Chapter 7 Analysis of Stresses and Strains

7.1 Introduction

axial load g = P/A

torsional load in circular shaft T = Tpll

bending moment and shear force in beam

g = My/l t = VQ/Ib

in this chapter, we want to find the normal and shear stresses acting on
any inclined section

for uniaxial load and pure shear, this relation are shown in chapters 2
and 3, now we want to derive the transformation relationships that give
the stress components for any orientation

this is referred as stress transformation

when an element is rotated from one orientation to another, the
stresses acting on the faces of the element are different but they still
represent the same state of stress, namely, the stress at the point under

consideration

7.2 Plane Stress e
consider the infinitesimal element with its %] / _O‘Ai
edges parallelto x, y, and z axes /‘lg _____
if only the x and y faces of the ml_,
element are subjected to stresses, it is called a,

plane stress, it can be shown as a two

a, l o T o, ;
dimension stress element j




equal normal stresses act on opposite faces, shear stress 7 has two
subscripts, the first denotes the face on which the stress acts, and the

second gives the direction of that face

Ty - actson x face directedto y axis
T :actson y facedirectedto x axis

sign convention : actson + faceanddirectedto + axisas +

Vv

-

as discussed in chapter 1, Ty =  Tyx v

consider an element located at the same
point and whose faces are perpendicular to
Xy, Y1 and z; axes, in which Zz;

axis coincides with the z axis, and X
and y; axes are rotated counterclockwise
through an angle 6 w.rt x and vy \U
axes, the normal and shear stresses acting on ©
this new element are denoted oy, oy,
Txay1 and Tyixa

also Tyt — Ty

the stresses acting on the rotated x;y; element :’_\
can be expressed in terms of stress on the xy —
element by using equation of static equilibrium \"

choose a wedge-shaped element

force equilibrium in  x;-direction

. ‘ LA l.crclf)/‘:;1
Ox, Ao sec 0 - ax Ay €OS 0 - 7,y Ag Sin 0 i \

T Agtan &

-ayAgtan Osin 0 -ty Agtan O con =0

L’, Aptan &

force equilibrium in  y;-direction (6 Forces

Tayr Agsecd + axApsind - 1 AgCOSO



- o Agtanfcosf + T Agtanfsingd = O

with Tyy = Tyx
it is obtained
Oq = 04C08°0 + agysin"0 + 21,sin0cosd
Tayp = -(0x - oy)sinfcos + 1,(cos’°0 - sin®0)
for 6 = 0° Oy = Oy Ty = Tyy
for 6 = 90° O = Oy Tayn = - Tyy

from trigonometric identities

1 1
cos’f = — (1+cos20) sin@ = —(1-cos20)
2 2
1
sinfcosfd = —sin26
2

the above equations can be expressed in a more convenient form

O-X + O-y O-X = O-y
Ox1 = +

2 2

Cos 20 + 1y Sin20

O-X-O-y

Txyt = - sin20 + 1, c0s20

2
this is the transformation equations for plane stress
substituting 6+90° for 6 in gy equation
oxt oy Ox - Oy

oy = - cos 20 - 1y Sin20
2 2

also we obtain the following equation for plane stress



ox1 T oy + oy

I.e. the sum of the normal stresses actin

] . LILY] //\ P o
on perpendicular faces for aplane stress .,.-”/\\f\/ ' _V \‘\’ {
\ A r \ .
. - 7“'.\. ."l” L \ / ."'I
element is constant, independent of 6 N\ sdd v i W
\ \ \ I J'I
d he angl \ O\ /o
O-Xl an ij_y]_ VerSuS t e ang e 180° "\\ 000.?"1_ 0 \\ gnc\\i-/ ”';-00
of rotation 6 can be plotted as \ J \ /
for uniaxial stresscase, o, = 0, 7y, = 0
y

O = 0xC08°0 = o, (1+cos20)/2 | g
< o :
Ty = -oxsinfcosf = -oysin20/2
for pure shear stresscase, ox = g, = 0
Ox 2 1y sinfcos @ = 1, 8in 20 i
T.Wl ¢ | B
Tap = Ty (COS% 0-8iN°0) = 1, c0S 20 m—
same as derived in previous chapters
for biaxial stress case, 7, = 0 y
ox * oy Ox -0 %
Oy = + cos 20
2 2 o o
0 X
O-X = O-y .
2 g,
Example 7-1
oy, = 6,000 psi
gy = 110 MPa g, = 40 MPa
— 1 1., = 4,000 psi

