Ch 9.7

$$
\begin{aligned}
& \phi(x)= \begin{cases}1, & \text { if } f\left(x ; \lambda_{1}\right)>k f\left(x: \lambda_{0}\right) \\
r, & \text { if } f\left(x: \lambda_{1}\right)=k f\left(x: \lambda_{0}\right) \\
0, & \text { if } f(x ; \lambda)<k f\left(x: \lambda_{0}\right)\end{cases} \\
& \frac{f_{0}(x)}{f_{1}(x)}=\frac{\lambda_{0}^{\sum x_{i}} e^{-n \lambda_{0}}}{\lambda_{1}^{\sum x_{i}} e^{-n \lambda_{1}}}=e^{n\left(\lambda_{1}-\lambda_{0}\right)}\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\Sigma x_{i}} \alpha\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\Sigma x_{i}} \\
& \because \lambda_{1}>\lambda_{0} \\
& \therefore\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\sum x_{2}} \in \downarrow \Rightarrow \frac{f_{0}(x)}{f_{1}(x)}<c \Leftrightarrow \Sigma x_{i}>C^{*}
\end{aligned}
$$

So we reject H_{0} when $\Sigma x_{2}>c^{*}$
且其中，r满足 $\dot{\epsilon}(\phi(x))=\alpha$ 。
ch9．8
from $9.7, \forall \lambda_{1}>\lambda_{0}$ ，veject
$\forall \lambda_{1}, \lambda_{0}$ s．t $\lambda_{1}>\lambda_{0}$
By Jeyman－Pearson Lemma，
the teot $H_{0}: \lambda=\lambda_{0}$ y $H_{i}: \lambda=\lambda_{1}$ ，且 rejcction region 和 λ_{1} 毎降

$$
\begin{aligned}
& R=\left\{\left(x_{1}, \sim, x_{n}\right)\left|\Sigma x_{i}\right\rangle C^{*}\right\} \\
& R \quad \operatorname{most} P_{0} u
\end{aligned}
$$

\Rightarrow is uniformly most powerful for testing

$$
\left\{\begin{array}{l}
H_{0}: \lambda=\lambda_{0} \\
H_{1}: \lambda>\lambda_{0}
\end{array}\right.
$$

$$
\operatorname{ch} 9.29
$$

$\because g$ is a monotone－increasing fanction．

$$
\begin{aligned}
& \therefore T>t_{0} \Leftrightarrow g(T)>g\left(t_{0}\right) \\
\Rightarrow & p\left(S>g\left(t_{0} \mid H_{0}\right)=p\left(T>t_{0} \mid t_{0}\right)=\alpha\right.
\end{aligned}
$$

5.

$$
X_{i} \stackrel{i i d}{\sim} f, i=1,2, \cdots, n
$$

Test：$H_{0}: f=f_{0}$ V．S．$H_{A}: f=f_{1}, f_{0} \sim P_{0 i}(1), f\left(f_{1} \sim 0\left(\frac{1}{2}\right)\right.$
Let $\lambda(\underset{\sim}{x})=\frac{f_{0}(\underset{\sim}{x})}{f_{1}(\underline{x})} \propto \frac{e^{-n}}{\left(\prod_{i=1}^{n} x_{i}!\right)\left(\frac{1}{2}\right)^{\sum_{i=1}^{n} x_{i}}}<c$
The MP test level $\alpha=0.05$ test for $H_{0}: f=f_{0}$ V．S．$H_{A}: f=f_{1}$ is given by $\phi(x)=\left\{\begin{array}{ll}1, & \text { if } \lambda(x)<c \\ r, & \text { if } \lambda(x)=c \\ 0, & \text { if } \lambda(x)>c\end{array}\right.$ ，

Where c and r is determined by

$$
\begin{aligned}
E_{H_{0}}(\phi)=P\left(\lambda(x)<c \mid H_{0}\right]+r P\left[\lambda(x)=c \mid H_{0}\right] & =\alpha \\
& =0.050
\end{aligned}
$$

