Chapter 6

Fundamental Concepts of
Convection
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6.1 The Convection Boundary Layers
Velocity boundary layer:

surface shear stress:  *s =4[ 8z
. _ _ T
local friction coeff.: C, =212 (6.1)
Hoo Free stream 50
W; T LI Velocity
¥ > 5 |/ T boundary
L '.'E | 7 ~—— layer FIGURE 6.1
i Velocity boundary laver
\_._1- 1|1'x'1'|n|lh|m'|ll on a flat plate.
Thermal boundary layer:
local heat flux: 9¢'=—k; % (6:3)
y:(;-l qs —kf ol /@y‘y_o
. = = = 6.5
local heat transfer coeff.: T.-T. T.-T, (6.5)
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Concentration boundary layer:

local species flux: N;\:_DAB%& [kmol/s-m?] (6.6)
y=0
b TAY " % 2
or (mass basis): n, =-D,, [kg/s-m~]
y=0
N ~D,s 0C, 1 0y| _,

local mass transfer coeff.: h = AS - — (6.9)
CA,S B CA,oo CA,S B CA,oo

or (mass basis): p — ~Dae é)pA/éy|y:o
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6.1.4 Significance of the Boundary Layers

m Velocity boundary layer: always exists for flow over any
surface

m Thermal boundary layer: exists If the surface and free
stream temperature differ

m Concentration boundary layer: exists Iif the surface
concentration of a species differs from the free stream value

The principal manifestations and boundary layer
parameters are

m Velocity boundary layer: surface friction and friction
coefficient C,

m Thermal boundary layer: convection heat transfer and heat
transfer convection coefficient h

m Concentration boundary layer: convection mass transfer
and mass transfer convection coefficient h_
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6.2 Local and Average Convection Coefficients
6.2.1 Heat Transfer
The local heat flux g”” may be expressed as (Newton's law of cooling)
q”= h(T,-T..), h = heat transfer convection coeff.
= f (fluid properties, surface geometry, flow conditions)
The total heat transfer rate g may be obtained by integration

q:j&q dA :(I'S—TOO)Lg hdA , if T, is uniform (6.10-12)
“PA(,-T.), .,
8oy Lo
— 1
where h =—| hdA, . — i

As J'AS As : {!T A, T,

(613) : b e} : |Ii

I—_r—r| |— dx L

(b)
FICURE 6.1 Loecal and total convection heat transfer.

(a) Surface of arbitrary shape. (b) Flat plate.
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6.2.2 Mass Transfer
Similar for mass transfer of species A, we have

Ny =h,(Cr;—C,.) [kmol/s-m*]--local __Molar transfer rate

N, =h A(C,.-C,.) [kmolis] --average (6.15)
where h, = IAS h,,dA, (6.16)
or " — _ M2
& _rlm (Pas = P) [kgls-M] Mass transfer rate (©'18)
nA — hmAs(pA,s _IOA,OO) [kg/S] (619)
el 2
:: A;, Cy :: |T| Ay Ca,
- — 1 |

I—.x‘ —»| |e—x
(a) (b)

FIGURE 6.5  Local and total convection species transfer.
() Surface of arbitrary shape. (b) Flat plate.
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We can also write Fick’s law on a mass basis by
multiplying Eq. 6.7 by ., to yield

; 0
Ny =—Dpg - =h, (pA,s — IOA,oo) (6.20)
N |,
—D,, 0p. [ Oy
h =—"2 " o (6.21)
pA,S o IOA,oo

The value of C,  or p, s can be determined by assuming
thermodynamic equilibrium at the interface between the
gas and the liquid or solid surface. Thus,

C — psat (TS)
A 2T (6.22)
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6.2.3 The Problem of Convection

The local flux and/or the total transfer rate are of
paramount importance in any convection problem. So,
determination of these coefficients (local h or h_ and
average h or h_) is viewed as the problem of convection.

