het
$$X_{\bar{i}} = \begin{cases} 1 & \text{if the head is upward} \\ 0 & \text{o.} \omega \end{cases}$$

i.
$$Xi \sim Ber CP$$
), p is the probe of the head is upward., i=1, thus, $X = \sum_{i=1}^{10} Xi \sim Bin(10, P)$

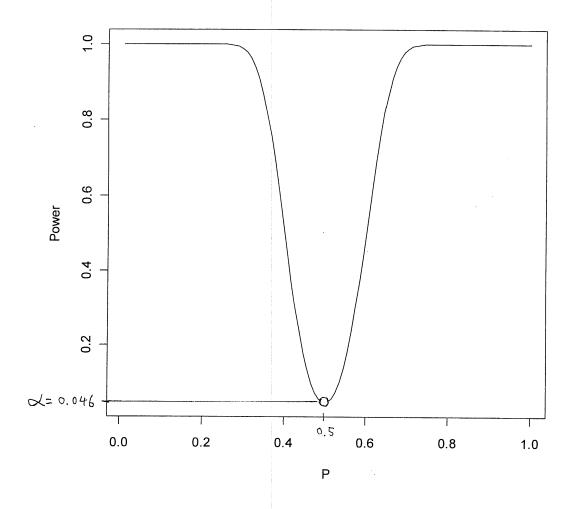
rejection region
$$\{X=0 \text{ or } X=10\}$$

(a)
$$X = P(\text{reject II}, | H_0 \text{ is true}) = P(X=0 \text{ is } X=10 | P=0.5)$$

$$= 2 \times (0.5)^{1/2} = 0.002$$

b) Power = 1-
$$\beta$$
 = $P(\text{rejet 1-lo} \mid H_0 \text{ Ts false})$
= $P(X=0 \text{ or } X=10 \mid P=0.1)$
= $\binom{10}{0}(0.1)^0(0.9)^{10} + \binom{10}{10}(0.1)^{10}(0.9)^0$
= 0.349

9-2


(a) simple, the hypothesis can be presented as $X \sim L(0,1)$, which contains only a distribution.

Simple, Simple, assume X is the number volled on the dice, and $P_z = P(X = \overline{z})$, $\overline{z} = 1, 2, ..., 6$ $P_z = P(X = \overline{z})$, $\overline{z} = 1, 2, ..., 6$ the uniform distribution the hypothesis can be presented as X has the uniform $Z = P_z =$

(C' composite, the hypothesis can be presented as infinitely many $X \sim N(0,6^2)$, $6^2 > 10$, which contains infinitely many distributions

(d)
Composite, the hypothesis can be presented as

NN(0,82), 6270, which contains infinitely many distributions

HW 1.1 CH9

- S. (a) fi. the SignTficance level &=p(Rejection Vegion | Ho is time;

 In frequents + approach p(Ho is time)={1, 林可稳意.

 {Ho is true}} 失有可能 适沒有所謂 {Ho is time}發生

 国和年值.

 - (c) F. 从為type I enter 發生的機率, 並沒有所謂 Ethors true 子 發生的機率.
 - (d) f, the probability is $x = p(Rejection \ vegion \ | \ Ho$ is true), not the power = $p(Rejection \ vegion \ | \ HA$ is true)
 - (e). F. 當 Ho 滋真, test statistic & Rejection vegion 才是 type I em! 若 MA 為夏時. fest statistic & Rejection vegion, 气极 出 正確決定 别 不是 type I evror.
 - - (9). FI, the power TS the probability of rejection region determined by the alternative distribution of the fest statistics.

 (h) T.