Txy — Tyx - 28 MPa o l . ‘[ .= l(w.(i()() psi
determine the stresses for 6 = 45° el

(a)



O-X+O-y O-X-

=75 MPa

2 2

sin26=sin90° =1

O-X + O-y O-X = O-y .
Oy1 = Cos 20 + 1y Sin 20
2 2
= 75 + 35x0 + 28x1 = 103 MPa
O-X = O-y .
Tyt = - sin20 + 1, C0s 20
2 ‘
= -35x1+28x0 N % 11?'“”‘/3_450
— _35MPa oy, = 7,000 Ps‘;\/ \/{\: = -5.000 175“]
O-y]_ = O-X + O-y = Jxl i
= 110+40-103 = 47 MPa
Example 7-2 VEMP"
oy, = -46 MPa g, = 12MPa -—
‘ 46 MPa
Ty = T = -19MPa I o A
determine the stresses for 6 = -15° T
O-X + O-y O-X = O-y wl
= -17 MPa = -29 MPa
2 2

sin 260 =sin (- 30°) =-0.5

O-X+O-y O-X-O-y

+

2 2

5

- 17 + (- 29) 0.866 + (-

Oy

35 MPa

cos20=c0s90°=0

cos 26 = cos (- 30°) = 0.866

Cos 20 + 1y Sin20

- 32.6 MPa

19) (-0.5)



O-X-Gy

Txyl = - sin20 + 1, cos 20
2 '
= - (-29) (-0.5) + (- 19) 0.866 [ 14mpa
= -31 MPa ~ / B 26MPa
-/‘“".:Hﬁ_:i?:--li

ox *t Oy1 = Ox + Oy /f‘ SOMPL
O-y]_ = le + O-y = O-X (b)

= -46+12-(-326) = -14MPa

7.3 Principal Stresses and Maximum Shear Stresses

ogu and 1, vary continuously as the element is rotated through
theangle 6

for design purpose, the largest positive and negative stresses are
usually needed, the maximum and minimum normal stresses are called

the principal stresses

consider the stress transformation equation

O-X + O-y O-X = O-y
O = + cos 20 + 1y Sin 20
2 2
to find the maximum normal stress, we may set do,/d6f = 0
d oy .
= -(ox - 0ay)sin20 +2tycos20 = 0
do
2 Tyy
we get tan 20, =
O-X - O-y

0, defines the orientation of the principal plane, two values of 20,

from 0 ~ 360° and differ by 180°



0, has two values differ by 90° we conclude that the

principal stresses occur on mutually perpendicular plane

also
(O-X = O-y) / 2
cos20, = ——
R
T
sin 20, = d
R
O-X_O-y 2 I3
where R = [( )+ 1]

2

substitute cos 20, and sin 26, into the expression of oy,

Ux+0-y O-X-O-y 2 A

+ [( )+ ]
2 2

o1 = (O'X1)max =

and the smaller principal stress denoted by o, is obtained

o, + 0, = ox t+ oy
oyt oy Ox -0y 2 o
g2 = (0x1)min = - [( ) T Ty ]
2 2
the principal stresses can be written as
O-X + O-y O-X = O-y 2 ) Vs
01,2 + [ )t Tl
2 2

+ sign gives the larger principal stress
- sign gives the smaller principal stress

0 and 0, can be determined, but we cannot tell from the

equation which angleis 60, and whichis 0,
an important characteristic concerning the principal plane : the shear is

7



zero on the principal plane

O-X-O-y

Txlyt = -

2

substitute 20, into this equation, we can get
Txyr = 0
for uniaxial and biaxial stress states, 7, = 0

tan20, = 0 6, = 0° and 90°

for pure shear stress, ox=0,=0 " .

tan 20p = oo r”l ) T .