However, the problem is not a simple one, as

h or h_ = f (fluid properties, surface geometry, flow conditions)
Tie., 0, 1, K Co i

EXs 6.1-6.3
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6.3 Laminar and Turbulent Flow
Critical Reynolds no. where transition from laminar boundary layer

- U, X
to turbulent occurs: Re, . _ Pl 5105
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FICURE 6.9 Development of the velocity., thermal. and concentration boundary layers

for an arbitrary surface.

6.4.1 Boundary Layer Equations for Laminar

For the steady, two-dimensional flow of an incom
fluid with constant properties, the following eg

~low
oressible

uations

are involved. (Read 6S.1 for detailed derivation.)

ou ov
_|_
oX oy

m continuity eq.: -y

(D.1)



m momentum eqg. (incompressible):

_ ou ou op o°u 0%
x-dir. P uax+V6y :—&er . +ay2J+X
ydir. pluZevX|-—R,, 82V+82V) Y

| ox oy) oy "oxt oy
B energy equation:

oT  oT 0T 0°T .
PCpl U—+V =K +— |+ uP+g

oX oy Ox2
energy transport heat transp
thru convection conduction

where 1D = 5 (@+@j +2 (@j +(@j >

m Species equations:
oC ,

oy

ort thru heat generation

OX

viscous dissipation

oy

u—==+v—==D
ox oy AB[

2 2
g CZA+a CZA + Ny
OX oy

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)



J|"l'-:l:ln-d w4y ey dy
“"u__f__T__,
; | &
E-:u'-dx_- I E' i_}'énmd x4+ dx FICURE 65,5
-1 ' P ! GURE (™, %
:/ E’d"'"_- i : _}E“"'“d’ Differential control volume
e = (dx - dy - 1) for energy
o T T ! conservation in two-dimensional
J|:l':ﬂ':'"ﬂ- ¥ flow of a viscous fuid with heat
'Eld'ul.}' tranzfer.
V2 e
Esgvx = Eatvr+an = pit (E + T) dy — {P“ (F +T)
al| y2\|
+ ar | Pul e + = | [dxpdy
a| il
=~ fulll F+? dv dy (65.15)
- aT _aT 4
Eonto— Eogoo ( kgx) dy — { k‘f’ " ( {;u) de dy
_d | a7 ,
= ﬁ.’E dx dy (65.16)



" A
Boundary layer approximations:

u>>v
ou o ou ov ov | Velocity boundary layer
oy  OX Oy OX

a—T >> a—T} Thermal boundary layer

oy OX

oC , o oC ,
oy OX

} Concentration boundary layer

m Usual additional simplifications: incompressible,
constant properties, negligible body forces, nonreacting,
No energy generation
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Egs. 6.27 1s unchanged and the x-mom equation reduces to
ou ou 1dp, o
U—+VvV—=— +v
ox oy pdx oy

The energy equation reduces to

ungVg_a@ZTJr v (0 2~ usually negligible
x Ny Loy (6.29)

energy transport heat transport thru
thru convection conduction

and the species equation becomes

2
2 Ca ,Ca_p °Ca

OX oy ayz
m For incompressible, constant property flow, Eq. (6.28) Is
uncoupled from (6.29) & (6.30). Egs. (6.27) & (6.28) need to be
solved first, for the velocity field u(x, y) and v(x, y), before (6.29)
& (6.30) can be solved, I.e., the temperature and species fields are

coupled to the velocity field.

(6.28)

(6.30)
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6.5 Boundary Layer Similarity: The Normalized
Convection Transfer Equations
6.5.1 Boundary Layer Similarity Parameters

Defining x* = % and y* s% L is the characteristic length
u* = % and v* = V V is the free stream velocity
T-T, C,—C,,
T=1—7 and Cir=g —¢

A,s
we arrive at the convection transfer equations and their boundary
conditions in nondimensional form, as shown in Table 6.1.

