Chapter 9

Natural Convection

- **Forced convection**--with external forcing condition
- Natural (or free) convection--driven by buoyancy force, which is induced by body force with the presence of density gradient

9.1 Physical Considerations

9.2 The Governing Equations

x-mom. eq.:
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} - g + v\frac{\partial^2 u}{\partial y^2}$$
(9.1)

With $\partial p / \partial y = 0$ from the *y*-mom. eq., the *x*-pressure gradient *in* the b.l. must equal to that in the quiescent region *outside* the b.l.,

i.e.,
$$\frac{\partial p}{\partial x} = -\rho_{\infty}g$$
 (9.2)

So,
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{g}{\rho}(\rho_{\infty} - \rho) + v\frac{\partial^2 u}{\partial y^2}$$
 (9.3)

Introducing the volumetric thermal expansion coefficient

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p} \approx -\frac{1}{\rho} \frac{\rho_{\infty} - \rho}{T_{\infty} - T}$$
(9.4)

(Note: For ideal gases, $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p = \frac{1}{\rho} \frac{p}{RT^2} = \frac{1}{T}$)

$$\rightarrow u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = g \beta (T - T_{\infty}) + v \frac{\partial^2 u}{\partial y^2}$$
(9.5)

(9.9)

The set of governing equations for laminar free convection associated with a *vertical heated plate* are: **continuity eq.:** $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ (9.6)

x-mom. eq.:
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = g\beta(T - T_{\infty}) + v\frac{\partial^2 u}{\partial y^2}$$
 (9.7)

energy eq.:
$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$$
 (9.8)

 Note the dissipation is neglected in (9.8) and Eqs. (9.6)-(9.8) are strongly coupled and must be solved simultaneously.

9.3 Similarity Considerations

• $Gr_{\rm L}$ plays the same role in free convection that $Re_{\rm L}$ plays in forced convection.

If there is a non-zero free stream velocity, u_{∞} , we may use $u_0 = u_{\infty}$.

Then $\frac{g\beta(T_s - T_{\infty})L}{u_{\infty}^2} = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} / \left(\frac{u_{\infty}L}{v}\right)^2 = \frac{Gr_L}{Re_L^2}$

$$\rightarrow \text{Eq. 9.10 becomes } u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \frac{Gr_L}{Re_L^2} T^* + \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}} \qquad (9.10b)$$

Generally,

 $(Gr_L / Re_L^2) \approx 1 \quad \rightarrow \text{both free \& forced convection to be considered} \\ \rightarrow Nu_L = f(Re_L, Gr_L, Pr) \\ (Gr_L / Re_L^2) << 1 \quad \rightarrow \text{forced convection} \\ \rightarrow Nu_L = f(Re_L, Pr) \\ \end{cases}$

 $(Gr_L / Re_L^2) >> 1 \rightarrow$ free convection $\rightarrow Nu_L = f(Gr_L, Pr)$

Alternative derivation of *Gr* **under purely natural convection** Eqs. (9.10) can be also written as

$$u * \frac{\partial u *}{\partial x^*} + v * \frac{\partial u *}{\partial y^*} = \frac{g\beta(T_s - T_{\infty})L}{u_0^2}T^* + \frac{v}{u_0L}\frac{\partial^2 u *}{\partial y^{*2}}$$

If u_0 is set to make $u_0 L / v \equiv 1$, or $u_0 = v / L$

$$\rightarrow u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \frac{g\beta(T_s - T_\infty)L^3}{v^2} T^* + \frac{\partial^2 u^*}{\partial y^{*2}}$$
(9.10')

$$u * \frac{\partial T}{\partial x^*} + v * \frac{\partial T}{\partial y^*} = \frac{1}{Pr} \frac{\partial^2 T}{\partial y^{*2}}$$
(9.11')

where
$$Gr_L \equiv \frac{g\beta(T_s - T_\infty)L^3}{v^2}$$
 (9.12)

9.4 Laminar Free Convection on a Vertical Surface

FIGURE 9.4 Laminar, free convection boundary layer conditions on an isothermal, vertical surface. (*a*) Velocity profiles. (*b*) Temperature profiles [3].