Ch 9
30.
（a）

$$
\text { P-value: } \begin{aligned}
V\left(t_{\text {obs }}\right) & =\operatorname{Pr}\left[T>t_{\text {obs }} / H_{0} \text { is true }\right] \\
& =1-F\left(t_{0 b s}\right)
\end{aligned}
$$

＊That $t_{\text {obs }}$ is observed value from T ，so $V=1-F(T)$
（b）
\because Under $H_{0}, F(T)$ is the cdt of $\underbrace{T \text { ，so } F(T) \sim U(0,1)) ~}_{\text {the continuous r．v．}}$ and $V=1-F(T) \sim U(0,1)$ ，under $H_{\text {also }}$ ．
（C）

$$
\begin{aligned}
& P\left[V>0.1 \mid H_{0} \text { is true }\right] \\
= & P\left[U(0,1)>0.1 \mid H_{0}\right] \\
= & 0.9
\end{aligned}
$$

（d）

$$
\begin{aligned}
& P\left[\text { rejected } H_{0} \mid H_{0} \text { is time }\right] \\
& =P\left[V<\alpha \mid H_{0}\right]=P\left[U(0,1)<\alpha \mid H_{0}\right]=\alpha
\end{aligned}
$$

\therefore the test $V<\alpha$ has significant level α ．
$4 \omega 12$.

6．$\because f(x \mid \theta)=\exp \left(-\frac{1}{\theta} E x_{i}-n \log \theta\right) \in$ one－parameter exponential family
$T(X)=E x_{i} . C(\theta)=-\frac{1}{\theta}$ is strictly monotone increasing func．
of θ ．
By L．N．CH 9 P． 22 Thu．1．3．
The α－level UMP－test．$H_{0}: \theta \geq \theta_{0}$ vs $H_{1}: \theta<\theta_{0}$
is given by $\phi(x)=\left\{\begin{array}{lr}1, & T(X)=\sum x_{i}<c \\ 0, & \sum x_{i}>C\end{array}\right.$
α can be determined by．

$$
\begin{aligned}
& \left.E_{\theta_{0}}(\phi(x))=P P_{\theta_{0}} P x_{\imath}<c\right)=\alpha . \because P x_{\wedge} \leadsto P\left(n, \frac{1}{\theta}\right) \Rightarrow \frac{2}{\theta} E x_{\wedge} \leadsto P\left(\frac{2 n}{2}, \frac{1}{2}\right) \\
& \equiv x^{2}(2 n) \\
& \therefore P_{\theta_{0}}\left(\frac{2}{\theta_{0}} D x_{\wedge}<\frac{2}{\theta_{0} c}\right)=\alpha \Rightarrow C=\frac{\theta_{0}}{2} x^{2}(>n \text {) }
\end{aligned}
$$

7

$$
\begin{aligned}
& \frac{1}{2} T=x_{1}+x_{2}+x_{3} \\
& P(y)=\binom{3}{y} \exp \left(y \ln \frac{p}{1-p}+3 \ln (1-p)\right)
\end{aligned}
$$

$T(X)=Y, \quad C(\theta)=\ln \frac{P}{1-P}$ is strictly monotone increasing function of P ．

The x－level $\triangle M P U$ test for

$$
H_{0}: p=0.25 \text { vs } p \neq 0.25
$$

TS given by

$$
x(\underline{x})= \begin{cases}1 & T(x)<c_{1} \quad T(x)>c_{2} \\ r_{i} & T(x)=c_{i} . \quad i=1 \cdot r_{2} \\ 0 & c_{1}<T(x)<c_{2} .\end{cases}
$$

\Rightarrow We take $c_{1}=0, c_{2}=3 . \quad r_{1}, r_{2}$ can be determined by

$$
\left\{\begin{array}{l}
E_{p=0.25}(\underset{\sim}{\sim})=r_{1} p(Y=0)+r_{2} p(Y=3)=0.05 \\
E_{p=0.55}(Q(T) \times T)=r_{1} \times 0 \times p(T=0)+r_{2} \times 3 \times p(Y=3)=0.05 \times \frac{3}{4} \\
\Rightarrow \quad V_{2}=\frac{5}{8}=0.625 . \quad r_{1}=\frac{0.0475}{0.42} \approx 0.1131 .
\end{array}\right.
$$