Dimensionless groups:
m Reynolds no.: Re, VV'-
m Prandtl no.: Prz%
m Schmidtno.: gc=_V

DAB
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The final dimensionless governing egs.: (6.35)-(6.37)--similar in form
é’u* N*
0"}(* @*
AX AT dpt g su (6.35)

X * éy*_ dx * Re Ofy*Z
T o q T
X * TV d/* - ReL Pr éy*z (636)
R LTI X

X * O”y* N RELSC O’y*z (637)

TABLE 6.1 The bounda ry lu_\-'el' equations and their y—alil‘m-tion Imumlar‘_v conditions in nondimensional form

Boundary Conditions

Boundary Similarity
Layer Conservation Equation Wall Free Stream Parameter(s)
. dut | dut _ _dp¥ 1 §PuF wHx 0y = 0 _ Ua(X*) VL _

2 ~ r ES £ = sk = e < T R Fi

Velocity u Eres + v i I =F RE’L(_?\!*’ (6.35) vHx*0) = 0 UH(x* 00) v (6.38) he,=— (6.41)
aT* ars _ 1 ¢*T* . " o

Thermal u*ﬁ =tu *a‘ ¥ = Re,Pr gy (6.36) TH(x*.0)=0 T¥(x%,0) = | (6.39) Re;, Pr= % (6.42)
Concentration ﬁCA 4E U*ﬁC: =1 &EC: (6.37) Cix*.0)=0 Cr*,0) =1 (6.40) Re,.Sc=-2  (6.43)

. ’ tj])('{ {?\'{ R(’_;__SC.' 6‘};*2 - €l i : i o )= T
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6.5.2 Functional Form of the Solutions
From (6.35), we can write
dp*
U*Zf X*, *,Re e .
( y L dx*) (6.44)
where dp*/dx* depends on the surface geometry.
The shear stress and the friction coefficient at the surface

ale A ,uV A=
y=0 y*=0
T, 7 A* 2
C. = = — = (X*, Re ) 6.45, 46
' pV2/2 Reg N« ReL - ( )

For a prescribed geometry, (6.45) Is universally applicable.



From (6.36)
dp*
T*= f| xX*,y*,Re, ,Pr,—— .
( y L dx *j (6.47)
h__kf (T, —T)aT* _+kf5T*
L (T, -T.) gy>* o L g+ o
Nusselt number can be defined as
*
Nu =1k - ﬂ* (6.48)
f N nrg
For a prescribed geometry, from (6.47)
Nu = f(x*,Re,,Pr) (6.49)
The spatially average Nusselt number is then
N—u:%: f (Re,,Pr) (6.50)
. f =
Similarly for mass transfer, o _ hml _ f (Re, ,Sc) (6.54)

EX 6.5 Dag
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6.6 Physical Significance of the Dimensionless
Parameters

See Table 6.2.

m For heat transfer, the Important dimensionless
parameters are:

Re, Nu, Pr, BI, Fo, Pe (= RePr), Gr
m For mass transfer,
Re, Sh, Sc, Bi, FO., Le (= a/D,g)

For boundary layer thicknesses,

E ~ Pr", ) ~ Sc", o ~Le" n= 1 for laminar boundary layer
2 O, O, 3 (6.55, 56, 58)

o=o,~0, forturbulent boundary layer (why?)
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6.7 Boundary Layer Analogies
6.7.1 The Heat and Mass Transfer Analogy

TapLe 6.3 Functional relations pertinent to the boundary layer analogies

Fluid Flow Heat Transfer Mass Transfer
* * ap : % * ok p* & -k yk dp* :
u* = f| x*, y*, Re,, o (6.44) T* = f| x*, y*, Re;, Pr, Ty (6.47) Cy =f| x*, y*, Re;, Sc, o (6.51)
2 Ju* | hL _ | JT* | o Bal _  9CX |
e —— 45 Nu=—=+ 648 Sh = = + 6.52
Cr Rer 9y* |y (6.45) Nu == el PO (6.48) 1 D v ( )
3
Cr= ﬁ-f{'r*‘ Re;) (6.46) Nu = f(x*, Re;, Pr) (6.49) Sh = f(x*, Rey. Sc) (6.53)
-L
Nu = f(Rey, Pr) (6.50) Sh = f(Rey, Sc) (6.54)