EX 9.1

9.6 Empirical Correlations: External Free Convection Flows Generally,

$$\overline{Nu}_L = \frac{\overline{h}L}{k} = CRa_L^n$$
, $n=1/4$ for laminar, $n=1/3$ for turbulent flow

Table 9.2 (p. 583) summarizes the empirical correlations for different immersed geometries.

EX 9.2

Some other flow conditions in 9.6

FIGURE 9.6 Buoyancy-driven flows on an inclined plate: (a) side view of flows at top and bottom surfaces of a cold plate $(T_s < T_{\infty})$, (b) end view of flow at bottom surface of cold plate, (c) side view of flows at top and bottom surfaces of a hot plate $(T_s > T_{\infty})$, and (d) end view of flow at top surface of hot plate.

Flow Pattern

Fluid, T_{∞}

(d)

FIGURE 9.7 Buoyancy-driven flows on horizontal cold $(T_s < T_{\infty})$ and hot $(T_s > T_{\infty})$ plates: (*a*) top surface of cold plate, (*b*) bottom surface of cold plate, (*c*) top surface of hot plate, and (*d*) bottom surface of hot plate.

(c)

Plate, T_s –

TABLE 9.2 Summary of free convection empirical correlations for immersed geometries

Geometry	Recommended Correlation	Restrictions	
1. Vertical plates ^a			
2. Inclined plates Cold surface up or hot surface down	Equation 9.26	None	
3. Horizontal plates (a) Hot surface up or cold surface down	Equation 9.26 $g \rightarrow g \cos \theta$	$0 \le \theta \lesssim 60^\circ$	
(b) Cold surface up or hot surface down	Equation 9.30 Equation 9.31	$10^4 \lesssim Ra_L \lesssim 10^7$ $10^7 \lesssim Ra_L \lesssim 10^{11}$	
	Equation 9.32	$10^5 \lesssim Ra_L \lesssim 10^{10}$	

TABLE 9.2Continued

Geometry		Recommended Correlation	Restrictions
4.	Horizontal cylinder		
5.	Sphere	Equation 9.34	$Ra_D \lesssim 10^{12}$
		Equation 9.35	$Ra_D \lesssim 10^{11}$ $Pr \gtrsim 0.7$

9.7 Natural Heat Transfer Between Parallel Plates

Vertical Parallel Plates:

Nu

Ra'

Reference: A. Bar-Cohen and W.M.

Rohsenow, Thermally optimum spacing of vertical, natural convection cooled, parallel plates, ASME J. Heat Transfer, 106 (1984) 116-123.

Eq. (9.45) is suitable for different thermal conditions of the plates, isothermal or isoflux plates, symmetric or with one plate adiabatic. The different values of C₁ and C₂ for each condition are given in Table 9.3.

TABLE 9.3 Heat transfer parameters for free convection between vertical parallel plates

Surface Condition	C_1	C_2	S_{opt}	$S_{\rm max}/S_{\rm opt}$
Symmetric isothermal plates $(T_{1} = T_{2})$	576	2.87	$2.71(Ra_s/S^3L)^{-1/4}$	1.71
Symmetric isoflux plates $(q''_{s,1} = q''_{s,2})$	48	2.51	$2.12(Ra_s^*/S^4L)^{-1/5}$	4.77
Isothermal/adiabatic plates $(T_{s1}, q_{s2}'' = 0)$	144	2.87	$2.15(Ra_S/S^3L)^{-1/4}$	1.71
Isoflux/adiabatic plates $(q_{s,1}'', q_{s,2}'' = 0)$	24	2.51	$1.69(Ra_s^*/S^4L)^{-1/5}$	4.77

- Eq. (9.45) is commonly used for vertical plate heat sinks, although this can be inaccurate for short fins (*H/S*<5) due to additional boundary layers near the base plate corners.
- For inclined parallel plates, for $0 \le \theta \le 45^{\circ}$ and within the isolate plate limit, $Ra_{S}(S/L)>200$,

(9.47)

 $Nu_S = 0.645(Ra_S S / L)^{1/4}$

Cengel, Heat Transfer

FIGURE 9.9

Free convection flow between heated parallel plates with opposite ends exposed to a quiescent fluid.