
Chapter 9

Natural Convection



Forced convection--with external forcing condition
Natural (or free) convection--driven by buoyancy force, which 
is induced by body force with the presence of density gradient

9.1 Physical Considerations



9.2 The Governing Equations
x-mom. eq.:

With                  from the y-mom. eq., the x-pressure gradient in the 
b.l. must equal to that in the quiescent region outside the b.l.,

i.e.,

So,

Introducing the volumetric thermal expansion coefficient
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The set of governing equations for laminar free 
convection associated with a vertical heated plate are:

continuity eq.:

x-mom. eq.:

energy eq.:

Note the dissipation is neglected in (9.8) and Eqs. (9.6)-
(9.8) are strongly coupled and must be solved 
simultaneously. 
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9.3 Similarity Considerations
Defining 

Eqs. (9.7) and (9.8) reduce to

(9.10) →

where

*   and  * ,    is the characteristic lengthyxx y LL L≡ ≡

T* ≡ T −T∞
Ts − T∞

(9.10)

(9.11)

(9.12)

(9.10a)

0
0 0

*   and  * ,    is an arbitrary reference velocityu vu v uu u≡ ≡

2
*

1/2 2

* * *1* *
( )* * *L

u u uu v T
Grx y y

∂ ∂ ∂
∂ ∂ ∂

+ = +
3

2

( )s
L

g T T LGr β
ν

∞−
≡

2

2

* * 1 ** *
* * *L

T T Tu v
x y Re Pr y

∂ ∂ ∂
∂ ∂ ∂

+ =

2
*

2 2
0

( )* * *1* *
* * *

s

L

g T T Lu u uu v T Rex y u y
β∂ ∂ ∂

∂ ∂ ∂
∞−

+ = +

1→ u0=[gβ(Ts-T∞)L]1/2

•GrL plays the same role in free convection that ReL plays in forced 
convection.



If there is a non-zero free stream velocity, u∞, we may use u0= u∞.
Then

Generally,
→both free & forced convection to be considered

→forced convection

→free convection
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Alternative derivation of Gr under purely natural convection
Eqs. (9.10) can be also written as

If u0 is set to make u0L/ν≣1, or u0=ν/L
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9.4 Laminar Free Convection on a Vertical Surface
Introducing the similarity parameter

Eqs. (9.6 to 9.8) can be reduced to

The numerical results are shown in Fig. 9.4.

where g(Pr) is determined numerically determined as (9.20).
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9.5 The Effects of Turbulence
For vertical plates the transition occurs at

EX 9.1

9.6 Empirical Correlations: External Free Convection Flows
Generally,

, n=1/4 for laminar, n=1/3 for turbulent flow

Table 9.2 (p. 583) summarizes the empirical correlations for different 
immersed geometries.
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F Kreith & MS Bohn, 
Principles of Heat 
Transfer, 2001



Some other flow 
conditions in 9.6



Flow Pattern







Reference: A. Bar-Cohen and W.M. 
Rohsenow, Thermally optimum spacing of 
vertical, natural convection cooled, parallel 
plates, ASME J. Heat Transfer, 106 (1984) 
116-123.

9.7 Natural Heat Transfer Between Parallel Plates
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Vertical Parallel Plates:



Eq. (9.45) is suitable for different thermal conditions of 
the plates, isothermal or isoflux plates, symmetric or 
with one plate adiabatic. The different values of C1 and 
C2 for each condition are given in Table 9.3.



Eq. (9.45) is commonly used for vertical plate heat sinks, 
although this can be inaccurate for short fins (H/S<5) due to 
additional boundary layers near the base plate corners.
For inclined parallel plates, for 0≦θ≦ 45° and within the isolate 
plate limit, RaS(S/L)>200, 
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