
Chapter 5

Time-Dependent Conduction



5.1 The Lumped Capacitance Method
This method assumes spatially uniform solid temperature at any 

instant during the transient process.  It is valid if the temperature 
gradients within the solid are small.

Apply energy balance to the control volume of Fig. 5.1

If the energy exchange is through convection,

Letting  θ = T-T∞, we obtain
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With the initial condition θ (0)= θi, it follows

The thermal time constant is defined as

where Rt is the resistance to convection    
heat transfer, Ct is the lumped thermal 
capacitance of the solid.
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The total energy transfer Q can be obtained by

(5.8)



5.2 Validity of the Lumped Capacitance Method
To find the criterion for the validity of the lumped capacitance

method, consider the steady-state energy balance (Fig. 5.3)

kA
L (Ts ,1 − Ts,2 ) = hA(Ts,2 − T∞ )

Ts,1 − Ts,2
Ts,2 − T∞

= (L / kA)
(1 / hA) =

Rcond
Rconv

= hL
k ≡ Bi

k--conductivity of the solid

→

Criterion for the validity of the lumped 
capacitance method(Fig.5.4):

Lc= characteristic lengthBi =
hLc
k < 0.1

(5.9)

(5.10)



Criterion for the validity of the lumped capacitance method 
(Fig.5.4): Bi =

hLc
k < 0.1 Lc= characteristic length

The dimensionless time, Fourier number, Fo = αt
Lc

2

Fo, with Bi, characterizes transient conduction problems.
θ
θi

=
T − T∞
Ti − T∞

= exp(−Bi ⋅ Fo)
EX 5.1
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5.3 General Lumped Capacitance Analysis
A general situation including convection, radiation, an applied 

surface heat flux, and internal energy generation (Fig.5.5) can be 
described as
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EXs 5.2, 5.3



5.4 Spatial Effects
Consider a representative 1-D heat transfer problem,
DE:

IC:

BCs:

Eqs. 5.26-29 imply

However, after nondimensionalization with

∂ 2T
∂x2 = 1

α
∂T
∂t

T(x, 0) = Ti

∂T
∂x x=0

= 0 −k ∂T
∂x x= L

= h[T(L,t) − T∞ ]

T = T(x, t,Ti,T∞ , L,k,α,h)
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(5.28, 29)

(5.30)

θ∗ ≡ θ
θi

=
T − T∞
Ti − T∞

x∗ ≡ x
L t∗ ≡ αt

L2 ≡ Fo

∂ 2θ∗

∂x*2 = ∂θ∗

∂Fo

θ∗(x∗, 0) = 1
∂θ∗

∂x* x∗=0
= 0 ∂θ∗

∂x* x∗=1
= −Bi θ ∗(1, t∗ )

→

(5.31-33)

(5.35-37)

(5.34)



For a prescribed geometry, the transient temperature 
distribution is a universal function of x*, Fo, and Bi.  
That is, the dimensionless solution assumes a prescribed 
form that does not depend on the particular value of Ti, 
T∞, L, k, α, or h..
The physical interpretation of Fo: Fo can not only 
viewed as the dimensionless time, it also provides a 
measure of the relative effectiveness for a material to 
conduct and store energy, as

θ∗ = f (x∗,Fo, Bi)

FoLtcLkttTcLLTkLEq ===ΔΔ 2232
st //)//()/(~)/( αρρ&

(5.38)→



5.5 The Plane Wall with Convection

5.5.1 Exact Solution
The problem depicted in Fig. 5.6a has the exact solution as

θ∗ = Cn exp(−ζn
2Fo)cos(ζn x∗)

n=1

∞
∑

Cn =
4sin ζn

2ζn + sin(2ζn )

and the eigenvalues ζn are positive roots of the transcendental eq.

ζn tanζn = Bi

(5.39a)

(5.39b)

(5.39c)

where



5.5.2 Approximate Solution
For Fo > 0.2, the exact infinite series solution can be approximated 

by the first term of the series: (∵ζ1< ζ2 < ζ3 <…, cf. App. B.3)

where                                --temperature variation at midplane x* = 0.
Eq. 5.40 implies that the time dependence of the temperature at any 

location within the wall is identical.
5.5.3 Total Energy Transfer
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5.5.4 Additional Considerations
The solution is also valid for the problem with 
insulation on one side (x* = 0) and experiences 
convective transport on the other side (x* = +1).
The foregoing results may be used to determine the 
transient response of a plane wall to a sudden change in 
surface temperature (θ* = θi*, at x* = 1).   The process 
is equivalent to having an infinite convection 
coefficient, in which case the Biot number is infinite (Bi
= ∞) and the fluid temperature T∞ is replaced by the 
prescribed surface temperature Ts.



5.6 Radial Systems with Convection
Infinite cylinder: (Fig. 5.6b)

with eigenvalues ζn being the positive roots of the equation

<Home Work> Solve for Eqs. 5.39 and 5.47 using the method of 
separation of variables.

EX 5.4
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2 (ζn)

ζn
J1(ζn )
J0 (ζn) = Bi

where

(5.47a)

(5.47b)

(5.47c)



About Bessel Equation
Similar reasoning can be made for the Bessel Equation as for 
modified Bessel Equation, as both correspond to the cylindrical 
coordinate.

The Bessel Equation of order v is

The general solution of (3) is (B3a)

(B3)
22
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Compare                                 , with the general solution

and
with the general solution

It can be seen that J0(mr) is similar to cosmx in the 
oscillating behavior, but J0 (mr) reflects damped 
amplitude in response to increased r. Their “periods”
are also very similar except for the first half cycle. In 
fact, for large x
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5.7 The Semi-Infinite Solid
Three cases of surface conditions: (Fig. 5.7)



Using the similarity method with similarity variable η = 
x/(4αt)1/2, the PDE can be transformed into an ODE.  
Exact solutions can thus be obtained.
Case 1 Constant surface temperature: T(0,t)=Ts

Case 2 Constant surface heat flux:             →Eq. 5.59
Case 3 Surface Convection:  
→Eq. 5.60 
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A special case: interfacial contact between two semi-
infinite solids at different initial temperatures

If contact resistance is negligible, there is no temperature jump at the 
interface.  Also,

Since Ts does not change with time
(no energy storage), from Eq 5.58

With Ts determined, the temperature profile can be described by Eq. 
5.57.
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