m Since the dimensionless relations that govern the
thermal and the concentration boundary layers are the
same, the heat and mass transfer relations for a
particular geometry are interchangeable.
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With
Nu = f (x*,Re, )Pr"

and
Sh = f(x*, Re_ )Sc"

and equivalent functions, f (x*, Re,),

Nu Sh hL/k h L/D,,

Then, = >
Pr* Sc" Pr" Sc”
1 K . 1-n
and we have h_ ~— n _'OCIOLe , h=1/3 for most applications

(6.60)

EX6.6
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6.7.3 The Reynolds Analogy

For dp*/dx* = 0 and Pr = Sc = 1, Eqgs. 6.35-6.37 are of precisely
the same form. Moreover, If dp*/dx*=0, the boundary conditions,
6.38-6.40 also have the same form. From Equations 6.45, 6.48,

6.52, it follows that
C, %: Nu = Sh (6.66)

Replacing Nu and Sh with Stanton number (St) and mass transfer
Stanton number (St ), as defined in (6.67) and (6.68), we have

C,/2=St=S5t_ -- Reynolds Analogy (6.69)
h Nu St h Sh

— m

Nc. RePr’ T™ V. ReSc

P

The modified Reynolds Analogy (or Chilton-Colburn Analogy) Is

C . N C : Sh
TSP = = = StSe = == (6.70,70)

2 ~ RePr®’ 2

St

Egs. 6.70, 71 are appropriate for laminar flow when dp*/dx* ~ 0; for

turbulent flow, conditions are less sensitive to pressure gradient.
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6.7.2 Evaporative Cooling
For evaporative cooling shown in Fig. 6.10,

— Gas flow
qconv T qadd qevap (species B)

—

here "
W =N\hy  (6.62) — -

evap
FIGURE 6. 10

Latent and sensible heat
exc I|a|n;_wu —|| id

If q;dd IS absent, then
h(T _T) hfg m IOA,Sat(TS)_IOA,oo]

h.
— Too _Ts = hfg (Tj LOA sat (Ts) - IOA,oo] (664)
Using the heat and mass transfer analogy, (6.64) becomes

Maltg  Pasac(Ts)  Pas
(T T =g el T T ] (6.65)
P S

Note: Gas properties p, c,, Le should be evaluated at the arithmetic
mean temperature of the thermal b. I., T, = (T+T..)/2.

am_(
EXO0.7
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Special Topic—Heat Pipes
Representative Ranges of Convection Thermal Resistance
h (Wim2K)  Areal Ry, .o, (Kcm2/W)

Natural Convection

Air 2~25 5,000~400

Oils 20~200 500~50

Water 100~1,000 100~10
Forced Convection

Air 20~200 500~50

Oils 200~2,000 50~5

Water 1,000~10,000 10~1
Microchannel Cooling 40,000 0.25
Impinging Jet Cooling 2,400~49,300 4.1~0.20
Heat Pipe 0.049*

* based on THERMACORE 5 mm heat pipe having capacity of 20W with AT=5K.
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The Working Principle of Heat Pipes
--Based on phase-change heat transfer
m Evaporation Section
m Adiabatic Section

m Condensation Section
The performance of a heat pipe Is dictated by its thermal

resistance Ry, and maximum heat load, Q,.,, which are
mainly determined by the evaporation characteristics.

condensation | adiabatic section evaporation
- >4 > =

vapor flow

neat out

heat in
wick structure

container

liquid flow
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A small amount of working fluid (mostly water) is filled in
the heat pipe after it Is evacuated.

Econtainer
m\\orking fluid
Hwick

Advantages of Heat Pipes
Msuperior heat spreading ability
BWfast thermal response

Hmlight weight and flexible
H|ow cost

Esimple without active units
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