Chapter 10 Statically Indeterminate Beams

10.1 Introduction

in this chapter we will analyze the beam in which the number of reactions exceed the number of independent equations of equilibrium integration of the differential equation, method of superposition compatibility equation (consistence of deformation)

10.2 Types of Statically Indeterminate Beams

the number of reactions in excess of the number of equilibrium equations is called the degree of static indeterminacy

(a)

(a)
the excess reactions are called static redundants
the structure that remains when the redundants are released is called released structure or the primary structure

10.3 Analysis by the Differential Equations of the Deflection Curve

$$
E I v^{\prime \prime}=M \quad E I v^{\prime \prime}=\mathrm{V} \quad E I v^{\text {iv }}=-q
$$

the procedure is essentially the same as that for a statically determine beam and consists of writing the differential equation, integrating to obtain its general solution, and then applying boundary and other conditions to evaluate the unknown quantities, the unknowns consist of the redundant reactions as well as the constants of integration
this method have the computational difficulties that arise when a large number of constants to be evaluated, it is practical only for relatively simple case

Example 10-1
a propped cantilever beam $A B$ supports a uniform load q
determine the reactions, shear forces bending moments, slopes, and deflections

choose R_{B} as the redundant, then

$$
R_{A}=q L-R_{B} \quad M_{A}=\frac{q L^{2}}{2}-R_{B} L
$$

and the bending moment of the beam is

$$
\begin{aligned}
M & =R_{A} X-M_{A}-\frac{q x^{2}}{2} \\
& =q L x-R_{B} x-\frac{q L^{2}}{2}-R_{B} L-\frac{q x^{2}}{2} \\
E I v^{\prime \prime} & =M=q L x-R_{B} X-\frac{q L^{2}}{2}-R_{B} L-\frac{q x^{2}}{2} \\
E I v^{\prime} & =\frac{q L x^{2}}{2}-\frac{R_{B} x^{2}}{2}-\frac{q L^{2} x}{2}-R_{B} L x-\frac{q x^{3}}{6}+C_{1} \\
E I v & =\frac{q L x^{3}}{6}-\frac{R_{b} x^{3}}{6}-\frac{q L^{2} x^{2}}{4}-\frac{R_{B} L x^{2}}{2}-\frac{q x^{4}}{24}+C_{1} x+C_{2}
\end{aligned}
$$

boundary conditions

$$
v(0)=0 \quad v^{\prime}(0)=0 \quad v(L)=0
$$

it is obtained

$$
C_{1}=C_{2}=0 \quad R_{B}=3 q L / 8
$$

and

$$
\begin{aligned}
& R_{A}=5 q L / 8 \\
& M_{A}=q L^{2} / 8
\end{aligned}
$$

the shear force and bending moment are

$$
V=R_{A}-q x=\frac{5 q L}{8}-q x
$$

$$
\begin{aligned}
M & =R_{A} X-M_{A}-\frac{q x^{2}}{2} \\
& =\frac{5 q L x}{8}-\frac{q L^{2}}{8}-\frac{q x^{2}}{2}
\end{aligned}
$$

the maximum shear force is

$$
V_{\max }=5 q L / 8 \quad \text { at the fixed end }
$$

the maximum positive and negative moments are

$$
M_{p o s}=9 q L^{2} / 128 \quad M_{\text {neg }}=-q L^{2} / 8
$$

slope and deflection of the beam

$$
\begin{aligned}
& v^{\prime}=\frac{q x}{48 E I}\left(-6 L^{2}+15 L x-8 x^{2}\right) \\
& v=-\frac{q x^{2}}{48 E I}\left(3 L^{2}-5 L x+2 x^{2}\right)
\end{aligned}
$$

to determine the $\delta_{\max }$, set $v^{\prime}=0$

$$
-6 L^{2}+15 L x-8 x^{2}=0
$$

we have $x_{1}=0.5785 L$

$$
\delta_{\max }=-v\left(x_{1}\right)=0.005416 \frac{q L^{4}}{E I}
$$

the point of inflection is located at $M=0$, i.e. $x=L / 4$

$$
\begin{aligned}
& \kappa<0 \text { and } M<0 \text { for } x<L / 4 \\
& \kappa>0 \text { and } M>0 \text { for } x>L / 4
\end{aligned}
$$

