq \frac{c}{\sigma}\right)=0.95$
$\therefore Z_{0.975}=1.96=\frac{c}{\sigma}=>c=1.96 \sigma$
61.
$X \sim \Gamma(\alpha, \lambda), M_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}$

Let $Y=c X,, M_{Y}(t)=E\left[e^{Y t}\right]=E\left[e^{c X t}\right]=\left(\frac{\lambda}{\lambda-c t}\right)^{\alpha}=\left(\frac{\lambda / c}{\lambda / c-t}\right)^{\alpha}$
$\therefore X \sim \Gamma(\alpha, \lambda), Y=c X \sim \Gamma\left(\alpha, \frac{\lambda}{c}\right)$

CH3

22.

令 X_{1} 爲 $\left(t_{0}, t_{1}\right)$ 發生事件的個數，X_{2} 爲 $\left(t_{1}, t_{2}\right)$ 發生事件的個數。
$X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Poi}\left(\lambda_{2}\right)$
$\because X_{1} \amalg X_{2}=>f\left(x_{1}, x_{2}\right)=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{\lambda_{1}^{x_{1}}}{x_{1}!} \frac{\lambda_{2}^{x_{2}}}{x_{2}!}, \quad x_{1}, x_{2}=0,1,2, \ldots$
令 $N=X_{1}+X_{2}, N \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$
\therefore 所求爲 $f\left(X_{1} \mid X_{1}+X_{2}=n\right)=\frac{f\left(X_{1}, X_{1}+X_{2}=n\right)}{f_{N}(n)}$
$=\frac{f\left(X_{1}=x_{1}, X_{2}=n-x_{1}\right)}{f_{N}(n)}=\frac{\frac{\lambda_{1}^{x_{1}}}{x_{1}!} \frac{\lambda_{2}^{\left(n-x_{1}\right)}}{\left(n-x_{1}\right)!}}{\frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}}=\frac{\lambda_{1}^{x_{1}} \lambda_{2}^{n-x_{1}}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}} \frac{n!}{x_{1}!\left(n-x_{1}\right)!}$
$=\binom{n}{x_{1}}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{x_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-x_{1}}$
$=>X_{1} \sim \operatorname{Bin}\left(n, \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right), x_{1}=0,1,2, \ldots, n$
26.
$P \sim U(0,1), 0<p<1 \quad X \mid P=p \sim \operatorname{Ber}(p), x=0,1$
$f(x \mid P=p)=p^{x}(1-p)^{1-x}, x=0,1$
$f(x, p)=f(x \mid P=p) f(p)=p^{x}(1-p)^{1-x}, x=0,1,0<p<1$
$\therefore f(p \mid X=x)=\frac{f(p, x)}{f_{X}(x)}=\frac{p^{x}(1-p)^{1-x}}{\int_{0}^{1} p^{x}(1-p)^{1-x} d p}$
$=2 p^{x}(1-p)^{1-x}, x=0,1 \quad 0<p<1$
其中 2 可以由以下公式得知 $\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$
$\int_{0}^{1} p^{(x+1)-1}(1-p)^{(2-x)-1} d p=\frac{\Gamma(x+1) \Gamma(2-x)}{\Gamma(x+1+2-2)}=\frac{1}{2}, x=0,1$

CH4

89.

$X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right), Y=\sum_{i=1}^{n} \alpha_{i} X_{i}$
$M_{Y}(t)=E\left(e^{Y t}\right)=E\left(e^{\sum_{i=1}^{n} \alpha_{i} X_{i} t}\right)=\prod_{i=1}^{n} E\left(e^{\alpha_{i} X_{i} t}\right)=\prod_{i=1}^{n} M_{X_{i}}\left(\alpha_{i} t\right)$
$=\prod_{i=1}^{n} e^{\alpha_{i} \mu_{i} t+\frac{\alpha_{i}^{2} \sigma_{i}^{2}}{2} t^{2}}=e^{t \sum \alpha_{i} \mu_{i}+t^{2} \sum \frac{\alpha_{i}^{2} \sigma_{i}^{2}}{2}}$
\therefore By the uniqueness of mgf，$Y \sim N\left(\sum_{i=1}^{n} \alpha_{i} \mu_{i}, \sum_{i=1}^{n} \alpha_{i}^{2} \sigma_{i}^{2}\right)$

CH6
8.
$X, Y \sim \operatorname{Exp}(1) \equiv \Gamma\left(\frac{2}{2}, 1\right)$
$2 X, 2 Y \sim \Gamma\left(\frac{2}{2}, \frac{1}{2}\right) \equiv \chi_{2}^{2}$
$\because F_{m, n}=\frac{\chi_{m}^{2} / m}{\chi_{n}^{2} / n}$
$\therefore \frac{X}{Y}=\frac{2 X}{2 Y}=\frac{\chi_{2}^{2} / 2}{\chi_{2}^{2} / 2} \sim F_{2,2}$
11.
$X_{1}, \ldots, X_{n} \sim N\left(\mu_{x}, \sigma_{X}^{2}=\sigma^{2}\right), Y_{1}, \ldots, Y_{m} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}=\sigma^{2}\right)$
$\because \frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma_{X}^{2}}=\frac{(n-1) S_{X}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
$\frac{\sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}}{\sigma_{Y}^{2}}=\frac{(m-1) S_{Y}^{2}}{\sigma^{2}} \sim \chi_{m-1}^{2}$
$\frac{S_{X}^{2}}{S_{Y}^{2}}=\frac{\frac{(n-1) S_{X}^{2}}{\sigma^{2}} / n-1}{\frac{(m-1) S_{Y}^{2}}{\sigma^{2}} / m-1} \sim F_{n-1, m-1}$
$p\left(F_{n-1, m-1}>c\right)$ 可查 F 分配表得知