0, = 45° and 135°

(a)

for the three-dimensional stress element, o,

= 0 is also a principal stress, note that there

are no shear stresses on the principal plane <=

Maximum Shear Stress

O-X - O-y

Tayr = - sin20 + 1, cos20

2
d Txiy1

= -(ox-oy)cos20 - 21,5sin20

do

O-X = O-y
tan 20, = -

2 Ty

sin20 + 1, Cos 20

Ty
e

¥
a
0—|——

(b)




20; has two values between 0 and 360°
Os has two values between 0 and 180°, and differ by 90°

comparing the angle 6; and 6,, itisshown that

1
tan 20, = - = -cot 20,
tan 20,
I.e. 20 L 20, 20, = 20, £ 090°
or 0, = 0, £ 45°

the plane of maximum shear stress occur at 45° to the principal

plane

similarly we have

Txy . Ox - O-y
cos 20, = sin26;, = -
R 2R

and the corresponding maximum shear stress is

Ox -0y 2 21/2
) + Txy]

Tmax = [ (
2

the algebraically minimum shear stress tn,, has the same
magnitude
a usually expression for the maximum shear stress can be obtained by

op and o,
01-02

2

Tmax —

the 7max 1S equal to one half the difference of the principal stress
normal stresses also act on the planes of maximum ¢, substituting

0., inthe formula of o,, Iitis obtained



ox t oy

Ox1 = Oave = Oy

2

oave acts on both the plane of maximum and minimum 7 planes

g
G).' ke Tmax / Q;Ve
Sy
=
~) &
if we make a three-dimensional analysis, K
q,
we can establish that there are possible !
positions of element for maximum shear D
- 3 '
stress
01 .
(tma)xe. = =*—  rotate the element 45° about x; axis
0?2
(tmax)yy = = —  rotate the element 45° about y; axis
2
O1-02 .
(tha) = = rotate the element 45° about z; axis
2
element
Example 7-3
,
or = 84 MPa g, = -30MPa o
Txy = = 32 MPa S
‘] l 12,300 psi
determine the principal stresses and ¢ oo
y psi
maximum shear stress and their directions

(a)
10



the principal angles 6, can be obtained

2 Tyy 2 (-32)
tan 20, = = —— = -0.5614
Oy - Oy 84 - (- 30)
20, = 150.6° or 330.6°
0, = 753° or 165.3° o
"“\_\
oyto 6p, 5132
Y - (84-30)/2=27 MPa [\
2 7, = 13,540 psi - |
-~ l .
O-X = O-y —
= (84 +30)/2 =57 MPa
2 /
O-X + O-y O-X = O-y (b)
O = + cos 20 + 1y Sin 20
2 2
for 20,=330.6° (0,=165.3°) o1 = 92.4MPa
for 26,=150.3° (6,=75.3°) g, = -38.4MPa
check o + 0, = ox t oy (0.K)
alternative method for principal stresses
O-X + O-y O-X = O-y 2
01,2 + [ ) o+ yl”
2 2
= 27 + [(57)* +(-32)4” = 27 + 654
thus op = 92.4 MPa g, = -38.4MPa
0, = 165.3° Op. = 75.3°

the maximum shear stresses are given by
01-0?

2

= 65.4 MPa

Tmax

031 = le = 450 = 12030

11

4,050 psi

>

4,050 psi

\/{'

f,,=302°



and 6, = 120.2° - 90° = 30.3°
and the normal stress acting on the planes of maximum shear stress

are

ST o7 Mpa

Oave —

2

7.4 Mohr's Circle for Plane Stress
the transformation of plane stress can be represented in graphical form,
known as Mohr's circle
the equation of Mohr's circle can be derived from the transformation
equations for plane stress
oxt oy Ox - Oy