the slope at B is

$$
\theta_{B}=\left(y^{\prime}\right)_{x=L}=\frac{q L^{3}}{48 E I}
$$

Example 10-2
a fixed-end beam $A B C$ supports a concentrated load P at the midpoint determine the reactions, shear forces, bending moments, slopes, and deflections
 because the load $\quad P$ in vertical direction and symmetric

$$
\begin{aligned}
& H_{A}=H_{B}=0 \quad R_{A}=R_{B}=P / 2 \\
& M_{A}=M_{B} \quad \text { (1 degree of indeterminacy) } \\
& M=\frac{P x}{2}-M_{A}(0 \leqq x \leqq L / 2) \\
& E I v^{\prime \prime}=M=\frac{P x}{2}-M_{A} \quad(0 \leqq x \leqq L / 2)
\end{aligned}
$$

after integration, it is obtained

$$
\begin{aligned}
& E I v^{\prime}=\frac{P x^{2}}{4}-M_{A} x+C_{1} \quad(0 \leqq x \leqq L / 2) \\
& E I v=\frac{P x^{3}}{12}-\frac{M_{A} x^{2}}{2}+C_{1} x+C_{2} \quad(0 \leqq x \leqq L / 2)
\end{aligned}
$$

boundary conditions

$$
v(0)=0 \quad v^{\prime}(0)=0
$$

symmetric condition

$$
v^{\prime}(0)=0
$$

the constants $C_{1}, \quad C_{2}$ and the
 moment $\quad M_{A}$ are obtained

$$
\begin{aligned}
& C_{1}=C_{2}=0 \\
& M_{A}=\frac{P L}{8}=M_{B}
\end{aligned}
$$

the shear force and bending moment diagrams can be plotted
thus the slope and deflection equations are

$$
\begin{array}{rlr}
v^{\prime}=-\frac{P x}{8 E I}(L-2 x) & (0 \leqq x \leqq L / 2) \\
v=-\frac{P x^{2}}{48 E I}(3 L-4 x) & (0 \leqq x \leqq L / 2)
\end{array}
$$

the maximum deflection occurs at the center

$$
\delta_{\max }=-v(L / 2)=\frac{P L^{3}}{192 E I}
$$

the point of inflection occurs at the point where $M=0$, i.e. $x=$ $L / 4$, the deflection at this point is

$$
\delta=-v(L / 4)=\frac{P L^{3}}{384 E I}
$$

which is equal $\delta_{\max } / 2$

10.4 Method of Superposition

1. selecting the reaction redundants
2. establish the force-displacement relations
3. consistence of deformation (compatibility equation) consider a propped cantilever beam
(i) select $\quad R_{B} \quad$ as the redundant, then

$$
R_{A}=q L-R_{B} \quad M_{A}=\frac{q L^{2}}{2}-R_{B} L
$$

(a)
force-displacement relation

$$
\left(\delta_{B}\right)_{1}=\frac{q L^{4}}{8 E I} \quad\left(\delta_{B}\right)_{2}=\frac{R_{B} L^{3}}{3 E I}
$$

compatibility equation

$$
\begin{aligned}
& \delta_{B}=\left(\delta_{B}\right)_{1}-\left(\delta_{B}\right)_{1}=0 \\
& \frac{q L^{4}}{8 E I}=\frac{R_{B} L^{3}}{3 E I}
\end{aligned}
$$

(b)

(c)

(d)

$$
R_{B}=\frac{3 q L}{8} \quad \Rightarrow \quad R_{A}=\frac{5 q L}{8}
$$

$$
M_{A}=\frac{q L^{2}}{8}
$$

(ii) select the moment $\quad M_{A}$ as the redundant

$$
R_{A}=\frac{q L}{2}+\frac{M_{A}}{L} \quad R_{B}=\frac{q L}{2}-\frac{M_{A}}{L}
$$

(b)

