
Chapter 6

Fundamental Concepts of 
Convection



6.1 The Convection Boundary Layers
Velocity boundary layer:
surface shear stress: 
local friction coeff.:

Thermal boundary layer:
local heat flux:                    

local heat transfer coeff.:  
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Concentration boundary layer:
local species flux:             

or (mass basis):

local mass transfer coeff.: 

or (mass basis): 
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6.1.4 Significance of the Boundary Layers
Velocity boundary layer: always exists for flow over any 
surface
Thermal boundary layer: exists if the surface and free 
stream temperature differ
Concentration boundary layer: exists if the surface 
concentration of a species differs from the free stream value

The principal manifestations and boundary layer 
parameters are
Velocity boundary layer: surface friction and friction 
coefficient Cf
Thermal boundary layer: convection heat transfer and heat 
transfer convection coefficient h
Concentration boundary layer: convection mass transfer 
and mass transfer convection coefficient hm



6.2 Local and Average Convection Coefficients
6.2.1 Heat Transfer
The local heat flux q” may be expressed as (Newton's law of cooling)

q”= h(Ts-T∞), h = heat transfer convection coeff.
= f (fluid properties, surface geometry, flow conditions)

The total heat transfer rate q may be obtained by integration
, if Ts is uniform

where                        .
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6.2.2 Mass Transfer
Similar for mass transfer of species A, we have

--local
--average

or
where   
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We can also write Fick’s law on a mass basis by 
multiplying Eq. 6.7 by MA to yield

The value of CA,s or ρA,s can be determined by assuming 
thermodynamic equilibrium at the interface between the 
gas and the liquid or solid surface.  Thus,
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6.2.3 The Problem of Convection
The local flux and/or the total transfer rate are of 

paramount importance in any convection problem.  So, 
determination of these coefficients (local h or hm and 
average             ) is viewed as the problem of convection.

However, the problem is not a simple one, as

EXs 6.1-6.3

 or mh h

,

 or (fluid properties,  surface geometry, flow conditions)

                   i.e., , , ,

                

m

f p f

h h f

k cρ μ

=

↑



6.3 Laminar and Turbulent Flow
Critical Reynolds no. where transition from laminar boundary layer 

to turbulent occurs:

EX 6.4

Rex,c =
ρu∞xc

μ = 5 ×105



6.4 The Boundary Layer Equations (2-D, Steady)

6.4.1 Boundary Layer Equations for Laminar Flow
For the steady, two-dimensional flow of an incompressible 

fluid with constant properties, the following equations 
are involved. (Read 6S.1 for detailed derivation.)
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momentum eq. (incompressible):

energy equation:

species equations:
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Boundary layer approximations:

Usual additional simplifications: incompressible, 
constant properties, negligible body forces, nonreacting, 
no energy generation
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Eqs. 6.27 is unchanged and the x-mom equation reduces to

The energy equation reduces to

and the species equation becomes

For incompressible, constant property flow, Eq. (6.28) is 
uncoupled from (6.29) & (6.30). Eqs. (6.27) & (6.28) need to be 
solved first, for the velocity field u(x, y) and v(x, y), before (6.29) 
& (6.30) can be solved, i.e., the temperature and species fields are 
coupled to the velocity field. 
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6.5 Boundary Layer Similarity: The Normalized 
Convection Transfer Equations

6.5.1 Boundary Layer Similarity Parameters
Defining and                L is the characteristic length

and V is the free stream velocity

and

we arrive at the convection transfer equations and their boundary 
conditions in nondimensional form, as shown in Table 6.1.

Dimensionless groups:
Reynolds no.: 
Prandtl no.:
Schmidt no.:

L
VLRe v≡

x* ≡ x
L y* ≡

y
L

u* ≡ u
V v* ≡ v

V

T* ≡
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CA,∞ − CA,s

vPr α≡

AB

vSc D≡



The final dimensionless governing eqs.: (6.35)-(6.37)--similar in form
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6.5.2 Functional Form of the Solutions
From (6.35), we can write

where dp*/dx* depends on the surface geometry.
The shear stress and the friction coefficient at the surface 

are

For a prescribed geometry, (6.45) is universally applicable.
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From (6.36)

Nusselt number can be defined as

For a prescribed geometry, from (6.47)

The spatially average Nusselt number is then

Similarly for mass transfer,

EX 6.5
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6.6 Physical Significance of the Dimensionless 
Parameters

See Table 6.2.
For heat transfer, the important dimensionless 
parameters are:
Re, Nu, Pr, Bi, Fo, Pe (= RePr), Gr
For mass transfer,
Re, Sh, Sc, Bim, Fom, Le (= α/DAB)

For boundary layer thicknesses,
1,    ,          for laminar boundary layer
3

    for turbulent boundary layer  (why?)
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6.7 Boundary Layer Analogies
6.7.1 The Heat and Mass Transfer Analogy

Since the dimensionless relations that govern the 
thermal and the concentration boundary layers are the 
same, the heat and mass transfer relations for a 
particular geometry are interchangeable. 



With

and  

and equivalent functions,  f (x*, ReL),

Then,  

and we have  , n=1/3 for most applications
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6.7.3 The Reynolds Analogy
For dp*/dx* = 0 and Pr = Sc = 1, Eqs. 6.35-6.37 are of precisely 
the same form.  Moreover, if dp*/dx*=0, the boundary conditions, 
6.38-6.40 also have the same form.  From Equations 6.45, 6.48, 
6.52, it follows that

Replacing Nu and Sh with Stanton number (St) and mass transfer 
Stanton number (Stm), as defined in (6.67) and (6.68), we have 

The modified Reynolds Analogy (or Chilton-Colburn Analogy) is

Eqs. 6.70, 71 are appropriate for laminar flow when dp*/dx* ~ 0; for 
turbulent flow, conditions are less sensitive to pressure gradient.
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6.7.2 Evaporative Cooling
For evaporative cooling shown in Fig. 6.10,

where 

If         is absent, then

Using the heat and mass transfer analogy, (6.64) becomes

Note: Gas properties ρ, cp, Le should be evaluated at the arithmetic 
mean temperature of the thermal b. l., Tam= (Ts+T∞)/2.
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h (W/m2K) Areal Rth,conv (Kcm2/W)
___________________________________________________________________
Natural Convection

Air 2~25 5,000~400
Oils 20~200 500~50
Water 100~1,000 100~10

Forced Convection
Air 20~200 500~50
Oils 200~2,000 50~5
Water 1,000~10,000 10~1

Microchannel Cooling 40,000 0.25
Impinging Jet Cooling 2,400~49,300 4.1~0.20
Heat Pipe 0.049*
_________________________________________________________________________

* based on THERMACORE 5 mm heat pipe having capacity of 20W with ΔT=5K.

Representative Ranges of Convection Thermal Resistance
Special Topic—Heat Pipes



The Working Principle of Heat Pipes

Evaporation Section
Adiabatic Section
Condensation Section

The performance of a heat pipe is dictated by its thermal 
resistance Rth and maximum heat load, Qmax, which are 
mainly determined by the evaporation characteristics.

--Based on phase-change heat transfer



container
Working fluid
wick

管壁

溝槽 燒結金屬 金屬網

Advantages of Heat Pipes
superior heat spreading ability
fast thermal response
light weight and flexible
low cost
simple without active units

A small amount of working fluid (mostly water) is filled in 
the heat pipe after it is evacuated.
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