Oyl - = Cos 20 + 1y Sin20
2 2

O-X_Jy

Taylr = - sin20 + 1, cos 20

2

to eliminate the parameter 26, we square both sides of each

equation and then add together, it can be obtained

oxtoy 2 2 Ox -0y 2
(le - ) T Tapn = ( ) + Txyz
2 2
oyt oy Ox -0y 2
let Owe = R? = ( )+ 1
2 2

then the above equation can be written

(O-Xl - O'ave)z + Tx1y12 = R2

12



this is a equation of circle with o, and 17, as coordinates, the

radiusis R andcenterat ou = Oae, Ty = O

(a) (b)

positive shear stress is plotted downward and a positive angle 26 is
plotted counterclockwise
positive shear stress is plotted upward and a positive angle 260 is

plotted clockwise

Construction of Mohr's Circle
(1) locatethecenter C at 0w = Oae Tap = O
(2) locate point A whichisat 0=0, o0u=0x, Tayu= Ty
(3) locate point B whichisat 0=90° o0x=0y, Tuys=- Ty
[Note that the line  AB  must passes through point C]
(4) draw the circle through points A and B withcenterat C
this circle isthe Mohr's circle withradius R

Ox =0y 2 Nz
) + Txy]

R = [(
2

the stress state on an inclined element with an angle 6 is
represented at point D on the Mohr's circle, which is measured an

angle 260 counter- clockwise from point A

13



|

| » Oy | B(6 = 90°)
o I - £ L
T \A Tyy -
(a) PI
o0 P, Gl
i ﬂ 221”1 TII_"I
ngH| 20 4 T
£ D =0)
S
A@ =0
O". + Jv OT\' - 0y
o CT“ = 3 - ¥ 5
Oy
O'n
(b) r.\'.)‘|
(c)
to show the coordinate at D
O-Xl = O-ave + R COS (Zep - 26)
= oae *+ R(cos20,cos20 +

sin 20, sin 20)

O-X = O-y O-X = O-y
Rcos20, = R =
2R 2
Txy
R
O-X - O-y
Ox = Oae T Cos 20 + 1y
2

sin 20

Ty = Rsin(20,-20) = R (sin 20, cos 20 - cos 20, sin 20)

O-X-O-y

2

same results as the transformation equations

= - sin20 + 1, cos20

point D' represents the stress state on the face of the face 90° from

the face represented by point D, i.e. vy, face

14



A (o, Txy) B (O'y’ - Txy) C (Gave: 0)

D (0 X1y Tx1y1) D' (O'yl, - Tx1y1)

at point P; on the circle, Ow = Omax = O1

hence, P; represents the stress state at principal plane

the other principal plane (omin = 0,) Isrepresented by P,
oy t oy
o1 — OoC + CP]_ = + R
2
ox t oy
Oy — OoC - CP2 = - R
2

the principal angle 6,, can be obtained by

O-X = O-y Txy
cos 20, = or sin 20, =
2R R
and Op = 0On + 90°

comparing the Mohr's circle and the stress element, it is observed
Mohr's Circle stress element
A — P, (20, §) X = X (Op €
A — P, (20,+180° €) x — X3 (0,+90° €)
or (180°-20, ) or (90°-0p )
P, — S (90° 9) X1 — Tmax (45° ?)

points S and S' representing the points of maximum and

minimum shear stresses, are located on the circle at 90° from points

P and P,

15



I.e. the planes of maximum and minimum shear stress are at 45° to the

principal planes, and

Ox -0y 2 va

Tmax = R = [( ) + Txyz]

2

if either o, of oy isnegative, part of the circle will be located to
the left of the origin

Mohr's circle makes it possible to visualize the relationships between
stresses acting planes at various angles, and it also serves as a simple

memory device for obtaining the stress transformation equation

¥

Example 7-4 3\ IU_\.:ZOMPa
ox = 90 MPa gy = 20 MPa — OL a,;fiompi
Ty = 0O 0 = 30° | \,
gy + oy 90 + 20 =
Oave = = = 55 MPa
2 2
A =0) oy = 90 Ty = 0 )
B(@=90° 0u=20  17y,=0 "y y ‘“}\ '
/ /)
Ox =0y 2 o ffl 3 L// B l::i=m
R=[( ) +14°1%=35MPa |\ /)
: N
9=30°  20=60° (point D) == ]
0w = Oae + RCOSB60° "