$\left(\theta_{A}\right)_{1}$

(d)
(c)
force-displacement relation

$$
\left(\theta_{A}\right)_{1}=\frac{q L^{3}}{24 E I}\left(\theta_{A}\right)_{2}=\frac{M_{A} L}{3 E I}
$$

compatibility equation

$$
\theta_{A}=\left(\theta_{A}\right)_{1}-\left(\theta_{A}\right)_{2}=\frac{q L^{3}}{24 E I}-\frac{M_{A} L}{3 E I}=0
$$

thus $\quad M_{A}=q L^{2} / 8$
and $\quad R_{A}=5 q L / 8 \quad R_{B}=3 q L / 8$

Example 10-3
a continuous beam $A B C$ supports a uniform load q
determine the reactions
select R_{B} as the redundant, then

$$
R_{A}=R_{C}=q L-\frac{q L}{2}
$$

(a)

(b)

(c)

(d)

$$
\delta_{B}=\left(\delta_{B}\right)_{1}-\left(\delta_{B}\right)_{2}=\frac{5 q L^{4}}{24 E I}-\frac{R_{B} L^{3}}{6 E I}=0
$$

thus $\quad R_{B}=5 q L / 4$
and $\quad R_{A}=R_{C}=3 q L / 8$

Example 10-4
a fixed-end beam $A B$ is loaded by a force P acting at point D
determine reactions at the ends
also determine δ_{D}
this is a 2-degree of indeterminacy problem

(a)
(b)

(c)

(d)

$$
\begin{aligned}
& \left(\theta_{A}\right)_{1}=\frac{\operatorname{Pab}(L+b)}{6 L E I} \\
& \left(\theta_{A}\right)_{2}=\frac{M_{A} L}{3 E I}\left(\theta_{B}\right)_{2}=\frac{M_{A} L}{6 E I} \\
& \left(\theta_{A}\right)_{3}=\frac{M_{B} L}{6 E I}\left(\theta_{B}\right)_{3}=\frac{M_{B} L}{3 E I}
\end{aligned}
$$

compatibility equations

$$
\begin{aligned}
& \theta_{A}=\left(\theta_{A}\right)_{1}-\left(\theta_{A}\right)_{2}-\left(\theta_{A}\right)_{3}=0 \\
& \theta_{B}=\left(\theta_{B}\right)_{1}-\left(\theta_{B}\right)_{2}-\left(\theta_{B}\right)_{3}=0
\end{aligned}
$$

i.e. $\frac{M_{A} L}{3 E I}+\frac{M_{B} L}{6 E I}=\frac{\operatorname{Pab}(L+b)}{6 L E I}$

$$
\frac{M_{A} L}{6 E I}+\frac{M_{B} L}{3 E I}=\frac{\operatorname{Pab}(L+a)}{6 L E I}
$$

solving these equations, we obtain

$$
M_{A}=\frac{P a b^{2}}{L^{2}} \quad M_{B}=\frac{P a^{2} b}{L^{2}}
$$

and the reactions are

$$
R_{A}=\frac{P b^{2}}{L^{3}}(L+2 a) \quad R_{B}=\frac{P a^{2}}{L^{3}}(L+2 b)
$$

the deflection δ_{D} can be expressed as

$$
\begin{aligned}
& \delta_{D}=\left(\delta_{D}\right)_{1}-\left(\delta_{D}\right)_{2}-\left(\delta_{D}\right)_{3} \\
& \left(\delta_{D}\right)_{1}=\frac{P a^{2} b^{2}}{3 L E I} \\
& \left(\delta_{D}\right)_{2}=\frac{M_{A} a b}{6 L E I}(L+b)=\frac{P a^{2} b^{3}}{6 L^{3} E I}(L+b) \\
& \left(\delta_{D}\right)_{3}=\frac{M_{B} a b}{6 L E I}(L+a)=\frac{P a^{3} b^{2}}{6 L^{3} E I}(L+a)
\end{aligned}
$$

thus $\delta_{D}=\frac{P a^{3} b^{3}}{3 L^{3} E I}$
if

$$
a=b=L / 2
$$

then $\quad M_{A}=M_{B}=\frac{P L}{8} \quad R_{A}=R_{B}=\frac{P}{2}$
and $\quad \delta_{C}=\frac{P L^{3}}{192 E I}$

