1. textbook, Chapter 9, p.363, problem 7. [Hint: apply Neyman-Pearson lemma.]
2. textbook, Chapter 9, p.363, problem 8. [Hint: Example 7.9 in LNp.19.]
3. textbook, Chapter 9, p.366, problem 29.
4. textbook, Chapter 9, p.366, problem 30.
5. Let X_{1}, \ldots, X_{n} be i.i.d. with pdf f which can be either f_{0} or else f_{1}, where f_{0} is Poisson $P(1)$ and f_{1} is the Geometric pdf with $p=\frac{1}{2}$. Find the most powerful (MP) test of the hypothesis $H_{0}: f=f_{0}$ v.s. the alternative $H_{A}: f=f_{1}$ at level of significance 0.05 .
[Hint: apply Neyman-Pearson lemma and construct a randomized test]
6. Let X_{1}, \ldots, X_{n} be independent random variable with pdf f given by

$$
f(x \mid \theta)=\frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad \text { for } x \geq 0
$$

where $\theta \in \Omega=(0, \infty)$. Derive the uniformly most powerful (UMP) test for testing the hypothesis $H_{0}: \theta \geq \theta_{0}$ v.s. the alternative $H_{A}: \theta<\theta_{0}$ at level of significance α. [Hint: Question 7.10 in LNp.23, and notice that $X_{1}+\cdots+X_{n}$ follows a Gamma distribution]
7. Let X_{1}, X_{2}, X_{3} be i.i.d. from Binomial $B(1, p)$. Derive the uniformly most powerful unbiased (UMPU) test for testing the hypothesis $H_{0}: p=0.25$ v.s. the alternative $H_{A}: p \neq 0.25$ at level of significance α. Determine the test for $\alpha=0.05$.
[Hint: Let $Y \sim B(3,0.25)$, then $P(Y=0)=0.42, P(Y=1)=0.42, P(Y=2)=$ 0.14 , and $P(Y=3)=0.02]$