= 55+ 35c0s60°=72.5MPa
Tlel = = R Sln 600

= -35sin60° = -30.3MPa

16



0 =120° 20 =240° (point D"
O-Xl O-ave R COS 600
= 55 - 35 cos60° = 37.5MPa
Txiyr = R sin 60°
= 35 sin60° = 30.3 MPa
Example 7-5 '
5 TS,OOOpsi
o = 100MPa ¢, = 34MPa R e
Ty = 28 MPa l _[\
determine the stresses on the face of § = 40° i
(a)
determine oy, o, and Tmax _
oxt oy 10+ 34 4000 fro00 ﬁ\'/@\\
Oave = = =67 MPa l PO A W R L
2 2 . ”:\'”*’*""g,’/ \m; o0
o i |
AO=0)  4=100 7., =28 T
B(0=90° 0,=34  Tu,=-28

O-X-O-y 2

R= ) +14°]" =43 MPa

[(
2

0=40° 20=80° (point D)

tan ~ACP, = 28/33 = 0.848

~DCP; = 80°- ~ACP,=39.7°

Oy1 = 0ae T R €0S 39.7° = 100 MPa

17




Ty, = - R 8IN 39.7° = - 27.5 MPa
principal stresses are represented by P, and P,
op = oa + R = 110MPa
20, = 40.3° O = 20.15°
o, = 0Oae - R = 24MPa
O = 0, + 90° = 110.15°

i 10,000 psi
maximum shear stress / %
\\ ra
\fﬁfl(}[) psi

/\ ()‘IJ:—Ei.TC

10,000 psi "~
i

Tmx = R = 43 MPa

O, = Op - 45° = -24.85° /

{c)

ou = 0oae = 67 MPa

Example 7-6 §
Tlo MPa
ox = -50MPa o, = 10MPa B /A
Ty = - 40 MPa 0 = 30° ‘[ O| l 5GMPax
. 40 MPa
determine oy, T, On 6 = 45° T
determine o1, o0, and Tpax o
ox T oy -50+10
Oave — = = -20MPa

2 2
A (9 = O) ox = -50 Tayp = - 40
B(=90° o, = 10 Txyr = 40

O-X = O-y 2

R = [( ) + 7:xyz]l/2 = 50 MPa

2

18



Py (0, = 1166

I # ()
v

40

)

B (0 =90°)

(0, =71.6°)

20 |10

(b)

0 = 45° 20 = 90° (point D)
tan ~ACP, = 40/30 = 1.333
ZACP, = 26, = 53.13°
~«DCP, = 90° - _~ACP, = 36.87°

ouw = -20 - 50c0s36.87° = -60MPa
Tay = 90sin36.87° = 30 MPa
at D' o = -50 + 10 -(-60) = 20 MPa
Ty = -30MPa
principal stresses are represented by P; and P,
o1 = oa t+ R = 30MPa
20, = 20, + 180° = 233.13° 0,, = 116.6°
g, = Oae - R = -70MPa 0, = 26.6°
maximum shear stress
Tmax = R = 50 MPa
0, = 0, - 45° = 71.6°

O-Xl = O-ave = - 20 MPa

19



7.5 Hook's Law for Plane Stress
for the plane stress with normal stresses

ax and ay, the normal strains are

ex = (ox—voy)lE
&g = (oy—voy)lE
& = -v(ox+toylE

the first two equations can be solved for

the stresses in terms of strains

E(ex+ve)/ (1-19)
E(8y+V8X)/(1—V2)

Oy

Oy

for the pure shear stress 7, the shear

strain pyy is
yxy = Txy / G
or Ty = Gyyy

the three material parameters with the relation

G = E/[2(1+V)]
volume change
Vo = abc
Vi = a(l+g)b(l+eg)c(l+e)
= Vo(1+e)(1+eg) (1+e)

1R

and the volume change is

20



AV = Vi - Vo = Vo(extetey)
the unit volume change or dilatation e is defined
e = AV/Vy = &tegte
for uniaxial stress gy only
e = AV/Vy = o,(1-2Vv)/E
for plane stress o, and oy
e = AV/Vy = (oxto)(1-2v)/E