Example 10-5
a fixed-end beam $A B$ supports a uniform load q acting over part of the span
determine the reactions of the beam

to obtain the moments caused by $q d x$, replace P to $q d x, a$ to x, and b to $L-x$

$$
\begin{aligned}
d M_{A} & =\frac{q x(L-x)^{2} d x}{L^{2}} \\
d M_{B} & =\frac{q x^{2}(L-x) d x}{L^{2}}
\end{aligned}
$$

integrating over the loaded part

$$
\begin{aligned}
& M_{A}=\int d M_{A}=\frac{q}{L^{2}} \int_{0}^{a} x(L-x)^{2} d x=\frac{q a^{2}}{12 L^{2}}\left(6 L^{2}-8 a L+3 a^{2}\right) \\
& M_{B}=\int d M_{B}=\frac{q}{L^{2}} \int_{0}^{a} x^{2}(L-x) d x=\frac{q a^{3}}{12 L^{2}}\left(4 L^{2}-3 a\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
d R_{A} & =\frac{q(L-x)^{2}(L+2 x) d x}{L^{3}} \\
d R_{B} & =\frac{q x^{2}(3 L-2 x) d x}{L^{3}}
\end{aligned}
$$

integrating over the loaded part

$$
\begin{aligned}
& R_{A}=\int d R_{A}=\frac{q}{L^{3}} \int_{0}^{a}(L-x)^{2}(L+2 x) d x=\frac{q a}{2 L^{3}}\left(2 L^{3}-2 a^{2} L+a^{3}\right) \\
& R_{B}=\int d R_{B}=\frac{q}{L^{3}} \int_{0}^{a} x^{2}(3 L-2 x) d x=\frac{q a^{3}}{2 L^{3}}(2 L-a)
\end{aligned}
$$

for the uniform acting over the entire length, i.e. $\quad a=L$

$$
\begin{aligned}
& M_{A}=M_{B}=\frac{q L^{2}}{12} \\
& R_{A}=R_{B}=\frac{q L}{2}
\end{aligned}
$$

the center point deflections due to uniform load and the end moments are

$$
\begin{aligned}
& \left(\delta_{C}\right)_{1}=\frac{5 q L^{4}}{384 E I} \quad\left(\delta_{C}\right)_{2}=\frac{M_{A} L}{8 E I}=\frac{\left(q L^{2} / 12\right) L^{2}}{8 E I}=\frac{q L^{4}}{96 E I} \\
& \delta_{C}=\left(\delta_{C}\right)_{1}-\left(\delta_{C}\right)_{2}=\frac{q L^{4}}{384 E I}
\end{aligned}
$$

Example 10-6
a beam $A B C$ rests on supports and B and is supported by a cable at C

(a)
find the force T of the cable
take the cable force T as redundant the deflection $\left(\delta_{C}\right)_{1}$ due the uniform load can be found from example 9.9 with $a=L$

$$
\left(\delta_{C}\right)_{1}=\frac{q L^{4}}{4 E_{b} I_{b}}
$$

the deflection $\left(\delta_{C}\right)_{2}$ due to a force T
acting on C is obtained
use conjugate beam method

$$
\begin{aligned}
\left(\delta_{C}\right)_{2} & =M=\frac{T L^{2}}{3 E_{b} I_{\mathrm{b}}} L+\frac{T L}{E_{b} I_{b}} \frac{L}{2} \frac{2 L}{3} \\
& =\frac{2 T L^{3}}{3 E_{b} I_{b}}
\end{aligned}
$$

the elongation of the cable is

$$
\left(\delta_{C}\right)_{3}=\frac{T h}{E_{c} A_{c}}
$$

compatibility equation

$$
\begin{gathered}
\left(\delta_{C}\right)_{1}-\left(\delta_{C}\right)_{2}=\left(\delta_{C}\right)_{3} \\
\frac{q L^{4}}{4 E_{b} I_{b}}-\frac{2 T L^{3}}{3 E_{b} I_{b}}=\frac{T h}{E_{c} A_{c}} \\
T=\frac{3 q L^{4} E_{c} A_{c}}{8 L^{3} E_{c} A_{c}+12 h E_{b} I_{b}}
\end{gathered}
$$

10.5 Temperature Effects

10.6 Longitudinal Displacements at the Ends of the Beams

