
Chapter 7

External Forced Convection



In this course, discussion is limited to low speed, forced convection, 
with no phase change within the fluid. 

7.1 The Empirical Method

The empirical correlation of the form 

may be determined experimentally, as shown in Figs. 7.1-7.2.
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Note: To account for the effect of non-uniform 
temperature on fluid properties, there are two methods:

(1) To evaluate fluid properties at the film temperature

(2) To evaluate all properties at  and to correct with a 
parameter of the form  (Pr∞/Prs)r or (μ∞/μs)r.
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Heat transfer:

Mass transfer:



7.2 The Flat Plate in Parallel Flow
7.2.1 Laminar Flow Over an Isothermal Plate: A Similarity Solution
Read the textbook pp. 405-410.

With stream function ψ(x, y) and 
the transformation of η, f (η) 
defined in (7.9), (7.10), the 
continuity equation (7.4) together 
with the steady-state momentum 
equation (7.5) can be reduced to a 
single ordinary differential equation 
(7.17), subjected to BCs (7.18).  
The numerical solution is shown in 
Table 7.1.  The boundary layer 
thickness δ and the local friction 
coefficient Cf,x can be determined 
as (7.19) and (7.20).



Similarly, the energy equation can be reduced to (7.21), subjected to 
BCs (7.22).  Numerical integration leads to 

and 

From the solution of (7.21), it also follows that
The average heat transfer coefficient is 

Hence,

Similarly,

For small Pr, namely liquid metals, δt >>δ, we may assume u=u∞
throughout the thermal boundary layer and obtain (7.32).
For all Pr numbers: (7.33)
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7.2.2 Turbulent Flow over an Isothermal Plate
From experiment, it is known

Moreover, 

For turbulent flow, 

Using (7.35) with the modified Reynolds analogy,

Enhanced mixing causes the turbulent boundary layer to grow 
more rapidly than the laminar boundary layer (δ varies as x4/5 in 
contrast to x1/2 for laminar flow) and to have larger friction and 
convection coefficients.
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7.2.3 Mixed boundary Layer Conditions
When transition occurs sufficiently upstream of the trailing edge, 

(xc/L)≦0.95 (Fig. 7.3), both the laminar and the boundary layers 
should be considered.

General expressions:
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7.2.4 Unheated Starting Length

For flat plate in parallel flow with unheated starting length (Fig. 7.4):

Laminar flow:

turbulent flow:
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7.2.5 Flat Plates with Constant Heat Flux Conditions
For flat plate with a uniform surface heat flux:

laminar flow: (7.45)

turbulent flow: (7.46)

In this case,                         is varying.  The local surface temperature 
is

Note: Any of the         results obtained for a uniform surface 
temperature may be used with Eq. 7.48 to evaluate              .
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7.2.6 Limitations on Use of Convection Coefficients
Errors as large as 25% may be incurred by using the expressions 

due to varying free stream turbulence and surface roughness.

7.3 Methodology for a Convection Calculation
Follow the six steps listed in the textbook.
1. Become immediately cognizant of the flow geometry.
2. Specify the appropriate reference temperature and evaluate the 

pertinent fluid properties at that temperature.
3. In mass transfer problems the pertinent fluid properties are those 

of species B.
4. Calculate the Reynolds number.
5. Decide whether a local or surface average coefficient is required.
6. Select the appropriate correlation.

EXs 7.1-7.3



7.4 The Cylinder in Cross Flow
Boundary layer separation may occur due to the adverse pressure 

gradient (dp/dx > 0).  Boundary layer transition, from laminar b. l. 
to turbulent b. l., depends on ReD (≣ρVD/μ). 

Drag coeff. CD→Fig. 7.8







7.4.2 Convection Heat and Mass Transfer
The local Nuθ → Fig. 7.9

Rise due to mixing 
in the wake

Decline due boundary 
layer growth

Rise due to 
transition to 
turbulence



The average  (of more engineering interest): 

Constants for circular cylinders: Table 7.2 
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Constants for noncircular cylinders: Table 7.3
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Other correlations are shown in (7.53), (7.54).
EX 7.4
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7.5 The Sphere
Whitaker:

For liquid drops the Ranz and Marshall correlation (7.57).  More 
accurate modifications for it are also available.

EX 7.6
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7.6 Flow across Banks of Tubes (brief introduction)



Aligned or staggered: Fig. 7.11 and Fig. 7.12
A number of correlations for        are given in (7.58)-(7.65), with 
constants listed in Tables 7.5-7.8.
The h for a tube in the first row is approximately equal to that for 
a single tube in cross flow, whereas larger heat transfer 
coefficients are associated with tubes of the inner rows.  Mostly, 
the convection coefficient stabilizes for a tube beyond the fourth 
or fifth row.
In general, heat transfer enhancement is favored by the more 
tortuous flow of a staggered arrangement, particularly for small
ReD (<100).
Since the fluid temperature may change over the tube bank, the 
heat transfer rate may be significantly over-predicted by using 
ΔT=Ts-T∞.  The appropriate form of ΔT is a log-mean 
temperature difference ΔTlm, as shown in (7.66).  And
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7.7 Impinging Jets (brief introduction)
The impinging jet is a simple and effective way of cooling.  The

compressed boundary layer near the central stagnation point 
causes effective cooling of the surface.  It is widely adopted, in 
combination of cooling fins, in CPU cooling for desktop PCs and 
other types of computers.
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