Strain-energy density in plane stress

u = 1/2(()'Xé‘x"'O'yé‘y'|''L'xyyxy)
= (O'X2+o'y2—2VO'XO'y)/2E + TxyZ/ZG

= E(a’+e +2veg)/[20-)] +Gypy°l2

7.6 Triaxial Stress

1
. i
a stress element subjected to normal stress | L7
ox, ay and o is said to be in a triaxial stress "“'_; (,-. ______ =
.4 "
state e l

on the inclined plane parallel to the z axis,
only ¢ and 7 on this plane, the maximum
shear stress occurs on the plane by a 45°

rotation about z axis is

O-X_Jy
(tmax)z = %

2

similarly

21




O-y_O-Z m
(Tmax)x = = 0 £

(Tmax)y = = ' o

the absolute maximum shear stress is the difference between

algebraically largest and smallest of the three principle stresses
the Mohr’s circles for a 3-D element is shown

Hooke’s law for triaxial stress, the normal strains are

&g = oylE-v(ox+a)lE

stresses in terms of strains are

[E@Q-v)extv(ey+e)]/(1+v)(1-2v)

Q
x
11

gy = [E(l_v)8y+v(8x+32)]/(1+V)(l_zv)
[EQ-v)e+v(xte)]/(1+v)(1-2v)

Q
N
I

in the special case of biaxial stress, o, = 0, the result are the same as in
section 7.5
the unit volume change is also obtained
e = AV/Vy = &tegte
= (oxtoy+to)(1-2V)/E
and the strain energy density is

U = Y(oxextoyey +0,8)

22



E[(1- V)(8x2 +6° + 822) +2v (exey + exer + &yer)]
y y Yy

2(1 + v)(1 - 2v)

for spherical stress

ox = o6y = 0, = 0p ' ’./50
then the normal strains are K ‘:/,_+ gﬂx
o* "
e = oo(1-2v)/E / lf’o
and the unit volume change is
e = 3g = 300(1-2v)/E
define the bulk modulus of elasticity as
K = E/3(1-2v)
then e may expressed as e = ogo/K
and the bulk modulus is K = agole

for an object submerged in water, the stress is spherical state, it is

often called hydrostatic stress

7.7 Plane Strain

the normal and shear strains at a point in body vary with direction, for

plane strain, the strain components are

& &y Py and & = Y = »w = 0
planestress : g, = 1% = 1, = 0 +
but &, + 0 e e S
planestrain : & = %, = p, = 0 U ‘ ’
but g, = 0 . S o

23



plane stress and plane strain do not occur simultaneously in general

special cases for plane stress ==> plane strain

1. O-X - = O-y 82 -V (O-X + O-y) / E = 0

2. v = 0 g = 0 for o, = 0

we will derive the strain transformation equations for the case of plane
strain, the equations actually are valid even when ¢, exists
assume &, &, Jx associated with
Y1

X and y axes are known, to determine

&u & Yxyn  associated with  x;  and X

y; axes where are rotated counterclockwise 0 1

through an angle 6 form x and vy

axes
o & dx cos@
. . . . . . _ £ A 23]
consider first the strain ¢, in x direction % K)ﬁ/
OX = gdx e {
0X; = & dxcosd 'U e
¥ syddy sind \Q/
imi i irecti AN
similarly for &, in y direction _ D

oy = gdy

oX1 = ¢ dysing

consider shear strain  y,, in xy plane

O0X1 = yydycosd

then the total increase Ad In X; direction is

Ad = gadxcosO + g dysing + p,dycosd

24



and the strain in  x; direction is

Ad dx dy dy
& = —— = &—cC0sO + g —sinfd + y,—cosO
ds ds ds ds
but dx/ds = cosf# and dy/ds = siné

thus  &u = &C0s°0 + &sin’d + 7, sin0cosd
substituting 0 + 90° for @, the ¢, isobtained

&n = &S0 + £,c0s°0 - pysinfcosl

hence e tTo&p T & tog

to obtain the shear strain = yyy,, this

strain is equal to the decrease in angle

between lines that where initially along

X; and y; axes

Yaypr = a *F p
a = -0 t a - a3
dx dy dy
= -&—sinf + g —cosl - ypy—sind
ds ds ds
= -(ex - &)sinfcosf - pysin°0
similarly
B = -(e - g)sinfcosf + pycos°0

then the shear strain =~ pyy, 1S
Yap = -2(e&x - g)sinfcosf + py(cos’O - sin’0)
use some trigonometric identities, the transformation equations for

plane strain are

25



8X+8y 8X-8y

7V
cos 20 + il sin 260
2 2 2

V11 &x - & . V
v 2 ysm29 + ﬁcosze

2 2 2

the equations are the counterparts of plane stress

stresses strains
Oy Oy & &
Txy Vxyl2
Ox1 Oyl &x1 &yl
Txiyl Pxayaf2

principal strains exist on perpendicular planes with angles 6,

Vxy
tan 20, =

8x'8y

the principal strains can be calculated

& T &y & -8 2 Vxy 2 1
+ [ ) + (—) 17
2 2 2

€152

the maximum shear strains exists at 45° to the direction of the

principal strains

Pmax &~ & 2 Vxy 2 y
= [ ) + (=) 17
2 2 2

and the normal strains in the directions of maximum shear strains are

& T &y

2

Cmax —

26



the principal strains and principal

directions

Mohr's Circle for Plane Strain

stresses occur in the same

Jfxl_'fl

EI »
&y i/B(f—) =90°)
ity O
2
P
P, © ! t &x

= yxm
291"] B ¥
= x
«— &, 28 B 7}

D@ =a)

5y
A(g=0
St & v &= &y
< Caver = 5 )

plane strains at a point can be measured by strain rosette, then the

stresses at this point can be calculated, also the principal strains and

principal stresses can be obtained

Example 7-7

& =

340 x 10°%,

7y = 180x10°

determine the strains for

110 x 10°°

0 = 30°,

principal strains, maximum shear strain

& T &y

(340 + 110)10°®

2
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110 % 10-6

i

180x 10% | />

1

]

(

' X
4 L 340 3 105
a)

= 225x10°



& - & (340 - 110)10°

— = 115x10°
2 2
yyl2= 90x10°
0 = 30° 20 = 60°
& te & - & 1%
&n = MR * cos 20 + ﬁsinze
2 2 2
= 225x107° + (115 x 10) cos 60° + (90 x 10°®) sin 60°
= 360x10°
Vxay1 &x - & v
v = .7 sin20 + ﬁcosZH
2 2 2
3 )‘
= .55x10° \ 2%
0x 106 \ /@
Yaays -110x 10°® <A A B
110x 10-6 ™ ) 360 % 10-6 \
8y1 = 8)( + 8y = 8)(1 ¢ "
(b)
= 90x10°
& T &y &~ & 2 Vxy 2 1
€152 + [( ) + (=) 17
2 2 2
= 225x10° + [(115x10°° + (90x10°)?”
= (225 + 146)x10°
e = 370x10° & = 80x10°

the angles of principal directions are

Vxy 180

tan 20, = = = 0782

& - &y 340 - 110
= 38° and 218°
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0, = 19° and 109° S"“O‘x
6 o L' i
& = 370x10 0, =19 En i /‘\/
& = 80x10° 6, =109° e
notethat & + & = & + &g «
the maximum shear strain is
Pmax &~ & 2 Vxy 2 1
= [ Y + (—)]” = 146x10°
2 2 2
Jmae = 292 % 10° | A
051 = 0p1 -45° = -26° v j ﬁ\\g ‘1\=64-0°
- _\ /225 %106 \
0. = 0,+90° = 64° = Iﬂjfij\t N, \ ,
the normal strains at this direction is 2o N '
(
& T &y 6
Eave = = 225x10
2
all of this results can be obtained from Mohr's circle
S,
B TN
D(6=36")
Fz c =9 20 P: 5,\,
fi
Dl
A (6=0°)
S,(6=6;)
%oy
2
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Example 7-8 [#
the plane strains measured by a 45° ﬁw b ow |

strain rosette are ¢, ¢ and &

5 et
_ Cmm % e\~
determine ¢, ¢ and 7y "

& te & - & 1%
&1 = 2 ucos 20 + ﬁsin 20
2 2 2

fOI' g = 450, 8)(1 = 8b
Vxy .
&g = —— + —c0s90° + —ssin90°

solve for y,, we get
Py = 2& - & - &

the strains &, ¢ and 7, can be determined from the
strain-gage reading

also the strains &, epand  yqy,  can be calculate at any angle 6
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